
Modeling, Identification and Control, Vol. 41, No. 2, 2020, pp. 79–90, ISSN 1890–1328

Adaptive Moving Horizon Estimator for Return
Flow Rate Estimation using Fluid Levels of a

Venturi Channel

Asanthi Jinasena 1 Roshan Sharma 2

1Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway.
E-mail: asanthi.jinasena@ntnu.no

2Department of Electrical Engineering, IT and Cybernetics, University of South–Eastern Norway, Norway.
E-mail: roshan.sharma@usn.no

Abstract

Real-time estimation of the return drilling fluid during oil well drilling is investigated in this study. Online
fluid level measurements from a Venturi channel which can be placed on the return flowline is used with
a model-based estimator. A reduced order, 1-D, mathematical equation is used for the open flow in the
Venturi channel for Newtonian or non-Newtonian fluid types. The volumetric fluid flow rate is estimated
using a moving horizon estimator in real-time. The friction factor is also estimated together with the
fluid flow rate. The effect of the variation of the channel slope on the flow rate estimation induced by
the vibration of the channel during its operation is also studied. The method requires only two level
measurements in the Venturi channel together with the channel geometry. The method is validated using
a laboratory scale Venturi flow system. The proposed method shows promising potential to be used as a
real-time return flow rate measurement in conventional drilling systems.

Keywords: adaptive estimation, flow estimation, return flow meter, friction factor, non-Newtonian, open
flow, moving horizon estimator

1 Introduction

The return flow rate and the mud pit level are the
two main kick indicators in conventional drilling sys-
tems. The return flow consists of drill cuttings and
gases which make flow measurement difficult and in-
accurate. Although there exist many flowmeters that
can measure the return flow rate, most of the on-shore
and off-shore conventional drilling systems use paddle
flow sensors. This is just an indicator rather than a
real-time flowmeter, thus early kick and loss detection
cannot be expected. Therefore, the development of a
real-time flow sensor for conventional drilling systems is
advantageous for reduction of risk and non-productive
time via early kick detection.

The return flow rate can be measured by placing a
flow sensor on the return flowline which is an open
channel. Use of open channels for fluid flow measure-
ments is a well-known practice in the hydropower in-
dustry and agricultural industries. Generally, the flow
measurement proposition using open channels is quite
complex compared to the pressurized flow in pipes, es-
pecially because there are many variables associated
with these flow channels, mainly the changes of the
free surface. However, for most of the cases, it is possi-
ble to approximate and express these variables utilizing
the continuity and energy equations of fluid mechan-
ics. There exist a number of established approaches
for open channel flow measurement, mostly based on
steady flow conditions such as the use of a weir, the
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volumetric tank method or the area velocity method
(Basu, 2019).

Further, empirical equations for prismatic open
channels such as the Chezy equation or Manning equa-
tion (Chanson, 2004; Chow, 1959; Chaudhry, 2008) for
Newtonian fluids and Haldenwang equations (Halden-
wang and Slatter, 2006; Burger et al., 2010, 2015a,b;
Haldenwang et al., 2010) for non-Newtonian fluids
are used in literature. These equations use one level
measurement from the channel and are developed for
steady flows for specific geometrical channels. For non-
prismatic channels, especially for Venturi channels, a
steady flow equation based on the Bernoulli principle
can be derived for two level measurements with sev-
eral empirical coefficients that need to be tuned (Pirir
et al., 2017; Chhantyal, 2018). Flume equations based
on one level measurement and empirical coefficients de-
veloped for specific Venturi flumes that are designed ac-
cording to the ISO 4359:2013 standards are available
(International Organization for Standardization [ISO],
2013; Basu, 2019; Chhantyal, 2018; Baker, 2016). How-
ever, these perform best for steady or slowly varying
flow conditions only. Flow equations can be developed
based on the critical level of the channel, yet these are
quite impractical because the critical level position can
vary along the channel due to the changes in the flow
rate and flow conditions (Chhantyal, 2018; Chhantyal
et al., 2017). Similar techniques and equations are dis-
cussed in detail in Boiten (2002); Basu (2019); Baker
(2016); Henderson (1966); Alderman and Haldenwang
(2007); Haldenwang et al. (2002). Most of these meth-
ods are quite specific and only works for certain types
of fluids and flow conditions. Therefore, a versatile,
complete and dynamic open channel flow model should
be investigated.

Nevertheless, the dynamic modeling and simulation
of free surface flows are complex and challenging. Gen-
erally, the open channel hydraulics are modeled by the
well known and efficient shallow water equations, which
are a set of nonlinear, hyperbolic partial differential
equations (Chaudhry, 2008). Although these equations
are widely used throughout history, they are still dif-
ficult to solve. There are many numerical methods of
high precision for solving the shallow water equations,
but these usually take a considerable amount of compu-
tational time, which makes them not suitable for real-
time applications. A model reduction method to cal-
culate the fluid flow using these models with an appli-
cation to oil well drilling process has been studied ear-
lier (Jinasena et al., 2018, 2017). These reduced order
models have also been used for real-time estimation us-
ing various estimation methods (Jinasena and Sharma,
2018). However, the parameters such as friction fac-
tor are considered to be unknown and may vary with

time, depending on the operational conditions such as
the flow types and different fluid properties (Jinasena
et al., 2019). Thus, the friction factor should be es-
timated continuously (in real-time) together with the
state estimation. The motivation for this work is to
estimate fluid flow rate and parameters using a mov-
ing horizon estimator in real-time, thus making it an
adaptive estimator.

The study presents a moving horizon estimation
approach for state and parameter estimations for a
class of nonlinear hyperbolic system with application
to open channel flow. The measurements are two fluid
levels in the channel. The estimations converge to their
actual values in finite time. Furthermore, the estima-
tor is validated using experimental data. The main
application of the method proposed in this paper is
the real-time estimation of the return fluid flow rate
during an oil well drilling process. The idea is to use a
Venturi channel in the return flowline to estimate the
flow rate and to aid early kick and loss detection dur-
ing oil well drilling. For more details of the use of a
Venturi channel for oil well drilling, refer to Jinasena
et al. (2018); Jinasena and Sharma (2018). These chan-
nels are usually placed on offshore drilling platforms
which are subjected to movements due to ocean waves.
This could not only generate ripples and waves in the
channel which could give false level readings but also
could indicate a false channel bottom slope. The re-
duced order model is sensitive to the noise in the level
measurements and to the channel bed slope (Jinasena
et al., 2018), and this might affect the estimation sig-
nificantly. Therefore, the effect of waves via change of
the bottom slope of the channel on the estimation is
also studied.

The paper is organized as follows. The mathemat-
ical model and the estimator for the return flow rate
are stated in detail in section 2. Then the experimen-
tal set up is summarized in section 3, followed by de-
tailed results and discussion in section 4. Finally, the
conclusions drawn from the results and discussion are
summarized in section 5.

2 Mathematical Model for Fluid
Flow

Hydraulics models are used with the objective of using
a simple model, which removes unnecessary complexi-
ties of the use of multiphase flow models including the
drill cuttings or gases. This is based on the fact that as
far as the differential volumetric flow in and out of the
well is concerned, a simple hydraulic model is accurate
enough for estimating the net volumetric out flow rate.

Generally, the open channel flow models are derived
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Figure 1: Top view and end view of the Venturi channel. The placement of level sensors LT 1 and LT 2 (at the
two collocation points) are also shown here.

from Navier-Stokes equations. There are different ways
of expressing these models based on the physical na-
tures those are assumed upon (Chaudhry, 2008). For
shallow water flows i.e. the horizontal length scale is
much greater than the vertical length scale, the shallow
water equations are used.

2.1 Full Order Model

The shallow water equations for a 1D, unsteady, open
channel system, is expressed as follows (Chow, 1959;
Chaudhry, 2008),

∂U

∂t
+
∂F

∂x
= S. (1)

Here U is a vector of conserved variables A and Q,
where A(x, h, t) is the wetted cross–sectional area nor-
mal to the flow and Q(x, t) is the volumetric flow rate.
Further, h(x, t) is the depth of the flow, x is the dis-
tance along the flow direction and t is the time. F , the
conservative flux vector consists of the force terms and
S is the source term.

A Venturi channel is a non–prismatic channel where
the cross–sectional area changes with the flow direc-
tion (see Fig. 1). For a non-prismatic channel with a
trapezoidal cross–section, these U,F and S terms can
be expressed as follows (Jinasena et al., 2018),

U =

[
A
Q

]
, (2)

F =

[
Q

βQ2

A + gI1 cos γ

]
, (3)

S =

[
q

gh2

2
dW
dx + gA sin γ − Tf

]
. (4)

Here, q is the lateral inflow or outflow rate (assumed
zero), g is the gravitational acceleration and β is known
as the momentum correction coefficient or the Boussi-
nesq coefficient which corresponds to the deviations of
the local velocity over the mean velocity of the flow.
W (x) is the bottom width of the channel and γ is the

angle (in radian) that the channel bed makes with the
horizontal axis, where it is considered positive when
sloping downwards. I1 is the first moment of area
which represents the hydrostatic pressure term, and
is expressed as follows for a channel with an isosceles
trapezoidal cross–section,

I1 =
1

2
h2W +

1

3
h3Ss, (5)

where Ss is the side slope of the channel. Tf is the
frictional stress over the channel solid surface in the
channel cross section.

Generally, open channel models of water and other
Newtonian fluid types have been developed throughout
history (Chow, 1959; French, 1985; Chaudhry, 2008).
Due to the low viscosity of these fluids, usually, the
laminar flow conditions are applicable to turbulent flow
conditions as well. The method of calculating the ve-
locity based on the hydraulic grade line developed by
Manning in 1890 is still accurate and well used in this
regard (Chow, 1959). This method (also known as
Gauckler–Manning model) is used in dynamic open
channel flow models today, as a friction term. This
friction term Tf for a Newtonian fluid, when written
using the Gauckler–Manning friction model is as fol-
lows (Chow, 1959; Chaudhry, 2008),

Tf =
gn2Mū |ū|P

4
3

A
1
3

. (6)

Here nM is the Manning’s friction coefficient, P is the
wetted perimeter, and ū is the average velocity of the
flow.

However, it is also duly noted that many other flu-
ids exhibit complex flow behaviors which cannot be ex-
plained by the Newtonian theory. Nonetheless, signifi-
cant theoretical advances have been made in this field
of non-Newtonian fluid flow behavior in open channels
(Kozicki and Tiu, 1967; Haldenwang et al., 2010, 2002;
Burger et al., 2015a). Mostly for the non-Newtonian
fluids, the flow conditions and the frictional relation-
ship are presented in the form of a Moody chart. These
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charts include a plot of Fanning friction factor f for dif-
ferent Reynolds numbers in different flow regimes such
as laminar, transitional, or turbulent. Similarly, the
friction term Tf in (4) can be written using the Fanning
friction factor f for a non–Newtonian fluid as follows
(Burger et al., 2015a),

Tf =
fP ū |ū|

2
. (7)

However, there are a limited number of experimental
and/or theoretical values for f , which can only be ap-
plied to specific open channel types (Haldenwang et al.,
2010, 2002; Burger et al., 2015a). Therefore, the Fan-
ning friction factor can be considered to be unknown
and hence it needs to be estimated. More specifically
in a drilling operation, the rheological properties of the
return fluid can change with time depending on the
type of formation that is being drilled. Thus, the value
for friction factor cannot be considered as a constant.
It needs to be estimated in real-time.

The state A in (2), can be replaced with the fluid
level h from the relationship A = hW +h2Ss, to obtain
the state h. It is possible to expand the F term using
the product rule for simplicity. However, it will lose
the conservative form of the equation. Conservation
of the states is important in this study, therefore, no
simplification is done here.

This system of equations can be solved by specify-
ing the initial conditions and the boundary conditions.
The specification of boundary conditions at either up-
stream or downstream end of the channel (or at both)
depend on the characteristics of the fluid flow. For a
super–critical flow, two boundary conditions need to
be selected at the upstream of the flow, whereas for
a sub–critical flow, two boundaries can be selected by
choosing one at downstream and one at upstream. For
trans–critical 1D flows, one boundary condition is used
at the upstream of the flow (Chow, 1959; Chaudhry,
2008).

The geometry of the channel that is used for the
study is shown in Figure 1. The placement of the
Venturi section (the narrowest section also known as
the throat) in the channel ensures that the flow con-
ditions obtain critical or super-critical conditions at
the throat, thus always having trans-critical conditions
in the channel. Therefore, the upstream fluid level is
taken as the boundary condition for solving the equa-
tions.

2.2 Reduced Order Model

The shallow water equations are nonlinear hyperbolic
system of partial differential equations. These are com-
monly regarded as complicated systems to solve due
to non-smooth solutions and possible discontinuities

(Kurganov, 2018). In order to obtain the solutions
that are fast enough with less computational resources
to aid the online estimation, these partial differential
equations are then converted into ordinary differential
equations by the orthogonal collocation method. Here,
the states h andQ are approximated by Lagrange inter-
polating polynomial at specific spatial positions along
the channel which are known as collocation points. The
positions of these collocation points are selected us-
ing an orthogonal polynomial, where the points lie at
the roots of this polynomial. These points are non-
equispaced throughout the domain and tend to clus-
ter towards the edges of the interval when the degree
of the interpolating polynomial gets higher. This will
necessarily reduce the oscillatory problems given by the
Runge’s phenomenon. The Legendre functions of the
first kind are selected for this study due to the low
numerical oscillations given by the Legendre functions.
For this study, two collocation points are used for sim-
plicity. The model reduction method is described in
detail in (Jinasena et al., 2018, 2017).

The reduced order equations can be written as fol-
lows,

ḣi = −
2∑
i=1

L
′

ijQi
1

Wi + 2Sshi
, (8)

and

Q̇i =−
2∑
i=1

L
′

ij

βQi |Qi|
Ai

+
gh2i
2

2∑
i=1

L
′

ijWi + gAi sin γ

− g cos γ

2∑
i=1

L
′

ij

(
h2iWi

2
+
h3iSs

3

)
− Tfi , (9)

for 2 collocation points (i = 1, 2). Here, subscript i
represents the corresponding variable at the ith spe-
cific position along the channel. The first collocation
point is the place where the level sensor LT 1 is placed
for measuring the level h1 as shown in Figure 1. The
second collocation point is at the middle of the throat
section where level sensor LT 2 is placed for measuring
level h2. L

′

ij refers to an element in L
′

matrix at the

ith row and jth column, where,

L
′

=
1

l

[
−1 1
−1 1

]
. (10)

Here, l is the length of the channel.

2.3 State and Parameter Estimation

The sensitivity of different terms of a similar model
has been studied by Jinasena et al. (2018). The two
collocation point model is highly sensitive to the bot-
tom slope, which can slightly change due to vibrations.
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It is also sensitive to other factors as well and most
of these are geometrical constants which can be mea-
sured properly. The level measurements are noisy and
the friction factor is considered to be unknown and not
measured. The flow rate through the channel is con-
sidered to be unknown. The main idea is to use the
two level measurements to estimate both the flow rate
and the friction factor using a suitable estimator. In
reality, the fluid levels should always be positive values
and the friction factor should have finite positive lim-
its. This can be achieved in the estimator by applying
constraints on the states and parameters, which is pos-
sible in a moving horizon estimator (MHE). Therefore,
a MHE is selected in this study.

The system needs upstream level measurement as
a boundary condition. Therefore, h1 is taken as an
input to the system and h2, Q1 and Q2 are considered
as states while h2 is measured. The system of equations
for the estimation can be written in discrete time form
as follows,

xk+1 = fn(xk, tk, uk, θk) + wk(tk), (11)

yk = hn(xk, tk, uk, θk) + vk(tk), (12)

where
hn(xk, tk, uk, θk) = [1 0 0]xk. (13)

Here, x = [h2 Q1 Q2]T , u = h1 and y = h2. The
function fn represents the nonlinear model given by
(8) and (9) for ḣ2, Q̇1 and Q̇2, respectively. The θ
is nM and f for Newtonian and non-Newtonian fluids,
respectively. k is the discrete time index. The measure-
ment noise in the measured output at tk is denoted by
vk ∈ R1, where vk ∼ N (0, R). Similarly, wk ∈ R3,
where wk ∼ N (0, Q) accounts for process noise. Here,
R and Q are the covariance matrices for measurement
noise and process noise, respectively.

In order to estimate the states using the MHE ap-
proach, we start by formulating an optimization state-
ment using the Bayesian maximum a posteriori cri-
terion for states as follows (Haseltine and Rawlings,
2005),

J = arg max
x0,...,xT

p
(
x0, . . . , xT | y0, . . . , yT

)
. (14)

Here, the idea is to compute the most likely values
of the states {x0, . . . , xT }, given the measurements
{y0, . . . , yT }. Assuming that both noise terms wk and
vk are white Gaussian noise, the maximum a posteriori
criterion of (14) can be written as,

J = min
x0,...,xT

T−1∑
k=0

∥∥yk − hn(xk)
∥∥2
R−1

k

+
∥∥xk+1 − fn(xk)

∥∥2
Q−1

k

+ ‖x0 − x̂0‖2P−1
0
. (15)

Here Rk and Qk are the covariance matrices for the
measurement noise and the process noise, respectively.
P0 represents the uncertainty in the initial estimate of
x0.

Using (11), where xk+1−fn(xk, tk, uk, θk) = wk, the
variable wk can be introduced to (15) as follows,

J = min
x0,w0,...,wT−1

T−1∑
k=0

∥∥yk − hn(xk)
∥∥2
R−1

k

+ ‖wk‖2Q−1
k

+ ‖x0 − x̂0‖2P−1
0
. (16)

In a compact form, (16) can be written as,

J = min
x0,{wk}T−1

k=0

T−1∑
k=0

Lk(wk, vk) + Γ(x0), (17)

which is subjected to dynamics and constraints, for
positive-definite functions Lk and Γ (Rao et al., 2003).
All the states {x0, . . . , xT } are to be found using all
the measurements on the time interval [0, T ], which is
known as the full information estimation. However,
the main drawback is that the number of decision vari-
ables grows linearly with time T , which becomes com-
putationally intractable for continuous processes. To
reduce the computational cost with growing T , a finite
moving horizon consisting of the most recent N mea-
surements is considered, instead of the full information
estimation. With a finite horizon backward in time
of N samples and for T > N , (17) can be written as
follows,

J = min
xT−N ,{wk}T−1

k=T−N

T−1∑
k=T−N

Lk(wk, vk)

+ Γ(xT−N ). (18)

The state at the start of the horizon xT−N and the
process noises {wT−N , . . . , wT−1} are the variables to
optimize. The term Γ(xT−N ) is called the arrival cost,
and it accounts for all the past data and the process
dynamics from k = 0 to k = T − N − 1 (Rawlings
et al., 2017). This arrival cost expression is written as
follows,

Γ(xT−N ) =

T−N−1∑
k=0

Lk(wk, vk) + Γ(x0). (19)

The arrival cost is often hard to compute, especially for
nonlinear systems. Therefore, approximations such as
using a uniform prior, extended Kalman filter covari-
ance formula and MHE smoothing are used to express
the arrival cost (Rao et al., 2003).

The MHE estimation can also be used to estimate
the unknown parameters of the process together with
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the states. The estimations of the states are adapted
to the unknown parameters by continuously estimat-
ing both. In this sense, the MHE becomes an adaptive
estimator. To estimate the parameters, these are as-
sumed to be constant throughout the horizon. This
reduces the number of variables to optimize. However,
it is worth mentioning that the parameters themselves
can change with time, and are considered constant only
within the horizon at any given time. For adaptive
MHE, the expression in (18) can be modified as fol-
lows,

J = min
xT−N ,θT−N ,{wk}

T−1
k=T−N

(
Γ(xT−N ) +

T−1∑
k=T−N

Lk(wk, vk)

+
∥∥∥θT−N − θ̂T−N∥∥∥2

P−1
θ

+ ‖θT−N‖2Sθ

)
, (20)

subject to:

xk+1 = fn(xk, tk, uk, θk) + wk, k = T −N, . . . , T − 1

xlok ≤ xk ≤ xupk , k = T −N, . . . , T

θlok ≤ θk ≤ θupk , k = T −N, . . . , T.

The third term in the objective function is the es-
timation error for the parameters, with Pθ being the
covariance matrix for the parameter noise or uncer-
tainty. The last term is the regularization term for
the parameters, with Sθ being the weighting matrix
for the parameters. Here, superscripts lo and up de-
note the lower and upper limit of the constraints, re-
spectively. The nonlinear optimization problem for the
MHE is solved using fmincon1 in optimization tool-
box of MATLAB2018b to obtain the estimates x̂T−N ,
θ̂T−N and ŵk for k = {T−N, . . . , T−1}. The optimiza-
tion algorithm2 named as ‘sqp’3 in MATLAB is used
in the function fmincon. The algorithm is based on se-
quential quadratic programming and satisfies all con-
straints at each iteration (Nocedal and Wright, 2006).
Then using these estimated values as the initial con-
dition, the past inputs {uT−N , . . . , uT } and the model
(11) and (12), the current estimate for the states is cal-
culated. Theta is considered to be constant throughout
the horizon.

3 Experimental Setup

An experimental rig of an open Venturi channel with
two level measurements and a pump flow rate measure-

1Find minimum of constrained nonlinear multivariable func-
tion - MathWorks Nordic https://se.mathworks.com/help/

optim/ug/fmincon.html
2Choosing the Algorithm - MathWorks Nordic https://se.

mathworks.com/help/optim/ug/choosing-the-algorithm.

html
3Constrained Nonlinear Optimization Algorithms - Math-

Works Nordic https://se.mathworks.com/help/optim/ug/

constrained-nonlinear-optimization-algorithms.html

Figure 2: The P&ID diagram of the flow loop of the
experimental set up.

Figure 3: The Venturi channel at operation with differ-
ent level sensors.

ment is available at the University of South–Eastern
Norway. The schematics of the flow loop is shown in
Figure 2. The flow rate is measured before it enters
the channel using a Coriolis mass flow meter (Promass
63F-uncertainty ± 0.1%). Two level sensors are placed
in the Venturi channel (LT 1 and LT 2 in Figure 1).
The level sensors are either radar sensors (Krohne Op-
tiwave 7500 and 8300C) with ± 2 mm accuracy or ul-
trasonic sensors (Rosemount 3108) with ± 2.5 mm ac-
curacy. The channel at operation is shown in Figure 3.
Venturi channels are designed to have a critical flow
condition at the throat. The criticality is determined
by the Froude number which is the ration of inertia to
gravity. When Fr < 1, flow is sub–critical, when Fr
> 1, flow is super–critical and when Fr = 1, flow is
critical. In order to estimate the flow rate using the
fluid level, the upstream of the Venturi channel must
be sub–critical. This can be achieved by keeping the
channel at a lower angle. Therefore, the channel was
kept horizontal throughout the experiments. Further,
the changes of the bottom slope due to vibrations and

84

https://se.mathworks.com/help/optim/ug/fmincon.html
https://se.mathworks.com/help/optim/ug/fmincon.html
https://se.mathworks.com/help/optim/ug/choosing-the-algorithm.html
https://se.mathworks.com/help/optim/ug/choosing-the-algorithm.html
https://se.mathworks.com/help/optim/ug/choosing-the-algorithm.html
https://se.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html
https://se.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html


Jinasena and Sharma, ‘MHE for Drill Mud Return Flow Rate’

100 200 300 400 500 600
250

300

350

400

450

500

Figure 4: Estimated flow rates (Q̂) from different esti-
mators against the true flow rate (Qr). ‘LO’:
linear observer, ‘LKF’: linear (standard)
Kalman filter, ‘EKF’: extended Kalman fil-
ter and ‘UKF’: unscented Kalman filter

waves are also recorded.

Two different fluid types are used for the experi-
ments i.e. water as a Newtonian fluid and a synthetic
drilling fluid as a non-Newtonian fluid.

4 Results and Discussion

The main reason for the selection of MHE and the es-
timation of the fluid flow rate using MHE is discussed
in this section. The effects of bottom slope and the
friction factor are also discussed. The details of the
simulation and experimental validation are stated be-
low in separate sections.

4.1 Comparison with Other Estimators

Jinasena and Sharma (2018) tested a few different es-
timators for state estimation using the reduced order
model shown in (8) and (9) with a Newtonian friction
model instead of the non–Newtonian friction model
shown in (7). Here, they tested a linear observer, a
linear Kalman filter, an extended Kalman filter (EKF)
and an unscented Kalman filter (UKF). The simulation
results for the estimations of flow rate of this study
are shown in Figure 4. The linear estimators were
not suitable as evident from Figure 4. Therefore, they
tested the other two nonlinear estimators, EKF and
UKF, against the experimental data, and concluded
that both the EKF and UKF are suitable for estima-
tion of flow rate.

However, these estimators do not allow constraints.
Since the full order model fails at zero fluid levels (zero
flow rates), being able to have constraints is a necessity
to obtain a full operating range of flow rates. Thus the
MHE is selected to overcome this problem.

0 50 100 150 200 250 300
0.01

0.012

0.014

0.016

0.018

Figure 5: The varied fr and constant f Fanning friction
factors.
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Figure 6: Estimated flow rate (Q̂) with a constant Fan-
ning friction factor f . The reference model
results (Qr) are plotted for variable fr.

4.2 Simulation Results

The results and discussion of the simulations are stated
here under different scenarios.

4.2.1 Effect of Friction Factor

In many different applications, the friction factor can
change with time. For example, during an oil well
drilling process, the rheological properties of the return
fluid may change depending on the type of formation
being drilled, and hence the friction factor also changes
with time. The effect of the changes in the friction fac-
tor on the flow rate estimation is studied by comparing
the results using a constant and a varied friction fac-

50 100 150 200 250 300
0

10

20

30

Figure 7: The absolute error between the model (Qr)

and estimated (Q̂) flow rates.
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tor. Here, the reference model is simulated using a var-
ied Fanning friction factor for a non-Newtonian fluid.
Then the estimation was done using the MHE without
parameter estimation i.e. with constant friction fac-
tor (see Figure 5). Both the reference model and the
estimator are excited with the same input level mea-
surement h1.

The volumetric flow rates obtained from the refer-
ence model and the flow rate estimated by the MHE
are plotted together in Figure 6. The offset between
the reference flow rate and estimator results are clearly
evident. The estimation error of the flow rate when us-
ing a constant friction factor is clearly seen in Figure 7.
The results are only shown for the non-Newtonian fluid
model using (7). The results for the Newtonian model
using (6) are similar. Therefore, it is essential to es-
timate the friction factor together with the states in
order to obtain an improved flow rate estimation in a
practical application because the fluid flow conditions
change over time.

4.2.2 Estimation of Flow Rate and Friction Factor

The estimation of fluid flow rate and the friction fac-
tor was done using the MHE, where a horizon of 10
samples was considered. The results are shown in Fig-
ure 8. Here, the number of samples in a horizon is
selected based on the accuracy of the estimation and
the computational time. When the number of samples
are high, the accuracy is high but the calculation is
computationally heavy. Therefore, a trade off between

these two is required, hence the number of samples was
selected as 10, using trial and error method. Only the
non-Newtonian model results are shown here in terms
of the Fanning friction factor. Similar results are ob-
tained for the Newtonian model results. The root mean
square error (RMSE) value for the estimation error is
0.75 l

min . When compared to the estimation error with-
out adaptation to the friction factor in Figure 7, the
online estimation of the friction factor has vastly im-
proved the flow rate estimation.

Usually, MHE is known to be computationally heavy,
due to the need for solving a nonlinear optimization
problem at each time step. However, due to the re-
duced order model used in this application, the MHE
can still be used in real-time. This is clearly seen in
the CPU time plot in (d) in Figure 8, where the time
taken for estimation is significantly lower compared to
the sampling time of 0.5 seconds.

4.2.3 Effect of Channel Bottom Slope

In many different applications, the Venturi channels
used for flow rate measurement are subjected to ex-
ternal disturbances such as channel bed vibrations and
movements. This could generate false fluid level mea-
surements due to waves in the channel flow and a false
channel bed slope due to vibrations. This effect is
highly significant in non-stationary process plants such
as in ships or in offshore oil drilling platforms where the
platforms are subjected to ocean waves. The Venturi
channel is subjected to pitch, roll and heave motions in
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Figure 8: (a) The actual (subscript r) and estimated fluid flow rate (b) the actual and estimated Fanning friction
factor (c) the absolute error between the actual and estimated flow rates and (d) the CPU time t taken
for each time step (the actual time step is 0.5 s) are plotted here.
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Figure 9: (a) The reference Qr with the horizontal channel and estimated fluid flow rate Q̂ are shown together
with the model flow rate Qm due to the changed slope. (b) The actual varying channel bed angle γ
is used for the model and the mean angle γ̄ is used in the estimator. (The bottom slope Sb = sin(γ)
in radian. ). (c) The different fluid levels when the bottom slope is changed. hr1 and hr2 are the

reference fluid levels with the horizontal bottom slope. ĥ2 is the estimated fluid level from the MHE
and hm2

is the changed measurement due to the slope change. (d) The absolute error between the
actual Qr and estimated Q̂ flow rates.

0 200 400 600 800 1000 1200

-0.1

-0.05

0

0.05

0.1

Figure 10: The change of bottom slope angle γr due to
vibrations during the experiments. γ is the
expected value of the channel bottom slope
angle. The bottom slope is Sb = sin(γ).

these cases. Since the model is sensitive to the changes
in the bottom slope of the channel and the noise in
the level measurements, the effect of change of bottom
slope on fluid flow estimation is investigated here.

The reference model is subjected to random changes
of bottom slope (standard deviation .5◦), and the level
measurement under these changed conditions are used
to estimate the flow rate and the friction factor. The
affected level measurements due to the change of slope,
the corresponding estimated flow rate and the friction
factor are shown in Figure 9.

The figures illustrate that even though the level mea-
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Figure 11: (a) Radar level measurements for a non-
Newtonian fluid and (b) the ultrasonic level
measurements for a Newtonian fluid (wa-
ter).

surements have become noisy due to the changes in the
channel slope, the flow rate through the channel can
still be accurately estimated using MHE. The RMSE
for the fluid flow rate is 5.86 l

min . Therefore, a small
change of bottom slope does not diminish the ability
to accurately estimate the fluid flow rate. This further
suggests that the Venturi channel could potentially be
used in a moving platform under limited pitch condi-
tions.
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Figure 12: The reference Qr and estimated Q̂ fluid flow
rates for water.
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Figure 13: The estimated Manning’s friction factor n̂M
for water.
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Figure 14: The absolute error between the reference Qr

and estimated Q̂ flow rates for water.

4.3 Experimental Results

The measurements which were taken during the exper-
iments at the rig for the bottom slope angle are shown
in Figure 10. This shows that at the experimental rig
the channel bed is indeed subjected to vibrations. Due
to vibrations small waves in the channel appear and
contribute to the noise in the level measurements.

The upstream fluid level measurement from the ex-
perimental data is taken as the input to the system
and both the flow rates and the friction parameter are
estimated using the MHE for two different fluid types.
The level measurements for both the fluid types are
shown in Figure 11. The ultrasonic measurements are
noisier than the radar measurements.

The estimation for the flow rate of water through
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Figure 15: The reference Qr and estimated Q̂ fluid flow
rates for the non-Newtonian drilling fluid.
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Figure 16: The estimated Fanning friction factor f̂ for
non-Newtonian drilling fluid.
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Figure 17: The absolute error between the reference

Qr and estimated Q̂ flow rates for non-
Newtonian drilling fluid.

the channel is done using the Newtonian friction model
given by (6). The estimated flow rate, estimated
Manning’s friction factor and the estimation error are
shown in Figure 12, Figure 13 and Figure 14, respec-
tively. Experimental results show that the flow rate
can be estimated reasonably well. The RMSE value
for the estimation error is 15.47 l

min . Further, the es-
timated Manning’s friction factor is within the range
for the channel roughness type (Chow, 1959; French,
1985).

Similarly, the estimations for the non-Newtonian
drilling fluid are done using the non-Newtonian fric-
tion model given by (7). The estimated flow rate, esti-
mated Fanning friction factor and the estimation error
for non-Newtonian drilling fluid are shown in Figure 15,
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Figure 16 and Figure 17, respectively. As shown in the
figures, the fluid flow rate estimation using MHE is rea-
sonably accurate. The RMSE value for the estimation
error is 4.55 l

min .

The reduced order model used in the study is based
on the simplest selection of the number of collocation
points due to the simplicity. However, it could reduce
the accuracy due to the approximation by a polynomial
of the lowest possible degree (linear interpolation). Ji-
nasena et al. (2018) have shown that the least number
of collocation points for open loop simulations of this
model is three. However, the results of this study with
MHE show that the use of two points is also enough
when used for closed loop simulations i.e. with an es-
timator with the feedback information. This suggests
that the real-time estimation of fluid flow rate and the
friction factor using a simple reduced order model with
a MHE can be potentially used in open channel flow
applications.

5 Conclusions

A reduced order model is used for a moving horizon
estimation for an open Venturi flow. Using two on-line
level measurements in the channel, both the fluid flow
rate and the friction factor is estimated in real-time.
Adapting the state estimation to the friction factor has
improved the fluid flow rate estimation, significantly.
Further, two types of friction models with two different
friction factors have been used based on the fluid type;
i.e. for Newtonian fluids and non-Newtonian fluids.

The effect of change of bottom slope of the channel
when the channel is placed on offshore or moving plat-
forms is also investigated. The results show that the
estimator is capable of handling the noise and the er-
rors created by the false fluid levels due to variations in
the channel slope. The results are validated by labora-
tory scale experimental results for two types of fluids,
one Newtonian and one non-Newtonian fluid. The re-
sults suggest that this method can be used for real-time
fluid flow rate estimation for open channel flows. In ad-
dition, it also has the potential to be used in offshore
drilling processes for online estimation of return flow
of the drilling fluid.
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