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Abstract

This paper presents a method for calibration of the extrinsic parameters of a sensor system that combines
a camera with an inertial measurement unit (IMU) to estimate the pendulum motion of a crane payload.
The camera measures the position and orientation of a fiducial marker on the payload, while the IMU is
fixed to the payload and measures angular velocity and specific force. The placements of the marker and
the IMU are initially unknown, and the extrinsic calibration parameters are their position and orientation
with respect to the reference frame of the payload. The calibration is done with simultaneous state and
parameter estimation, where a particle filter is used for state estimation, and a Riemannian gradient
descent method is used for parameter estimation. The orientation is described with unit quaternions, and
gradients are developed in a Riemannian formulation based on the Lie group of unit quaternions. This
leads to efficient derivations of gradient expressions involving orientations and provides added geometric
insight to the problem. The efficiency of the method is demonstrated in simulations and experiments for
a simplified crane payload problem.
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1 Introduction

The motion of a rigid body can be estimated by us-
ing cameras and inertial sensors. This is important in
many applications, and the topic has been thoroughly
treated in the research literature. The estimation of
orientation has, to a large extent, been formulated in
terms of unit quaternions, and an important contri-
bution was the multiplicative extended Kalman filter
with unit quaternions (Lefferts et al., 1982), (Crassidis
et al., 2007). This work was extended to particle fil-
tering for attitude estimation in (Cheng and Crassidis,
2010).

In (Kok et al., 2017), a probabilistic approach is pre-
sented for the estimation of position and orientation
using inertial sensors in combination with other sen-
sors like cameras. They used a matrix formulation of

unit quaternions for developing gradients, Jacobians
and Hessians, which were applied for orientation esti-
mation with Gauss-Newton optimization, Kalman fil-
tering and smoothing. The matrix formulation of unit
quaternions was also discussed in (Bloesch et al., 2016),
where increments from a quaternion linearization point
were computed with the quaternion exponential func-
tion.

In (Moakher, 2002) and (Manton, 2004) methods for
calculation of the Karcher mean of rotation matrices in
SO(3) were considered. Gradients were formulated in
terms of the Riemannian metric on the SO(3) mani-
fold, and the Karcher mean was obtained with a Rie-
mannian gradient descent method, which was shown to
converge to the Karcher mean under reasonable condi-
tions. Similar results were presented in (Angulo, 2014)
for nonzero quaternions. In this work, the nonzero
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quaternions were treated as a Lie group with a Rie-
mannian metric, and a range of optimization problems
was discussed, including the Karcher mean for nonzero
quaternions.

In this work, we address the extrinsic calibration of a
camera and an inertial measurement unit (IMU) using
a recursive parameter estimation scheme. The method
is implemented for motion estimation with a particle
filter in a simplified crane payload problem, where the
dynamics of the payload are described as a spheri-
cal pendulum. We formulate the extrinsic calibration
as a Riemannian gradient descent problem with unit
quaternions, and extend the Riemannian formulation
for rotation matrices in (Moakher, 2002) and (Manton,
2004) to unit quaternions. This leads to elegant expres-
sions that provide geometric insight into the problem.
Moreover, this paper extends the results in (Myhre and
Egeland, 2017) and (Myhre, 2019), where a recursive
parameter estimation method based on particle filter-
ing was used to estimate the extrinsic parameters of a
fiducial marker on a swinging payload. The setup con-
sidered in this paper includes a fiducial marker and an
IMU attached to the payload. The orientations of the
marker and the IMU are considered unknown at the
beginning of the experiment and are estimated simul-
taneously with the system states using the Riemannian
gradient method.

This paper is organized as follows. Section 2 presents
preliminary results regarding particle filtering, unit
quaternions, and the Riemannian gradient. The Rie-
mannian gradient descent method is presented Sec-
tion 3, and it is shown how this can be used for pa-
rameter estimation with particle filtering. Section 4
presents the dynamics and measurement models for
the crane payload system and develops the gradients
needed in the extrinsic calibration. Simulation results
are presented in Section 5 and experimental results are
presented in Section 6. Finally, the paper is concluded
in Section 7.

2 Preliminaries

2.1 Particle filter

Consider the discrete nonlinear dynamic system

xk+1 = f(xk,vk,θ), vk ∼ p(vk) (1)

zk = h(xk, ek,θ), ek ∼ p(ek) (2)

where xk ∈ Rnx is the system state at time t = tk,
zk ∈ Rnz is the measurement and θ ∈ Rnθ is the vector
of static parameters. The process noise vk ∈ Rnv and
the measurement noise ek ∈ Rne are assumed to be
uncorrelated, with probability density functions (PDF)
p(vk) and p(wk).

The particle filter calculates an approximation of the
posterior PDF p(xk|z1:k) using a set ofN particles with

state x
(i)
k . The starting point is the approximate pos-

terior PDF

p(xk|z1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k ),

where δ(·) is the Dirac delta function and w
(i)
k is the

particle weighting factor.
The state of a particle is propagated by drawing sam-

ples of the noise v
(i)
k according to its PDF, and propa-

gating each particle state x
(i)
k by

x
(i)
k+1 = f(x

(i)
k ,v

(i)
k ,θ).

In the measurement update, the weights are updated
with the likelihood p(zk+1|xk+1) as

w̄
(i)
k+1 = w

(i)
k p(zk+1|x(i)

k+1). (3)

The new weights are then normalized by

w
(i)
k+1 =

w̄
(i)
k+1∑N

i=1 w̄
(i)
k+1

. (4)

The posterior estimates of mean and covariance can be
computed from the particle weights and states as

x̂+
k+1 ≈

N∑
i=1

w
(i)
k+1x

(i)
k+1, (5)

P+
k+1 ≈

N∑
i=1

w
(i)
k+1(x

(i)
k+1 − x̂+

k+1)(x
(i)
k+1 − x̂+

k+1)T , (6)

which are the first and second modes of the posterior

PDF p(xk+1|z1:k+1) ≈
∑N
i=1 w

(i)
k+1δ(xk+1 − x

(i)
k+1).

Finally, the resulting particles are resampled on

the basis of their relative weights w
(i)
k+1, which re-

sults in a new set of particles with equal weights

{x(i)
k+1, w

(i)
k+1 = 1/N}Ni=1. This can be performed us-

ing systematic resampling as described in (Doucet and
Johansen, 2009).

2.2 Parameter estimation with particle
filter and gradient descent

A maximum likelihood method for parameter estima-
tion with particle filtering was presented in (Kantas
et al., 2015) and (Poyiadjis et al., 2011). The proposed
solution is to use the recursive gradient search

θk+1 = θk + γ∇θ log p(zk|z1:k−1)
∣∣
θ=θk

, (7)
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where γ ∈ R is the step size in the gradient direction.
The gradient term can be calculated as in (Myhre,
2019) from

∇θ log p(zk|z1:k−1) ≈
∑N
i=1 w

(i)
k α

(i)
k −

∑N
i=1 w

(i)
k−1α

(i)
k−1, (8)

where α
(i)
k = ∇θ log p(x

(i)
k , z1:k) is computed recur-

sively from

α
(i)
k =

N∑
j=1

w
(j)
k−1p(x

(i)
k |x

(j)
k−1)∑N

l=1 w
(l)
k−1p(x

(i)
k |x

(l)
k−1)

(
∇θ log p(zk|x(i)

k )

+ ∇θ log p(x
(i)
k |x

(j)
k−1) +α

(j)
k−1

)
(9)

It is noted that this method relies on the computation
of the gradients ∇θ log(xk|xk−1) and ∇θ log p(zk|xk).

2.3 Calculation of probability functions

In this section we will show how to find the transition
PDF p(xk|xk−1) and the observation PDF p(zk|xk),
which are used to calculate the gradients in (9). The
development will follow the method of (Kok et al.,
2017). First, consider the case where the noise is ad-
ditive and Gaussian, and the dynamic system is given
by

xk+1 = f(xk,θ) + vk, vk ∼ N (0,Q) (10)

zk = h(xk,θ) + ek, ek ∼ N (0,R). (11)

The transition PDF p(xk|xk−1) can be found as the
PDF of

vk = xk+1 − f(xk,θ) ∼ N (0,Q).

In this case, the resulting transition PDF is Gaussian
with zero mean, while there is no restriction on the
state itself. In the same way, the observation PDF
p(zk|xk) is equal to the PDF of

ek = zk − h(xk,θ) ∼ N (0,R).

Next, consider the case where the noise is not addi-
tive, and the model is

xk+1 = f(xk,vk,θ), vk ∼ N (0,Q) (12)

zk = h(xk, ek,θ), ek ∼ N (0,R). (13)

Then the transition PDF p(xk|xk−1) can be found as
the PDF of the Gaussian noise vector vk. An expres-
sion for vk is found by solving (12) for vk. Similarly,
the observation PDF p(zk|xk) can be evaluated by solv-
ing (13) for ek, and using that p(zk|xk) is equal to the
Gaussian distribution of ek.

2.4 Quaternions

A quaternion q ∈ H can be represented as a sum of a
scalar η ∈ R and a vector σ ∈ R3 as

q = η + σ. (14)

The quaternion product between two quaternions q1 =
η1 + σ1 and q2 = η2 + σ2 is defined as

q1 ⊗ q2 = (η1η2 − σT
1 σ2) + (η1σ2 + η2σ1 + σ×1 σ2),

where (·)× denotes the skew symmetric matrix form of
a vector

σ× =

 0 −σz σy
σz 0 −σx
−σy σx 0

 .
The quaternion conjugate is q∗ = η − σ. The quater-
nion norm is given by

‖q‖2 = q⊗ q∗ = η2 + σTσ.

The identity quaternion is defined as qid = 1 + 0 and
satisfies qid⊗q = q⊗qid = q. The inverse quaternion
satisfies q⊗q−1 = qid and is given by q−1 = q∗/‖q‖2.
A vector v ∈ R3 can be considered as a quaternion with
zero scalar part and the quaternion multiplication then
gives

q⊗ v = (−σTv) + (ηv + σ×v). (15)

This result is used for the computation of the quater-
nion kinematics, and also for the computation of el-
ements on the tangent plane of the quaternion Lie
group, presented in Section 2.5

A unit quaternion q belongs to the set Hu = {q ∈
H : ‖q‖ = 1}. It follows that q−1 = q∗ if q ∈ Hu. It is
straightforward to verify that d

dt (q
∗) = η̇ − σ̇ = (q̇)∗,

which means that the notation q̇∗ is well defined. In
addition, from d

dt (q⊗ q∗) = 0 it follows that

d

dt
q∗ = −q∗ ⊗ q̇⊗ q∗. (16)

This result is used for the derivations in Section 3.3. A
unit quaternion can be written in terms of an angle φ
and a unit vector k as

q = cos
φ

2
+ sin

φ

2
k

This unit quaternions represents a rotation by an angle
φ about a unit vector k.

Let qIB ∈ Hu be a unit quaternion describing the
orientation of the body frame B with respect to the
inertial frame I. Then if vB is a vector given in the
coordinates of the B frame, the same vector in the
coordinates of frame I will be given by

vI = qIB ⊗ vB ⊗ q∗IB . (17)
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The rotation matrix C(qIB) ∈ SO(3) corresponding to
the unit quaternion qIB = η + σ is given by

C(qIB) = I + 2ησ× + 2σ×σ× (18)

and will satisfy vI = C(qIB)vB .

2.5 Unit quaternions as a Lie group

The set of unit quaternions Hu is a Lie group where the
group action is the quaternion product (Angulo, 2014).
The corresponding Lie algebra g is the set of vectors
u ∈ R3, while the elements of the tangent plane TqHu
at q ∈ Hu are given by q ⊗ u. The exponential map
exp : g→ Hu is defined by the infinite series

exp (u) = 1 + u +
1

2!
u⊗ u +

1

3!
u⊗ u⊗ u . . .

= cos ‖u‖+ sin ‖u‖ u

‖u‖
,

(19)

which follows from u⊗u⊗u = −‖u‖3. The logarithm
is defined as the inverse function

u = log(q) =
φ

2
k.

The exponential map can be computed from the
logarithm with exp (u) = cos ‖u‖ + u sinc‖u‖, where
sinc(‖u‖) = sin ‖u‖/‖u‖. From the Taylor series ex-
pansion of sinc(‖u‖) = 1−‖u‖2/3! + ‖u‖4/5! . . . it can
be seen that this expression is well behaved around
‖u‖ = 0. The logarithm can be computed from (Sola,
2017)

log(q) =
atan2(‖σ‖, η)

‖σ‖
σ, (20)

where atan2(‖σ‖, η) is the four quadrant version of
arctan(‖σ‖/η). It is straightforward to verify from a
Taylor series expansion that this expression is well de-
fined for |η| > 0, which corresponds to |φ| < π.

The kinematic differential equation of the unit
quaternion qIB is

q̇IB =
1

2
ωIIB ⊗ qIB =

1

2
qIB ⊗ ωBIB ∈ TqIBHu,

where ωIIB is the angular velocity of frame B with re-
spect to frame I in the coordinates of I, and ωBIB is
the same vector in the coordinates of B. We will also
refer to ωIIB as the left angular velocity and to ωBIB as
the right angular velocity as in (Chirikjian, 2011). It
is noted that

q̇IB

∣∣∣
qIB=qid

=
1

2
ωBIB =

1

2
ωIIB ∈ g.

2.6 Jacobians

The rotation matrix C = I+sinφk×+(1−cosφ)k×k×

has logarithm n× = φk×. The kinematic differential
equation of n is (Bullo and Murray, 1995)

ṅ = Φ−1r (n)ωB = Φ−1l (n)ωI , (21)

where Φr(n) is the right Jacobians and Φl(n) is the left
Jacobian in SO(3). The inverse of the right Jacobian
is given by (Bullo and Murray, 1995)

Φ−1r (n) = I +
1

2
n× +

1− ‖n‖2 cot‖n‖2
‖n‖2

n×n×,

while Φ−1l (n) = Φ−1r (−n). The logarithm of the cor-
responding unit quaternion q = cos(φ/2) + sin(φ/2)k
is u = 1

2φk = 1
2n. It follows from (21) that the kine-

matic differential equation for the logarithm of the unit
quaternion is

u̇ = Ψ−1l (u)ωI = Ψ−1r (u)ωB , (22)

where Ψ−1r (u) = 1
2Φ−1r (2u) is the right Jacobians

and Ψ−1l (u) = 1
2Φ−1l (2u) is the left Jacobian for unit

quaternions.

2.7 Riemannian metric

The Riemannian metric can be based on an extrinsic
description, where the unit quaternion manifold is em-
bedded as the unit sphere S3 in R4 (Pennec, 2006).
This means that the unit quaternion is described as
a unit vector [η,σT]T in R4. The inner product of
two quaternions can then be defined as the inner prod-
uct in R4, which gives q1 · q2 = η1η2 + σ1 · σ2. It is
noted that in this description the norm of the quater-
nion is ‖q‖2 = q·q. The Riemannian metric of the unit
quaternions is then the restriction of the inner product
of R4 at each point of the manifold (Pennec, 2006) and
is given by

〈q⊗ u,q⊗ v〉 = (q⊗ u) · (q⊗ v), (23)

where (q⊗u), (q⊗v) ∈ TqHu. The Riemannian metric
for the tangent space at the identity is then

〈u,v〉 = u · v, (24)

where u,v ∈ g. It is straightforward to show by direct
calculation that this Riemannian metric is bi-invariant,
which means that

〈u,v〉 = 〈q⊗ u,q⊗ v〉 = 〈u⊗ q,v ⊗ q〉. (25)
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2.8 Distance function

The error between two unit quaternions q1 and q2 can
be described by the error quaternion qe = q∗1 ⊗ q2,
where qe = cos(φe/2) + sin(φe/2)ke. The short-
est curve on the unit sphere S3 from q1 to q2 is
the geodesic curve q(t) = q1 exp(t log(q∗1 ⊗ q2)) for
0 ≤ t ≤ 1 (Huynh, 2009). This is known as the Slerp
curve, which was introduced in (Shoemake, 1985) for
the interpolation of unit quaternions. The Rieman-
nian or geodesic distance between q1 and q2 is then
the length of the geodesic curve, which is

d(q1,q2) = ‖ log(q∗1 ⊗ q2)‖ =
φe
2

(26)

This distance function is well defined for |φe| < π,
which is the case if the scalar part of q∗1⊗q2 is positive.

2.9 Riemannian gradient

Let f(q) be a real-valued function of a unit quaternion
q. Then the gradient ∇qf(q) is defined in terms of the
Riemannian metric as the tangent vector at q which
satisfies (Petersen, 1998; Moakher, 2002)

〈q⊗ c,∇qf(q)〉 =
d

dt
f
(
p(t)

)∣∣∣∣
t=0

, (27)

where p(t) = q ⊗ exp(tc) is a curve passing through
p(0) = q with tangent ṗ(0) = q ⊗ c. It is noted that
the right angular velocity ωp(t) corresponding to the
unit quaternion p(t) will satisfy ṗ(t) = 1

2p(t)⊗ ωp(t),
which gives

ṗ(0) = q⊗ c =
1

2
q⊗ ωp(0) (28)

and ωp(0) = 2c. The gradient is in the tangent plane
TqHu at q. It follows from the bi-invariance of the
Riemannian metric (25), that

〈c,q∗ ⊗∇qf(q)〉 =
d

dt
f
(
p(t)

)∣∣∣∣
t=0

, (29)

where c and q∗ ⊗∇qf(q) are in the Lie algebra g.

3 Optimization on the unit
quaternion manifold

This section presents Riemannian gradient descent
with unit quaternions. The presentation starts with
a review of the Karcher mean problem. Then the pa-
rameter estimation method in Section 2.2 is adapted
to unit quaternions. Finally, gradients with respect to
orientation are presented for two quaternion objective
functions, which will be used for the extrinsic calibra-
tion.

3.1 Riemannian gradient descent

A globally convergent numerical algorithm for the com-
putation of the centre of mass on compact Lie groups
was presented in (Manton, 2004). The method was for-
mulated as a gradient descent method on a Riemannian
manifold. The method was discussed in detail for rota-
tion matrices on SO(3). In this section the correspond-
ing solution for quaternions will be presented. This
was also treated in (Angulo, 2014) for nonzero quater-
nions, which are quaternions that are not necessarily
unit quaternions. The problem is formulated as fol-
lows. Given a set of unit quaternions q1, . . . ,qN ∈ Hu,
compute the centre of mass q̄ which is the unit quater-
nion that minimizes

f(q) =

N∑
i=1

‖ log(q∗i ⊗ q̄)‖2. (30)

A closed form solution is in general not available, and a
solution can be found with the gradient descent method
of (Manton, 2004), which is given for the unit quater-
nion case as

qk+1 = qk ⊗ exp(−q∗k ⊗∇qkf(qk)). (31)

The gradient is found to be

∇qkf(qk) =

N∑
i=1

qk ⊗ log(q∗k ⊗ qi). (32)

A derivation of this is found in Section 3.3. This gives
the gradient descent method

qk+1 = qk ⊗ exp

− N∑
i=1

log(q∗k ⊗ qi)

 , (33)

which, according to (Manton, 2004), will converge to
the center of mass, which is also called the Karcher
mean, as long as q1, . . . ,qN are sufficiently close to the
Karcher mean to ensure that the scalar part of q∗k⊗qi
is positive for all qi.

3.2 Parameter estimation with gradient
descent

The gradient search method given by (7), (8) and (9) is
formulated in Euclidean space Rn. In this paper we will
reformulate this to include Riemannian gradient search
for unit quaternions. The objective is to maximize the
function f(qk) = log p(zk|z1:k−1), which can be done
with the Riemannian gradient ascent algorithm

qk+1 = qk ⊗ exp
(
γq∗k ⊗∇q log p(zk|z1:k−1)

)
. (34)

The calculation (8) and (9) involves the addition and
subtraction of logarithms. In the unit quaternion case
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this must be performed in the Lie algebra, which is
done by pre-multiplying the gradients with q∗. Then
the gradient ∇q log p(zk|z1:k−1) can be calculated from
(8) by addition and subtraction in the Lie algebra as

q∗k ⊗∇θ log p(zk|z1:k−1)

≈
N∑
i=1

w
(i)
k q∗k ⊗α

(i)
k −

N∑
i=1

w
(i)
k−1q

∗
k ⊗α

(i)
k−1, (35)

In the same way (9) can be calculated in the Lie algebra
for unit quaternions.

3.3 Quaternion gradients

In this paper, we will consider parameter estimation in
combination with particle filtering. This will be done
with the two objective functions f1(q) and f2(q). The
first objective function is given by

f1(q) = (vI−q⊗vB⊗q∗)TW(vI−q⊗vB⊗q∗), (36)

where vI ,vB ∈ R3 are position vectors described in
different coordinate systems and W = WT ∈ R3×3 is
a symmetric weight matrix. The minimization of this
objective function is used to find the unit quaternion
q which describes the rotation from vB to vI . The
second objective function is given by

f2(q) = log(q∗ ⊗ q̃)TW log(q∗ ⊗ q̃), (37)

where qe = q∗ ⊗ q̃ is the unit quaternion which de-
scribes the difference between the true orientation q
and the measured orientation q̃. The minimization of
this objective function is used to minimize the error
quaternion between q and q̃. This objective function
differs from (30) due to the weighting matrix W, which
accounts for sensor accuracy.

The gradient of the first objective function f1(q) is
found by using (16) and (28), which leads to

d
dt

(
p(t)⊗ vB ⊗ p(t)∗

)∣∣∣∣
t=0

= 2q⊗
(
c×vB

)
⊗ q∗

= 2C(q)
(
c×vB

)
= −2C(q)vB×c, (38)

where it is used that c⊗ vB − vB ⊗ c = 2c×vB . This
gives

d
dtf1

(
p(t)

)∣∣∣
t=0

= −cT4vB×C(q)TW(vI −C(q)vB)

It follows from (29) that the gradient satisfies

q∗⊗∇qf1(q) = −4vB×C(q)TW(vI−C(q)vB). (39)

The gradient of the second objective function is
found by defining pe(t) = p(t)∗ ⊗ q̃ and the corre-
sponding error logarithm ue(t) = log

(
pe(t)

)
, which

gives f2
(
p(t)

)
= ue(t)

TWue(t). It is noted that

d
dtpe(t)

∣∣∣
t=0

=
1

2
(q⊗ ω)∗ ⊗ q̃ = −1

2
ω(0)⊗ qe.

which means that −ω(0) = −2c is the left velocity of
pe(t) at t = 0. Then from (22) it follows that

d
dtue(t)

∣∣∣
t=0

= −2Ψ−1l (log(qe))c. (40)

This gives

d
dtf2

(
p(t)

)∣∣∣
t=0

= −4cTΨ−Tl (log(qe))W log(qe) (41)

and it follows that the gradient satisfies

q∗ ⊗∇qf2(q) = −4Ψ−1l (log(qe))
TW log(qe). (42)

4 Motion estimation in a crane
payload system

This section considers the simplified crane payload sys-
tem, as shown in Figure 1. The section presents the
dynamic model of the system and the measurement
models. Furthermore, the particle filter for motion es-
timation is given, and gradients for the extrinsic cali-
bration of the sensors are developed.

4.1 Kinematics and dynamics

The system is modeled as a 3D spherical pendulum
fixed to a moving pivot point. The payload is modeled
as a point mass in the dynamic model. This means that
the dynamics of rotation around the axis aligned with
the cable is modeled as ω̇z = 0, which with the addition
of noise, gives a random walk. The body frame B is
therefore defined as a frame with origin at the crane
tip and aligned with the pendulum cable such that the
pendulum mass always lies on the negative z-axis of
the body frame, as shown in Figure 1. The quaternion
describing the orientation of the body frame B with
respect to the inertial frame I is denoted qIB , which
has the kinematic differential equation

q̇IB =
1

2
qIB ⊗ ωBIB , (43)

The position rIm ∈ R3 of the pendulum point mass is

rIm = rIIB − lqIB ⊗ ez ⊗ q∗IB , (44)

where rIIB is the position of the body frame with re-
spect to the inertial frame, l is the cable length and
ez = [0, 0, 1]T . The velocity is

ṙIm = ṙIIB − lqIB ⊗ (ωBIB)×ez ⊗ q∗IB ,
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x
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zM

Figure 1: The objective is to estimate the motion of
the body frame B with respect to the iner-
tial frame I. The body frame B is fixed to
the crane tip and rotates with the payload.
A camera measures the orientation and posi-
tion of the fiducial marker frame M with re-
spect to the camera frame C. The IMU mea-
sures the angular velocity and specific force
in the IMU frame A with respect to the iner-
tial frame I. The poses of the fiducial marker
and the IMU, relative to the body frame B,
are unknown static parameters that are esti-
mated simultaneously with the motion of the
payload.

while the acceleration is

r̈Im = r̈IIB − lqIB ⊗ (ω̇BIB)×ez ⊗ q∗IB

− lqIB ⊗ (ωBIB)×(ωBIB)×ez ⊗ q∗IB .
(45)

The dynamics of the pendulum mass m is

mr̈Im = µqIB ⊗ ez ⊗ q∗IB −mgez, (46)

where g = 9.81m/s2 is the gravitational constant and
µ is a parameter of the cable force. Inserting (45) into
(46) and solving for ω̇BIB gives the dynamic expression
for the pendulum acceleration

ω̇BIB =
g

l
(ez)

×(q∗IB ⊗ ez ⊗ qIB)

− (ez)
×(ωBIB)×(ωBIB)×ez

+
1

l
(ez)

×(q∗IB ⊗ r̈IIB ⊗ qIB),

(47)

where it is used that (ez)
×ez = 0.

4.2 Transition PDF

The motion of the system is described by (43) and (47)
which are discretized to obtain

qIB,k+1 = qIB,k ⊗ exp

(
∆t

2
ωBIB,k

)
(48)

ωBIB,k+1 = ωBIB,k + ∆tω̇BIB,k + vk, (49)

where uncertainty in the system parameters and un-
modeled dynamics, such as wind, friction and inertia
of the payload, are accounted for by including a Gaus-
sian noise vector vk ∼ N (0,Q). The transition PDF
for this system is then given by

p(xk+1|xk) = N (vk; 0,Q) =
exp(− 1

2v
T
kQ−1vk)√

(2π)3|Q|
, (50)

where vk is calculated from

vk = ωBIB,k+1 −
2

∆t
log(q∗IB,k ⊗ qIB,k+1)−∆tω̇BIB,k,

which follows from (48) and (49).

4.3 Measurement model

Consider the case where a fiducial marker in the form
of an Aruco marker (Garrido-Jurado et al., 2014) is at-
tached to the payload. A 2D camera system is used to
measure the position rCCM and the orientation qCM of
the marker. Here, rCCM is the position of the marker
frame M with respect to the camera frame C expressed
in the coordinates of frame C, and qCM is the orienta-
tion of frameM with respect to frame C. The proposed
measurement model is

q̃CM = qCM ⊗ exp
(
eq
)
, eq ∼ N

(
0,Rq

)
(51)

r̃CCM = rCCM + er, er ∼ N (0,Rr) , (52)
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where q̃CM and r̃CCM denote the measurements and eq
and er are measurement noise. From Figure 1 it can
be seen that

qCM = qCI ⊗ qIB ⊗ qBM , (53)

rCCM = qCI ⊗ qIB ⊗ rBBM ⊗ q∗IB ⊗ q∗CI

+ qCI ⊗ rIIB ⊗ q∗CI + rCCI .
(54)

Here, qCI and rCCI describe the orientation and posi-
tion of the inertial frame with respect to the camera
frame and are assumed to be known. The position of
the pivot point rIIB is known from the control input.
The orientation qBM and position rBBM of frame M
with respect to frame B are constant and assumed un-
known.

4.4 Observation PDF

The observation PDF for the orientation measurement
q̃CM,k is

p(q̃CM,k|xk) = N
(
eq,k; 03,Rq

)
, (55)

where

eq,k = log(q∗BM ⊗ q∗IB,k ⊗ q∗CI ⊗ q̃CM,k),

which follows from (51) and (53). The observation
PDF for the position measurement r̃CCM,k is

p(r̃CCM,k|xk) = N
(
er,k; 03,Rr

)
, (56)

where

er,k =r̃CCM,k −C(qCI)C(qIB,k)rBBM+

C(qCI)r
I
IB,k + rCCI , (57)

which follows from (52) and (54).

Given M independent sensor observations with un-
correlated measurement noise, the observation PDF
can be calculated by combining the individual sensor
observation densities as (Gustafsson, 2010)

p(zk|xk) =

M∏
j=1

p(z
(j)
k |xk).

By considering the position and orientation measure-
ments of the fiducial marker as uncorrelated, the ob-
servation PDF becomes

p(zk|xk) = p(q̃CM,k|xk)p(r̃CCM,k|xk). (58)

4.5 The particle filter

The orientation of the pendulum has 3 degrees of
freedom, and therefore, a description with 3 param-
eters should be used in the particle filter state. This
was done in (Cheng and Crassidis, 2010), where the
state variables for orientation were the modified Ro-
drigues parameters of the estimation error, while the
unit quaternion was used for global description. In this
paper, we will instead use the logarithm δuIB,k of the
quaternion estimation error to describe the estimation
error with 3 parameters. This is formulated by

qIB,k = q̂IB,k ⊗ exp(δuIB,k) (59)

where qIB,k is the true attitude and q̂IB,k is the es-
timate. The state vector of the particle filter is then
given by

xk =

[
δuIB,k
ωBIB,k

]
, (60)

where δuIB,k = log(q̂∗IB,k ⊗ qIB,k). In addition to the

particle states x
(i)
k and weights w

(i)
k , the global orien-

tations q
(i)
IB,k need to be maintained. The set of N

particles is written as {x(i)
k ,q

(i)
IB,k, w

(i)
k }Ni=1.

In the time propagation, the quaternions q
(i)
IB,k are

propagated according to (48), while the angular ve-

locities ω
B,(i)
IB,k+1 are propagated with (49) by drawing

samples of the process noise e
(i)
k ∼ N (0,Q). The ori-

entation estimate is also propagated according to

q̂−IB,k+1 = q̂IB,k ⊗ exp

(
∆t

2
ω̂BIB,k

)
, (61)

where ω̂BIB,k is extracted from the state estimate x̂k.
The propagated state vectors are then obtained by

x
(i)
k+1 =

log
(
q̂∗IB,k+1 ⊗ q

(i)
IB,k+1

)
ω
B,(i)
IB,k+1

 . (62)

The measurement update is done with (3) and (4),
where the likelihood function p(zk+1|xk+1) is given by
(58). After the measurement update, the state esti-
mate x̂k+1 is calculated from (5). The updated pose
estimate is then calculated as

q̂IB,k+1 = q̂−IB,k+1 ⊗ exp
(
δûIB,k+1

)
. (63)

Note that if resampling is performed, both the states

x
(i)
k+1 and the quaternions q

(i)
IB,k+1 are resampled on the

basis of their relative weights w
(i)
k+1, which results in a

new set of particles {x(i)
k+1,q

(i)
IB,k+1, w

(i)
k+1}Ni=1.
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4.6 Calibration of static parameters

The measurement models in (51) and (52) include
the orientation qBM and position rBBM of the marker.
These parameters may be unknown in the beginning
of the experiment if the marker has been placed arbi-
trarily on the payload. These parameters must then be
estimated to achieve motion estimation of the payload.
The parameter estimation method in Section 2.2 re-
quires computation of the gradients ∇θ log p(xk|xk−1)
and ∇θ log p(zk|xk). In this case, ∇θ log p(xk|xk−1) =
0 since the transition PDF in (50) does not include the
unknown parameters. The gradient of the logarithm of
the observation PDF in (58) is computed in the follow-
ing.

For the position rBBM the gradient is

∇rBBM log p(zk|xk) = ∇rBBM log p(r̃CCM,k|xk) ∈ R3,

where

log p(r̃CCM,k|xk) =− 1

2
eT
r,kR

−1
r er,k

− log
(√

(2π)3|Rr|
)
.

From (57) it is seen that differentiation with respect to
rBBM gives

∇rBBM log p(r̃CCM,k|xk) =

C(qIB,k)TC(qCI)
TR−1r er,k.

(64)

Since the position rBBM and the gradient are in R3, the
gradient method in (7) can be applied directly to simul-
taneously estimate the system states and the position
of the marker.

For the orientation qBM the gradient is

∇qBM log p(zk|xk) = ∇qBM log p(q̃CM,k|xk).

The gradient is in the tangent plane TqBMHu, and is
found from

∇qBM log p(q̃CM,k|xk) = −1

2
∇qBMeT

q,kR
−1
q eq,k.

Since eq,k = log(q∗BM⊗q∗IB,k⊗q∗CI⊗q̃CM,k), it is seen
from (37) and (42) that

q∗BM ⊗∇qBM log p(q̃CM,k|xk) =

2Ψ−1l (eq,k)TR−1q eq,k.
(65)

The gradient method in (34) can then be applied to
estimate the orientation of the marker.

4.7 Inertial measurement unit

We suggest to include an IMU consisting of a 3-axis
gyroscope and a 3-axis accelerometer as complemen-
tary sensors to the vision system. This can be a more

robust approach than using a vision system alone, as
temporary occlusions and poor lighting conditions may
corrupt the visual measurements.

The IMU is assumed to be rigidly attached to the
payload, and the IMU frame is denoted A. The gyro-
scope measurement ω̃AIB is the measured angular ve-
locity of the payload expressed in frame A. The ac-
celerometer measurement f̃AIA is the measured specific
force at the location of the IMU expressed in frame A.
The measurement models are given as

ω̃AIB = qAB ⊗ ωBIB ⊗ q∗AB + eω, (66)

f̃AIA = qAB ⊗ fBIA ⊗ q∗AB + ef , (67)

where eω ∼ N (0,Rω) and ef ∼ N
(
0,Rf

)
are mea-

surement noise and qAB is the unit quaternion de-
scribing the orientation of the body frame with respect
to the IMU frame. Note that it is assumed that the
measurements are bias free. The specific force fBIA ex-
pressed in the body frame is found as

fBIA = r̈BIB − gB − ω̇BIB × rBAB − ωBIB ×
(
ωBIB × rBAB

)
,

where r̈BIB is the acceleration of the crane tip and is
known from the control signal of the crane, rBAB is the
position of the IMU with respect to frame B and gB =
−gq∗IB ⊗ ez ⊗qIB is the gravity expressed in the body
frame. If the crane tip is stationary, this expression
reduces to

fBIA = −gB− ω̇BIB×rBAB−ωBIB×
(
ωBIB × rBAB

)
. (68)

The observation PDF of the IMU is found as

p(zk|xk) = p(ω̃AIB,k|xk)p(f̃AIA,k|xk), (69)

which is the product of the densities p(ω̃AIB,k|xk) ∼
N
(
eω,k; 0,Rω

)
and p(f̃AIA,k|xk) ∼ N

(
ef,k; 0,Rf

)
.

The additive noise terms eω,k and ef,k are found from
(66) and (67).

The orientation qAB of the IMU is considered to
be a static parameter, which may have an unknown
initial value. The gradient of the logarithm of (69)
with respect to qAB is found as

∇qAB log p(ω̃AIB,k|xk)p(f̃AIA,k|xk) =

− 1

2
∇qABeT

ω,kR
−1
ω eω,k −

1

2
∇qABeT

f,kR
−1
f ef,k.

(70)

Since eω,k = ω̃AIB,k−qAB⊗ωBIB,k⊗q∗AB it can be seen
from (39) that

q∗AB ⊗∇qABeT
ω,kR

−1
ω eω,k =

− 4(ωBIB,k)×C(qAB)TR−1ω eω,k.
(71)
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Similarly it can be seen that

q∗AB ⊗∇qABeT
f,kR

−1
f ef,k =

− 4(fBIA,k)×C(qAB)TR−1f ef,k,
(72)

where ef,k = f̃AIA,k − qAB ⊗ fBIA,k ⊗ qAB . Multiplying
(70) with q∗AB and inserting (71) and (72) gives the Lie
algebra element corresponding to the gradient as

q∗AB ⊗∇qAB logp(ω̃AIB,k|xk)p(f̃AIA,k|xk) =

2(ωBIB,k)×C(qAB)TR−1ω eω,k+

2(fBIA,k)×C(qAB)TR−1f ef,k,

(73)

which can be used to estimate the orientation qAB with
the gradient method in (34).

The position rBAB of the IMU may also have an un-
known initial value. The gradient of the logarithm of
(69) with respect to rBAB gives

∇rBAB log p(ω̃AIB,k|xk)p(f̃AIA,k|xk) =

− 1

2
∇rBABeT

f,kR
−1
f ef,k.

(74)

Using that ef,k = f̃AIA,k − qAB ⊗ fBIA,k ⊗ qAB and in-
serting (68), the gradient can be found as

∇rBAB log p(ω̃AIB,k|xk)p(f̃AIA,k|xk) =

−
(

C(qAB)
(
ω̇B×IB,k + (ωB×IB,k)2

))T

R−1f ef,k.
(75)

5 Simulations

The performance of the proposed method for combined
state and parameter estimation was validated in a sim-
ulation study, which is described in this section. First,
the generation of the synthetic measurement data used
in the simulation study is presented. Second, results
from simulations with state estimation and nominal
parameters are presented for different sensor configu-
rations. Finally, simulations with unknown parameters
and simultaneous state and parameter estimation are
presented.

5.1 Generation of synthetic data

The motion of a pendulum with a static pivot point
was generated from (43) and (47) over a horizon of
t = 100 s. The sampling interval was ∆t = 0.1 s and the
initial conditions were qIB,0 = 0.9239+[0, 0.3827, 0]T

and ωBIB,0 = [0, 0, 0.1]Trad s−1. The pendulum length
was set to l = 1.2 m and the gravitational constant was
g = 9.81 m s−2.

Angular velocity and specific force measurements
from an IMU attached to the payload were gener-
ated from (66) and (67) with Rω = 10−4diag (1, 1, 1)
and Rf = 10−5diag (1, 1, 1). The pose of the IMU
was set to qAB = 0.7071 + [0, −0.7071, 0]T and
rBAB = [−0.2, 0, 1.4]Tm.

Position and orientation measurements of a fiducial
marker attached to the payload were generated from
(51) and (52) with Rq = 10−3diag (5, 5, 5) and Rr =
10−3diag (5, 5, 5). The pose of the marker was qBM =
0.7071+[0, 0, 0.7071]T and rBBM = [0.1, 0.1, −1.2]Tm
and the pose of the camera was qCI = 0 + [0, −1, 0]T

and rCCI = [−0.1, 0.05, 0]Tm. The sampling interval
for the camera and the IMU were considered equal and
was for simplicity set to the same as above, i.e ∆t =
0.1 s.

5.2 Particle filter

To validate the particle filter, nominal values of the
static parameters were used and the parameter es-
timation was disabled. The particle filter parame-
ters were set to Q = 10−4diag (9, 9, 9), N = 300
and the initial values were set to qIB,0 = qid and
ωBIB,0 = [0, 0, 0]Trad s−1.

Figure 2a shows the particle filter estimates when
the orientation and position measurements of the fidu-
cial markers were considered. The likelihood was
p(zk|xk) = p(q̃CM,k|xk)p(r̃CCM,k|xk) and the measure-

ment noise was Rq = Rr = 10−3diag (5, 5, 5). The
estimates converged to the true states after approxi-
mately t = 10 s.

Figure 2b shows the particle filter estimates when
only angular velocity measurements were used, so that
p(zk|xk) = p(ω̃AIB,k|xk) and Rω = 10−3diag (1, 1, 1).
In this case, the angular velocity estimates of the par-
ticle filter converged after approximately t = 15 s, while
some deviation in attitude is observed.

Figure 2c shows estimates when only specific force
measurements were used. In this case p(zk|xk) =
p(f̃AIA,k|xk) while the measurement noise was Rf =

10−4diag (1, 1, 1). Because the specific force measure-
ments are dominated by gravity, small errors in the
estimated attitude qIB,k will cause the likelihood to
become small and the particles will receive negligible
weights. Thus, the estimates did not converge to the
true states in this case.

5.3 Particle filter with parameter
estimation

In this case, the static parameters were considered
unknown, and the parameter estimation was en-
abled. The initial guess for the orientation and po-
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(a) Particle filtering with position and orientation mea-
surements from the vision system, i.e. p(zk|xk) =
p(q̃CM,k|xk)p(r̃CCM,k|xk).
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(b) Particle filtering with angular velocity measurements
from the gyroscope, i.e. p(zk|xk) = p(ω̃A

IB,k|xk).
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(c) Particle filtering with specific force measurements
from the accelerometer, i.e. p(zk|xk) = p(f̃AIA,k|xk).

Figure 2: Simulation without parameter estimation.
The plots show the particle filter estimates
with nominal values of the static parameters.

sition of the IMU were set to qAB,0 = 0.9617 +
[0.2353, 0.1208, 0.0717]T and rBAB,0 = [0, 0, l]Tm,
while the initial guess for the fiducial marker were
set to qBM,0 = 0.7269 + [−0.4213, 0.4857, 0.2311]T

and rBBM,0 = [0, 0, 0]Tm. The initial values of the
particle filter were as described above and the likeli-
hood of the particle filter was computed as p(zk|xk) =
p(ω̃AIB,k|xk)p(q̃CM,k|xk)p(r̃CCM,k|xk), where the spe-
cific force measurements were omitted.

The gradients for the orientation qAB and position
rBAB of the IMU were calculated using (73) and (75),
while the gradients for the orientation qBM and po-
sition rBBM of the fiducial marker were calculated us-
ing (65) and (64). The tuning parameters were set to
Rω = 10−3diag (1, 1, 1), Rf = 10−2diag (2, 2, 2) and
Rq = Rr = 10−3diag (5, 5, 5).

Figure 3a shows the state estimates of the particle
filter with simultaneous parameter estimation. The es-
timated orientation qBM,k and position rBBM,k of the
fiducial marker are plotted in Figure 3b, while the esti-
mated orientation qAB,k and position rBAB,k of the IMU
are plotted in Figure 3c. After t = 20 s the static pa-
rameters are close to their true values. This is reflected
in the particle filter estimates, which also converge to
the true states after approximately t = 20 s.

6 Experiment

The performance of the proposed method were further
validated in an experimental study. In this experiment,
a rectangular steel box was mounted with a wire to a
static pivot point, as shown in Figure 4. The iner-
tial frame was defined at the pivot point, such that
rBIB = [0, 0, 0]T m, with the z-axis in the opposite di-
rection of the gravity. Four Aruco markers were placed
on top of the steel box such that their z-axis would al-
ways be aligned with the body frame. Measurements
were only obtained from two of the markers in the ex-
periment, where marker 1 was defined to have zero ro-
tation about the z-axis of the body frame, which means
that the qBM1

= 1 + [0, 0, 0]. Marker 2 was rotated
−0.5 rad about the z-axis of marker 1 and the true ori-
entation was qBM2 = 0.9689 + [0, 0, −0.2474]. The
true positions of the markers were unknown.

A Procillica GC1020 Ethernet camera was mounted
close to the pivot point and pointed downwards.
The orientation of the camera was set to qCI =
0 + [0.7071, 0.7071, 0]T and the position of the
camera was measured to be approximately rCCI
= [0.02, −0.05, 0]Tm. The camera had a
frame rate of 15 Hz and the particle filter esti-
mates were updated with the likelihood p(zk|xk) =
p(q̃CM,k|xk)p(r̃CCM,k|xk) every time an image was
available.
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(a) Particle filtering with parameter estima-
tion. The likelihood was calculated as
p(zk|xk) = p(q̃CM,k|xk)p(r̃CCM,k|xk)p(ω̃A

IB,k|xk).
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(b) Gradient search for the static parameters of the fidu-
cial marker with step lengths γq = 1 × 10−5 and
γr = 5× 10−5.
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(c) Gradient search for the static parameters of the IMU
with step lengths γq = 2× 10−6 and γr = 2× 10−5.

Figure 3: Simulation with parameter estimation. The
plots show the results when the static param-
eters were initially unknown.

A Bosch XDK IMU was mounted to the side of
the steel box such that its reference frame was ro-
tated π/2 rad about the body frame x-axis such that its
true orientation was qAB = 0.7071 + [0, −0.7071, 0].
The true position of the IMU was not known. Angu-
lar velocity and specific force measurements were re-
ceived from the IMU at a rate of 66 Hz and the par-
ticle filter estimates were updated with the likelihood
p(zk|xk) = p(ω̃AIB,k|xk) at this rate.

Data was recorded over a sequence of 20 s while the
payload was swinging. The initial poses of the Aruco
markers were set to qBM1,0 = qBM2,0 = 0.4742 +
[ 0.2590, 0.7385, −0.4034]T and rBBM1,0

= rBBM2,0
=

[0, 0, −1]Tm, while the initial pose of the IMU was
set to qAB,0 = 1 + [0, 0, 0]T and rBAB,0 = [0, 0, l]Tm.
The particle filter parameters and the tuning parame-
ters Q, Rq, Rr and Rω were as in Section 5.3, while
Rf was set to Rf = 10−1diag (2, 2, 2).

The estimated states of the particle filter are plot-
ted in Figure 5a. The true states of the system were
not known. However, it can be seen that the system
converges towards a pendulum motion after approxi-
mately t = 5s. The orientation and position of marker
1 and marker 2 can be seen in Figure 5b and Figure 5c.
The orientation of the markers converges to their true
values after approximately t = 5 s. This is also the
case for the orientation of the IMU, which is plotted in
Figure 5d.

7 Conclusion

This paper has presented a method for calibration of
the parameters that describe the position and orien-
tation of an inertial measurement unit (IMU) and a
fiducial marker mounted on a swinging payload. The
states of the swinging payload were estimated using
a particle filter, while a gradient descent method was
used to estimate the static parameters simultaneously.
Unit quaternions were used for representing orienta-
tion, and a Lie group approach was used to perform the
gradient descent on the unit quaternion manifold. Fur-
thermore, we developed gradients of the orientation of
the IMU and the fiducial marker and showed how this
could be used with the parameter estimation. Finally,
we have presented simulations and experimental results
showing that the particle filter was able to estimate the
swinging pendulum motion given measurements from
the considered sensors and that the parameter estima-
tion method successfully converged to the correct pa-
rameters of the system.
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Figure 4: Experimental setup. Aruco markers and an
IMU were fixed to the payload and an Eth-
ernet camera was mounted close to the static
pivot point. The wire length was l = 1.24 m
and the Aruco markers had sides of length
9.7 cm.
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(a) Particle filtering with parameter estimation.
The likelihood was calculated as p(zk|xk) =
p(q̃CM,k|xk)p(r̃CCM,k|xk)p(ωA

IB,m|xk).
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(b) Gradient search for the static parameters of marker 1
with step lengths γq = 1× 10−5 and γr = 1× 10−5.
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(c) Gradient search for the static parameters of marker 2
with step lengths γq = 1× 10−5 and γr = 1× 10−5.
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(d) Gradient search for the static parameters of the IMU
with step lengths γq = 4× 10−6 and γr = 1× 10−4.

Figure 5: Experiment with parameter estimation. The plots show the results when the static parameters were
initially unknown.
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