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Abstract

This paper studies reduced-order-models for the fluid flow problem of a digital valve, and whether it may
efficiently be formulated by a deep Artificial Neural Network (ANN) to model e.g. the valve flow, flow-
induced force, stiction phenomena and steep local pressure gradients that arise before plunger impact,
which may otherwise require CFD to be accurately modeled. Several methodologies are investigated to
evaluate both the required computation time and the accuracy. The accuracy is benchmarked against
CFD solutions of flows and forces. As basis for comparison an analytical model is proposed where some
fitting parameters are allowed, and the equation is tested outside its fitting range. A similar model is
built as a deep ANN which is trained with data from the analytical model to investigate the amount of
data required for an ANN and its fitting capabilities. The results show that in higher dimensions the
required training data can be maintained low if data is structured by a Latin Hypercube, otherwise the
amount becomes infeasible. This makes an ANN surrogate feasible when compared to a look-up table, and
may be expanded to higher dimension where dynamical effects are included. However, the required data
and computational cost for this is too extensive for the valve design considered as basis for the analysis.
Instead, for this specific problem, the derived analytical model is sufficient to describe the valve dynamics
and reduces the computation time significantly.

Keywords: Artificial Neural Networks, CFD, Digital Valves, Flow-induced Forces, Reduced Order Models,
Lumped Parameter Models.

1 Introduction

Design of non-linear multi-domain dynamical systems,
such as hydraulic valves, requires numerical simula-
tion to study the complex multi-physical phenomena
governing the performance. To alleviate the compu-
tational burden of these simulations a wide range of
Reduced-Order-Model (ROM) techniques have been
proposed in the literature (Benner et al., 2015) which
have their strengths in different types of problems.
For example, the Proper Orthogonal Decomposition
is used to reduce a high-dimensional problem where
over 2 million Degrees Of Freedom (DOF) in the CFD
analysis of a F16 fighter is reduced to a model of just

90 DOF in Lieu et al. (2006), or using the colloca-
tion method to analyse fluid flow through an open
channel by rewriting the governing equations Jinasena
et al. (2018). The ROM methods essentially consist
of an offline stage where the parameters are sampled
(i.e. performing numerical analysis of the system) and
data-fits or projection-based reduced models (e.g. by
Proper Orthogonal Decomposition, Rational Interpola-
tion or Balanced Truncation) can be constructed from
the data, otherwise the physical equations are simpli-
fied by assumptions (i.e. omitting terms based on ex-
perience to be of little influence) or by excluding cer-
tain terms (i.e. a steady-state or quasi-static analysis).
The latter is the ’simplified physics’ technique and is
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used opportunistically (Benner et al., 2015). The on-
line stage is when the derived ROM is solved, e.g. in
optimization, design, control or uncertainty quantifica-
tion. Essentially, a benefit in total reduced computa-
tion time of both offline and online stages compared
to change in model fidelity must be achieved by the
ROM for it to be feasible.

This article proposes a ROM methodology applied
to a digital valve that combines the advantages of sim-
plified physics (analytical) and data-fitting (surrogate)
by Artificial Neural Network (ANN) where CFD data
samples are used to construct both parts. In this man-
ner certain parts are non-intrusive while retaining the
underlying structure of the model, which is beneficial
for dynamical systems. The objective thus becomes
to determine where it is feasible to apply analytical
methods and where surrogates are more appropriate.
Practically, this means that data must be generated in
an efficient manner, the analytical model form estab-
lished, and an appropriate surrogate must be formu-
lated. Therefore, state-of-the-art insight to these areas
are provided.

The movement and force interaction of fluids are nor-
mally modeled by Navier-Stokes (NS) equations and
solved by numerical methods where the state-of-the-
art approach to handle turbulence and discretization
is the Computational Fluid Dynamics (CFD) frame-
work with a Reynolds Averaged NS (RANS) form. For
hydraulic systems see e.g. (Amirante et al., 2014; No-
ergaard et al., 2018; Zardin et al., 2017; Zhang et al.,
2018). The first published full 3D CFD RANS analysis
of a hydraulic valve was presented in Amirante et al.
(2007) where the flow and flow-induced force in a pro-
portional valve were calculated. The authors applied
the RNG k−ε model which resulted in correspondence
between simulation and experiment. Various studies
of spool type valves with small geometrical modifica-
tions have been presented in the literature where a
good correspondence between theory and experiment
has been reported. For example Simic and Herakovic
(2015) showed that the SST k − ω model predicts the
flow-induced force most accurately out of the tested
models. A full 3D simulation of similar systems with
similar flow phenomena may therefore serve as a reli-
able model.

A series of static CFD analyses are used to estab-
lish a surrogate in Forrester et al. (2006). The authors
reduce the required amount of function evaluations by
applying partially converged CFD simulations and con-
struct a surrogate model. The required size of Design
of Experiments (DoE) to construct a sufficient surro-
gate is studied as well as the required level of conver-
gence when solving the drag coefficient of an aerofoil
by static CFD. Application of a similar method in dy-

namic fluid flow problems is untreated territory and
therefore intriguing.

The relevant outputs of a digital valve are the inte-
grated quantities of flow and force related to this flow,
also the switching time and expected lifetime are im-
portant performance metrics. The Lumped Parame-
ter Model (LPM) of flow-induced forces in hydraulic
valves goes back to Lee and Blackburn (1952) with
the momentum theory, where the force is equal to
the mass times acceleration of fluid. This theory has
been applied widely in text-books and for valve mod-
eling/design see e.g. Mahrenholz and Lumkes (2009);
Roemer et al. (2013); Knutson and Van de Ven (2016)
to mention some of the latest. However, when optimiz-
ing the flow -characteristics and -forces, several studies
have applied CFD methodologies to validate hypothe-
ses about relevant design changes (Amirante et al.,
2014; Simic and Herakovic, 2015; Lugowski, 2013, 2015;
Leati et al., 2016; Zardin et al., 2017). In fact Lugowski
(2013, 2015) presents experimental evidence that the
actual steady flow-force does not correspond to that of
momentum theory when the jet angle in a spool valve
is both 69◦ and 90◦, and a purely Newtonian consider-
ation of reaction forces is not sufficient. This is argued
to be due to the Coanda effect, causing the jet to attach
the nearest wall which is normally disregarded. CFD
simulations and pressure measurements show how the
pressure near the Vena Contracta (VC) rises due to
accelerating fluid and high velocity field, and this is
argued to be the actual cause of the so called flow-
induced force. A similar discovery is made in this arti-
cle, where CFD simulations are applied strategically to
reveal how much the pressure change in the VC affects
flow forces.

The prediction of a pressure driven flow normally
takes the form of the quasi-static orifice equation. De-
pending on the flow condition, either a purely turbu-
lent form or a form correcting for laminar conditions
can be applied (Borutzky et al., 2002; Valdés et al.,
2014). The flow characteristics of an annular seat valve
as the one of interest in this research has been inves-
tigated by Noergaard et al. (2018), where CFD and
experimental analyses were applied to show static flow
force and pressure/flow relations. A parametric study
illustrates the importance of seat width and radius to
avoid excessive -actuating energy and -throttling losses.
However, the evaluation of flow and forces relies on 2D-
static CFD simulations with the only model reduction
being assuming axisymmetry, i.e. no dynamical con-
siderations or LPM alternatives are presented. The
present research adds to the knowledge provided by
Noergaard et al. (2018) and will apply the experimen-
tal data to coarsely verify the constructed CFD model.
The CFD model was applied in Bender et al. (2019)
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to achieve knowledge about the parameters that influ-
ence the performance criteria. This spans the choice of
relevant parameters, the range of these and production
tolerances.

The parametrization includes flow, pressure drop,
fluid density/viscosity and flow area, which may be ap-
plied to aid in the design procedure even though em-
pirical parameters such as discharge coefficient and jet
angles are required. However, the LPMs may be of too
low-fidelity for innovative valve designs and more so-
phisticated models may be necessary. This structure
of a sufficient model is only seldom known a priori,
despite the required accuracy and time-frame may be
known. In this study the feasibility of various modeling
methodologies to achieve a parametric model reduction
is investigated, encapsulating; analytical-, CFD- and a
surrogate model utilising the deep ANN methodology
trained by CFD data. An ANN is a universal approxi-
mator, and if a sufficient surrogate can be constructed
in a reasonable time-frame this will speed up the design
process significantly. Furthermore, this type of surro-
gate may be extended to represent dynamical systems
in the structure of the non-linear autoregressive exoge-
nous input ANN.

For the considered valve design the main challenge
occurs when the valve plunger is moving in a fluid
which also has external dynamics affecting the flow
conditions around the plunger. A prediction of the flow
and forces during such a dynamic switching of the valve
is required when a design for durability is desired, but
the required modeling effort is increased significantly.
This study therefore investigates methods that can
be applied to reduce the computational burden, while
evaluating the specific accuracy that can be achieved
as function of computation time required. The evolu-
tion of these models (from high- to low-fidelity) goes
from: 3D static CFD → 2D axisymmetric static CFD
which is then formulated as 2D axisymmetric dynamic
CFD → an analytical formulation, which can be aided
by surrogates such as ANN- or look-up tables.

The article is structured in the following sections.
Section 2 presents the system of interest and simula-
tion results are used to elaborate the possible compli-
cations that may arise when introducing assumptions
and simplifications. The feasibility of applying ANN
as a surrogate is studied by LPM data and is found
to provide sufficient accuracy at around 400-500 sam-
ples structured as a Latin Hypercube with four para-
metric inputs and two integrated quantities as output.
The optimal size of the ANN is tuned by a trade-off
of function evaluation time and fitting accuracy. In
section 3 the most relevant model predictions are dis-
played, and a comparative analysis of the LPM and
dynamic CFD models shows that the LPM performs

sufficiently also without an ANN surrogate, at least
in the investigated parameter set and with the sys-
tem characteristics found by CFD. The findings and
expected consequences are discussed in section 4 and
this is followed by concluding remarks in section 5.

Nomenclature

Ao Orifice area [m2]
Cd Discharge coefficient [-]
ci Fitting coefficients [-]
DH Hydraulic diameter [m]
d Dimensions [-]
Fi Force acting along z [N]
ld, ls Damping- and stroke length [m]
ka, kd, kv Fluid friction coefficients [-]
p Pressure [Pa]
Q Flow through valve [m3s−1]
R Seat radius [m]
Ret Transition Reynolds number [-]
r2 Correlation coefficient [-]
s Data samples [-]
t Time [s]
u Velocity vector or scalar [ms−1]
w Seat width [m]
x Model output [-]
z Plunger position [m]
k, ω kinetic energy, dissipation rate [J,m2s−3]
γ Flow interaction angle of VC [rad]
ρ, µ Density, dyn. viscosity [kgm−3,m2s]

Abbreviations

ANN Artificial Neural Network
BC Boundary Condition
CFD Computational Fluid Dynamics
DOF Degrees of Freedom
GDE Generalized Differential Evolution
LHC Latin HyperCube
LPM Lumped Parameter Model
LUT Look-Up Table
MAE Mean Absolute Error
MIF Movement-Induced Flow
MSE Mean Squared Error
MUSCL Monotone Upstream-Centered Schemes

for Conservation Laws
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RANS Reynolds-Averaged Navier-Stokes
ROM Reduced Order Model
VC Vena Contracta
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2 Modeling Methodologies

A hydraulic valve is a flow control component which
can be formed in several different shapes depending on
desired actuation and the specific requirements. The
models presented here are for an annular shaped seat-
type digital valve with switching times around 2 ms.

The applied .m scripts and ANSYS workbench files
to simulate valve behaviour and do CFD analysis, have
been uploaded and can be freely accessed by anyone 1.

2.1 System Analysis

The functionality of a digital hydraulic valve is simple:
open and close a fluid gateway. However, describing its
dynamic requires detailed knowledge about actuating
forces and interacting fluid forces. The magnitude of
the flow-force is mainly dominating when the plunger
is close to the seat, but in this region it is of uttermost
importance if the impact sequence is to be modeled
sufficiently.

The analysed valve is shown in Figure 1 and com-
prises an annular seat geometry to allow fluid through
two flow edges. Furthermore, it allows a spring assem-
bly in the center of the valve. The area of interest of the
valve design is assumed axisymmetric with parameters
as denoted in the middle of Figure 2. The figure illus-
trates a practical implementation of the valve plunger
(the black color) in a hydraulic manifold setting. The
velocity vectors in the 3D fluid domain and volume
contours of the velocities are shown to illustrate that
the actual problem will not necessarily be symmetric.
The plunger is able to move in the direction of the
axis of rotation and is denoted z as indicated by the
2D schematic. The plunger is mechanically stopped at
z = 0 (off) and z = ls (on). These symmetry break-
ing phenomena may give rise to inaccurate predictions
when using simplifications which makes this the first
introduction of simplified physics to realize a ROM.
The results of a 2D CFD at two opposite flow direc-
tions are illustrated to the right in the Figure 2 and
the VC plus circulation zones are clear.

The velocity results of the full 3D CFD analysis yield
a high velocity zone just after the top inlet tube, the
fluid is flowing down and to the left in the figure and
the velocity rises again after the valve seat where the
streamlines have been curved by the swirl. The eval-
uation metrics are ∆p = 2.3 bar and Ff = 44 N at
107 L/min with vmax = 19.4 m/s, and for compari-
son the axisymmetric analysis with identical settings

1The underlying code-base (MATLABr license required),
CFD simulation models and data, and the files required
for reproducing and plotting results (with exception of
the GDE optimization algorithm) are freely available at:
https://doi.org/10.5281/zenodo.2583031. ncb ,hcp
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Figure 1: Cropped view of the digital valve switched
by conducting a current in the coil (gives rise
to the magnetic field marked by green lines).
The valve is open.

gives ∆p = 0.89 bar and Ff = 48 N with vmax = 16.9
m/s. The flow-force is thus predicted to a sufficient
degree but some viscous losses are omitted due to the
simplification. For a design of the actual valve the ab-
solute energy loss is less critical as long as the tendency
is correct and hereafter the actual significance of this
loss may be compared to the additional ones of the
hydraulic manifold and valve which does require these
full scale 3D CFD simulations (that runs for about 4
hours). The predicted Ff is directly used for dimen-
sioning of the spring/latching force required to main-
tain the valve open while conducting flow.

The forces acting when z = 1 mm at four different
flow rates are given in Noergaard et al. (2018) where
the authors find a good fit with both 3D and 2D CFD.
To verify the model used here the same measurements
are plotted in Figure 3 and the axisymmetric 2D CFD
with SST k − ω and laminar solver are plotted along
with the results obtained by the LPM proposed in the
next section. The results indicate that, at least at 1
mm plunger displacement, the enforced symmetry is
valid and it does not matter much if turbulence energy
and dissipation are included or not (Reynolds number
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Figure 2: Left : Full 3D simulation of the plunger and seat with tube inlet and outlet where mass flow is 125
L/min and outlet pressure boundary is 5 bar. Middle: A simplified axisymmetric model of the flow
domain and solid bodies of importance in the annular seat valve. Right: CFD solutions of velocity
when a pressure differential (∆p) of ±1 bar is applied to illustrate the Vena Contracta (VC).

Figure 3: Measurement and simulation comparison of
the flow-induced force, Ff .

of the annular restriction is 765). Computation times
can be reduced marginally by using a laminar solver.

As discussed in the introduction the most popular
LPM approach for spool type valves is the momentum
theory, which works well when the VC occurs on known
locations independent of the stroke. However, mov-
ing the plunger changes the interaction with the VC,
potentially reducing the interaction between flow and
plunger to none for the considered design. The notion
of a jet angle is therefore not necessarily applicable, al-
though some function that describes how much the VC
depends on plunger position (z) is relevant to know if
high fluid velocities are present near the plunger, thus
creating lower pressures. This work therefore proposes
a parametric flow-force scaling factor in positive flow-
direction based on CFD data.

2.2 Analytical Methodology

The analysis of required physics will to some extent
depend on the chosen topology. Essentially, the valve
should be able to control hydraulic energy as efficiently
as possible, while also being ale to do fast switching
from on to off. The basic framework used to describe
this motion and energy conversions, referred to as the
LPM, are given in the following.

The primary states of the plunger are position, veloc-
ity and acceleration and for the fluid they are pressures
and spatial velocities. Also, parameters such as tem-
perature, density and viscosity play a significant role in
how the system behaves. These are coupled by a series
of PDEs and ODEs and turbulence from viscous effects
can cause chaotic solutions. For the sake of brevity the
fluid is assumed single phase, incompressible, isovis-
cous and isothermal which means only pressure and
velocities must be solved. The most important PDE
in this research is the momentum equation for an n-
dimensional, incompressible and inviscid fluid

∂u

∂t
= −ρ−1∇p− u∇ · u, (1)

where ρ is the fluid density, u and p denote the fluid ve-
locity and static pressure respectively, ∇ is the gradient
and t is the time. The form reveals that change in pres-
sure are related to changes in fluid velocity (transient
term) and the square of the velocity (steady term),
which for a valve relates to the flow rate and flow
area (Borghi et al., 2000). Regions of accelerating or
high velocity fluids thus create negative gradients on
pressure which is essential to understand ’flow-forces’.
Furthermore, when the fluid is viscous an additional
term is added (the NS equations) potentially leading to
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chaotic behaviour. A specific solution to Equation (1)
is only feasible when the geometry is simple and is not
solved for an annular seat valve.

The plunger movement is governed by Newtons sec-
ond law of motion, where the force contributions ideally
can be divided into; mechanical contact, an actuator,
a spring and a fluid. This work solely focuses on the
forces related to the interaction of the plunger and the
fluid.

2.2.1 Valve Fluid Flow

The energy lost across an orifice is the product of the
flow and the pressure drop. This is thus a relevant
performance metric of a valve, and it is normally pre-
dicted by the orifice equation which is valid under tur-
bulent conditions where ∆p ∝ Q2, i.e. at large flow
rates where the losses grow to the second power. Rec-
ognizing that the valve can operate at either laminar,
turbulent, or transitional conditions flow models that
take this into account have also been expressed, e.g.
Valdés et al. (2014).

Most formulations are quasi-static, but Funk et al.
(1972) proposed a LPM including the transient condi-
tions for the pressure-driven flow in an orifice, which
then combines to

∆p =
ρ

2(AoCd)2︸ ︷︷ ︸
kf1

Q|Q|+λ Retµ

2AoDH︸ ︷︷ ︸
kf2

Q+
ρ√

0.5CdAoπ︸ ︷︷ ︸
kf3

dQ

dt
,

(2)
where Ao is the narrowest flow area of the orifice, DH

is the hydraulic diameter of the orifice, ρ and µ are
the fluid density and dynamic viscosity respectively, λ
is either 0 or 1 and thus used to activate the part de-
scribing laminar flow. Ret is the transition Reynold’s
number and Cd is the discharge coefficient, c.f. Fig-
ure 2 for relevant notations. The coefficients kf1, kf2
account for either turbulent or laminar flow conditions
and kf3 is the inductance of the valve. All include the
flow area and are used to describe the pressure differ-
ential (∆p = p2 − p1) required to deliver the flow (Q).
This LPM requires knowledge about the actual dis-
charge coefficient (Cd) and the transition number from
laminar to turbulent flow (Ret). These may be deter-
mined based on common values, CFD simulations or
from measurement. The actual value of Cd is normally
0.6-0.7 but is a function of the Reynolds number and
thus can span in a wide range, where Ret is typically
around 40-50 for sharp edged orifices. Therefore, it
does make sense to apply CFD analysis to understand
both flow conditions and the above parameters. The
form of Equation (2) can thus be used as comparison.

The above considers only a static plunger. However,
as the plunger moves in the fluid this interaction will in-

duce flow in various directions. This phenomenon was
studied by CFD in Bender et al. (2018) which quanti-
fied this Movement-Induced Flow (MIF). The MIF is
added by superposition and the total flow is thus

Qt,LPM = Q+AMIF ż︸ ︷︷ ︸
QMI

(3)

The pressure driven flow (Q) in Equation (2) is solved
by isolating the time-derivative of the Q. This value
is numerically integrated and the coupled equations
solved with a fixed step-size of 8 µs. The area AMIF

is a fraction of the plungers shadow area, which deter-
mined how much fluid is displaced in and out of the
total control volume. Due to continuity this means
that the remaining fluid from the compressed volume
fills the expanded volume, i.e. when closing the valve
some fraction of the fluid flows around the plunger and
the remaining flows in from the inlet boundary.

2.2.2 Valve Fluid Forces

The sum of fluid forces acting on the plunger is essen-
tially the local pressure distribution integrated on the
surface of the plunger. This force can be summarized
by the contributions

Ff,LPM = Fs + Ft + FMI . (4)

The forces, Fs and Ft describe the steady-state and
transient effects acting on the plunger as a reaction
to moving fluid, FMI is the force related to moving
the plunger in the z-direction. These three contribu-
tions govern the total ∆p acting on the plunger. These
boundary wall pressure changes are consequences of
conservation of energy and from the momentum equa-
tion a high velocity or change in velocity leads to pres-
sure gradients that will manifest itself as a force acting
on the moving parts. The steady force, Fs is known as:
”flow-induced force”, ”Bernoulli force” or ”hydraulic
force” (Merritt, 1967). This force has been formulated
with small variations in the literature, but is for seat
type valves normally connected with the static pres-
sure plus a contribution from the mass of the moving
fluid times the acceleration of this fluid. The relevant
contribution is in the z-direction and it depends on
how near the jet stream is to the moving part. This is
normally given as a jet angle, but this angle depends
on the stroke length/value of z. It is possible that the
jet does not interact with the plunger. Negative flow
conditions have been found to be linear with ∆p and
no significant dependency on z. I.e. the jet stream
does not interfere significantly with the pressure field
surrounding the plunger. However, for a positive flow
there exists a dependency on z, which causes the com-
bined Ff to go towards zero as z is increased. Phys-
ically this means that the pressure loss occurs on the
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p1 side of the valve and thus reduces the force acting
on the plunger. The above considerations are based
on experience from CFD analysis, with examples as
shown in Figure 2 and 15-17. Therefore, a trigonomet-
ric relation between z and w is introduced to create
a non-linear jet angle function. The exact shape of
this function can be changed by tuning the coefficients
c1 · · · c3 scaling the importance of z and w. The form
of Fs was also investigated in Bender et al. (2018) with
an attempt to describe the jet angle as the angle be-
tween the vectors of z and w (only z was varied in that
study). In this work a slightly different model form
is proposed due to a more comprehensive use of static
CFD simulations with more flow conditions and design
points. For a positive flow the Bernoulli force reduces
the Fs by altering the pressure field near the plunger.

Fs =

{
Fp − ρ Q|Q|CcAo

sin (γ) if∆p ≥ 0

Fp else
, (5)

where

Fp = Ap∆p, (6)

γ = tan−1
(
c1z

c2

wc3

)
, (7)

Ao = min(4πRz, 2πRw︸ ︷︷ ︸
Ap

), (8)

where γ is the angle used to describe the influence of
the VC as illustrated by Figure 2. The VC coefficient
Cc ≈ 1 is chosen since this is normally true when vis-
cous effects do not dominate. The force Fp occurs from
having a differential pressure across the valve. This
force is analytically correct when the valve is closed
(γ = 0→ sin(0) = 0) in this situation the pressures on
the surfaces are uniform and exactly ∆p which acts on
the equivalent area.

The tuning parameters (c1, c2, c3) are determined
from minimizing the relative Mean Absolute Error
(MAE) of Ff between LPM and CFD simulation, also
Cd, Ret, λ are fitted from CFD to get the correct pres-
sure/flow relation (values 0.67,58,1 respectively) and
the remainders are purely defined by the plunger’s di-
mensions and fluid density. The coefficients are found
by using a GDE algorithm, which finds the best fit
for both Ff and Q (the MAE are 3 N and 10 L/min
respectively). The values of the cosine function over
the valve stroke domain and at three design points are
plotted in Figure 4.

The transient force is a consequence of change in
flow, i.e. change in momentum means change in pres-
sure. This is studied in spool type valves in Merritt
(1967) where the change in flow and the fluid density
along with a certain damping length (ld) governs the

Figure 4: Scaling factor for Fs when Q is positive.

force magnitude. Normally the orifice equation is dif-
ferentiated w.r.t time to get the flow gradient. This
gives a damping term proportional to the moving ve-
locity. Transient CFD simulations have shown that
Ft does give a reduction of Ff even when the plunger
is stationary. Therefore, the change in flow is found
from Equation (2). The damping length in valves is
normally equal to the hydraulic diameter which for an
annulus is 2 times the width of the port.

Ft = −ρld
dQ

dt
= −2wρ

dQ

dt
. (9)

Finally, movement of the plunger itself will react with
the surrounding fluid causing a so-called Movement-
Induced (MI) force. This was studied by CFD in Ben-
der et al. (2017) and a sufficient performance obtained
by using a form of

FMI =


(Ain +Aout)

∫ l/2
−l/2 pgapdx if 0 < z ≤ lg

kaz̈︸︷︷︸
Added mass

+ kv ż︸︷︷︸
Viscous

+ kdż|ż|︸ ︷︷ ︸
Drag

otherwise ,

(10)
where Ain = 2π(R + l/2 − w/2) and Aout = 2π(R +
l/2+w/2) are areas of the inner and outer contact sur-
faces, l is the length of the contacting surface, lg = 0.1l
is the length at which the Reynolds equation is valid,
ka, kv, kd depend on z and the drag is also velocity de-
pendent, see the source for actual values. The downside
by the above described LPM is that it ignores history
effects and the coefficients cannot be determined solely
from the known geometry and therefore has some ob-
vious shortcomings. In the region near end-stop, the
movement-induced force is dominated by squeeze-film
damping or stiction, which is the reason for the two
switch cases in the above. The relative pressure in
the gap between two flat plates is derived from the
Reynolds equation where constant pressure boundary
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conditions are applied to arrive at Roemer et al. (2015)

pgap =
6µż(x2 − l2)

z3
, (11)

where x is the radial position w.r.t. the reference point
at the center of the flat surfaces. This expression ig-
nores convective and local acceleration which for high
viscosity fluids is a fair assumption, but as pointed out
in Lang et al. (2019) the contribution of inertial effects
makes up half of the pressure change when water is
used.

2.3 Computational Fluid Dynamics
Methodology

A Computational Fluid Dynamical (CFD) analysis is
in this study applied to locate zones with undesired
flow profiles, e.g. circulation- or stagnation zones. Fur-
thermore, it is used to obtain specific values of viscous
losses and boundary pressures on walls which possibly
translates to actuating forces.

The fluid domain is axisymmetric with two pressure
boundaries (see Figure 5), a moving body (the valve
plunger) is marked and the pressure acting on these
walls govern the value of Ff . The mass-flow is eval-
uated at the pressure boundaries and the analysis is
assuming incompressible flow, thus the conservation of
mass means that the inlet flow equals the outlet flow.
A sample of the fluid flow problem is illustrated in Fig-
ure 5 where the various boundary conditions, the mesh
and the parameters are shown.

The solutions are found by RANS formulations with
the settings in Table 1. These settings have been found
to give the most numerically stable results at small z
values. High order discretizations schemes are used to
maintain a coarser mesh and reduce time required for
meshing. The system states are solved by the coupled
scheme to include the multi-physical couplings (the
transport equations are inherently coupled in CFD).

Example of spatial pressure and flow velocities are
shown in Figure 6. The characteristics in the inlet tube
vary depending on the applied solver even though the
predicted flow-induced force is almost identical (Fig-
ure 3). This shows how turbulence and viscous effects
can be the reason for different solutions. The flow di-
rection is affected by the value of z and w which is
also the reason for including these as the governing pa-
rameters of the angle γ. The pressure distribution also
reveals that 6 bar occurs on top of the plunger, and the
pressure below the plunger is only marginally affected
by the flow.

The difference in the location of the VC is clear when
the flow is reversed as seen by the results of Figure 6a &
7. The pressure differential acts to open the valve. Two

Pressure boundary 2

Pressure boundary 1

Rotation axis
z

x

Plunger

w

Rin

Figure 5: Velocity solution of the fluid flow problem
from CFD (ANSYS Fluent 18) R = Rin +
0.5w = 15 mm, w = 5 mm and z goes from
ls → 0.

Table 1: Summarized setting and applied values for the
static CFD analyses, certain mesh metrics are
given as approximate values.

Setting Value

Temperature 40◦C
Fluid (Oil VG-46) 860 kgm−3, 0.046 kgm−1s−1

Plunger mass 19 g
Spring stiffness and pre-load 2.2 N/mm and 31 N
Viscous fluid model SST k − ω
Wall BC no slip
BC 1 & 2 pressure outlet
Solver transient/axisymmetric
Solver algorithm coupled/pressure-velocity
k, ω-convergence 1e-4
cont, u, v-convergence 1e-4
Dicretization p/(k, ω) 1st order upwind
Dicretization (u, v) MUSCL 3rd order upwind
Mesh # elements 2D/3D 1.5e4/3e6
Skewness (max/avg) 0.7/0.13
Max/min face size 1e-4/7e-7

Model 3D 2D dyn 2D stat LPM/ANN

tcomp ≈ 4 h 1 h 1 min 1 sec
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(a) k − ω solution. (b) Laminar solution.

Figure 6: One sample of the spatial pressure solutions as contours and velocity field as vector of magnitude and
direction for the fluid flow problem. z = 1 mm, BC1 = 6 bar and BC2 = 5 bar and two different
solvers have been used.

Figure 7: Negative flow condition reveal two VC which
almost do not interfere with the plunger.

VC occur on both sides of the plunger and the veloc-
ity reaches 14.7 m/s which will result in local pressure
drops as shown. This lower pressure is not significant
when compared to the area it acts on, hence Ap∆p is a
fair approximation for the fluid force c.f. Equation (7)
and Figures 15-17.

The discharge coefficient used in Equation (2) can
be estimated by using pressure/flow results predicted
by CFD. A series of evaluations have been made both
varying flow direction (±120 L/min) and changing the
lift of the plunger. The corresponding Cd values are
found to range in between 0.45-1 for various design
points (R,w, z) and a modeling error is thus evident if
a constant Cd is applied.

2.3.1 Switching Dynamics

While the valve switches state, the plunger will interact
with the fluid causing Movement-Induced Flow (MIF)
and force. This can be studied by a transient and
dynamic CFD framework, where various flow condi-
tions can be tested while switching with some actu-
ating force. This framework is elaborated in Bender
et al. (2018) and the results of one switching instant is
shown in Figure 8 where dynamic CFD and the force
components of the LPM are compared.

The valve is on initially and after 20 ms the flow
has reached steady-state where the plunger is actuated
towards the seat, i.e. switched off. This movement
induces additional flow from QMIF and Q starts to
decrease as Ao decreased. The total flow of QCFD and
Qt,LPM fits to a sufficient degree although the accuracy
becomes lower as the switching progresses.

The fluid force (Ff,CFD) starts at a value corre-
sponding to Fs = Fp plus Ft, since FMI = 0 and Q = 0
initially this is obvious from Equation (4) and (5). Due
to the positive flow gradient, Ft acts opposite of Fs. Ft
goes to zero near 20 ms and the static force predicted
by the ANN fits with CFD, where the LPM follows the
correct tendency but with a bias error. As the plunger
starts moving Ff,CFD grows until the plunger reaches
the seat where squeeze-film damping gives a rapid neg-
ative force. The LPM force prediction gets more nega-
tive as the valve closes, i.e. the resisting force is largest
in the LPM. The exact reason is unknown, but is ar-
guably due to transient effects in the flow field. The
consequence is that a softer landing will be predicted
while using the LPM.

The idea of applying partially converged CFD sim-
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Figure 8: CFD analysis with a constant boundary pres-
sure differential of 0.1 bar leading to a build-
up of flow. The valve is initially open and
initiates closing after 20 ms. Ff,ANN relates
to the ANN model described in the next sec-
tion.

ulations for this type of dynamic system has not been
studied before. The complications of such an approach
for a dynamic problem is that the error of partially
converged results will propagate to the next time-step
etc. and the solver needs smaller time-steps to give
meaningful results. It is thus interesting to study at
what amount of iterations the additional convergence
does not contribute to modeling accuracy and gives
the fastest convergence. A series of dynamic simula-
tions where the plunger goes from z = ls → 0 was
finished after a period, tcomp evaluated at z = 0.2 mm
to ensure a solution. At this point the instant veloc-
ity is evaluated and is, in retrospect, compared to the
value of the highest fidelity simulation. The absolute
velocity error (ve) and computation time (tcomp) are
shown in Figure 9 as a function of amount of maximum
allowed iterations per time-step. Each time-step also
has a convergence criterion of 1e-6 on all transport vari-
ables which means fewer iterations will be performed

if the solution converges, i.e. computation time does
not necessarily scale linearly with amount of allowed
iterations.

Figure 9: Time period and velocity error (ve) for
switching a valve, evaluated by CFD anal-
ysis.

The graph illustrates that around 100-120 iterations
per time-step is optimal both for fidelity and compu-
tation time of this specific dynamic fluid problem. Re-
garding model fidelity the error is below numerical un-
certainty and is irrelevant. The difference in computa-
tion time is at a maximum 50%, but this is not enough
to avoid a time-consuming sweep of the design space.
Furthermore, it was learned that too few allowed it-
erations cause time-step-sizes to approach zero (goes
to 1e-8 s which is defined as the minimum allowed),
which means around 40 iterations are minimal in order
to obtain a useful solution.

2.4 Artificial Neural Network Surrogate
Methodology

The first model structure to describe Q and Ff are de-
rived from an analytic approach and a part of the LPM,
but is at risk of omitting relevant characteristics. The
formulation of such a model requires assumptions and
system analysis, and this effort can be eliminated by
constructing an Input/Output (I/O) surrogate based
on either experimental data or CFD analysis. In this
study the focus is on CFD aided by deep Artificial Neu-
ral Network (ANN), and this approach thus aims at
reducing the drawback of time required for pre-, inter-
and pro- processing of CFD. The first study thus at-
tempts to replace Fsteady of Equation (4) with a sur-
rogate so

Ff,ANN = Fs,ANN + Ft + FMI . (12)

An ANN model may be built in a similar manner as
a grid-based Look-Up Table (LUT). The LUT does
not require much memory or computational power (be-
sides generating data) and is therefore an attractive
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approach for many practical problems. However, the
LUT is restricted to static analysis and to low dimen-
sional space (above 3D is normally troublesome). The
task is to determine the required amount of data to
build a sufficient model in one or the other form. This
research therefore focuses on an ANN surrogate, be-
cause it can potentially replicate both dynamic and
high-dimensional problems.

The training of an ANN can only achieve what the
available data allows. Highly non-linear systems with a
lack of diversified and sufficient samples cannot be ex-
pected to yield sufficient results, and an infinite number
of solutions that fit the data may exist. Therefore, the
actual performance of an ANN must be evaluated after
the training with a testing set (unseen data), in order
to know if the function is representable of the actual
system.

The feasibility of applying ANN as a surrogate with
the structure shown in Figure 10 has been investigated
by using Equation (2) and Equation (4) to create input
(∆p, z,R,w) and output (Ff , Q) samples. The solution
is in steady-state. This makes it possible to change the
sample size and the input dimensions rapidly without
using CFD data, and since the LPM contains the same
non-linearities as predicted in CFD this is a valid way
of validating the ANNs feasibility. An example of the
function evaluations of both the LPM models and the
ANN surrogate are shown in Figure 11.

The plots show that both Ff and Q are predicted
accurately by the ANN and in conclusion the 2D input
vector means that around 500 samples are required.

The trained ANN for a 2D model uses ∆p and z
as input, keeping R and w constant, in 3D w is kept
constant and 4D utilizes all. The ANN is trained by
minimizing the Mean Squared Error (MSE), but when
evaluating the model performance instead the Mean
of the Absolute Error (MAE) of the two outputs are
computed as Equation (13). The reason being that
this preserves more information about the actual per-
formance.

x̃ =
1

sdt

sdt∑
i=1

|x̂i − xi|, (13)

where xi is the output solution to sample i and x̂i the
model prediction of same sample. The amount of test
samples in each dimension (st) is raised to the amount
of dimensions (d) since the samples are structured as
a linear grid. Furthermore, a surrogate may be suffi-
ciently correlated to the actual system but still give a
significant MAE, thus the correlation coefficient For-

rester et al. (2006) is also computed as

r =
sdt
∑sdt
i xx̂−

∑sdt
i x

∑sdt
i x̂√

(sdt
∑sdt
i x2 − (

∑sdt
i x)2)(sdt

∑sdt
i x̂2 − (

∑sdt
i x̂)2)

.

(14)
The most simple and effective parameter sampling
method for surrogate models is by Latin HyperCube
(LHC) and the correlation coefficient (r2) is computed
to evaluate how well the surrogate correlates to the
data. Other adaptive methods are also available but
not considered here since LHC is sufficient for the spe-
cific problem. The reason for applying MAE as a fur-
ther evaluation is to achieve a deeper insight into the
model accuracy. These metrics of the ANN and LUT
as function of samples are summarized in Figure 12.

The correlation coefficients of Figure 12 reach almost
perfect correlation for both ANN and LUT surrogates
and the training period is not severe. The training is
only necessary to do once for the entire design space.
When d = 4 this does however result in longer training
periods and the required sample size starts to cause in-
feasible surrogates with poor performance. The resid-
uals reveal that a high level of accuracy is achieved by
the LUT and the ANN structure is not as accurate.
In fact the ANN does fluctuate a lot in performance
before a sufficient s is reached. Various forms of the
ANN have been tested to find the optimal fit for ac-
curacy and computation effort for each function call.
In a dynamic simulation the ANN model will be called
several thousand times and for optimization another
several thousand dynamic simulations must be carried
out meaning milliseconds will add up to hours in the
overall picture. The function evaluations of the opti-
mal ANN structures are displayed in Figure 13 and the
optimal point is marked resulting in an ANN structure
of 4 layers and a moderate amount of neurons 14, 15,
5, and 16 neurons and do neurons in the output layer.

The LUT performs best, but has the major short-
coming that data must be structured monotonously,
meaning a lot of data is required in higher dimensions.
This is not a requirement of ANN models and by using
a 4D LHC to construct the data, s can be reduced sig-
nificantly. Using this to train the ANN and testing the
model in the entire domain gives the results that are
presented in Figure 12d. This reduction in data and
more strategic distribution results in sufficient surro-
gates in 4D and with samples around a few hundreds
yielding some potential for this type of approach.

The ANN surrogate is only feasible if a model can be
established within a certain time-frame. The compu-
tation cost of a CFD evaluation with meshing, com-
putations and post-processing is around 2 min, but
if meshing must be verified manually for each design
point the approach is infeasible. The next logical step
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Input

[d x s]
tansigW1

Output

[do x s]
Σ

Layer 1, neurons n1

purelinWl

Layer l, neurons nl

tansigWl-1

Layer l-1, neurons nl-1

more layers

b1 bl-1 bl

Σ Σ

Figure 10: Deep Artificial Neural Network (ANN) with s samples of d dimensions and output dimension do.
The size of input and output layer are governed by d and do. The hidden layers (grey boxes) have n
neurons, and each neuron consists of a weight, bias and activation function.

Figure 11: Normalized flow and flow force values from the LPM and 2-dimensional ANN where R = 15 & w = 5
mm. These are used to compute the residuals of Figure 12 defined by Equation (13).

is therefore to investigate if the approach is scalable to
describe the system dynamics.

3 Model Predictions

To validate the developed LPM in more operation
points, a series of CFD simulations are used to achieve
a range of expected flows (Q) and flow-induced forces
(Ff ). The solution is obtained by enforcing pressure
BC and the corresponding flow plus force are found
in pro-processing. The values predicted by the LPM-,
ANN- and CFD- methodologies are summarized in Fig-
ure 14 (dynamic simulation) and Figures 15-17 (static
simulation), where three different points in the design
space are evaluated over z and ∆p.

A positive flow means the fluid goes from p2 to p1.
The graphs show that positive Q gives positive Ff (a
closing force) and vice-versa. The force is significantly

more dependent on z when Q is positive, but as the
width of the seat (w) is increased this difference be-
comes less significant. This corresponds perfectly with
the fact that w = z gives a VC in the annular tube
(on the side of BC1) rather than around the plunger,
thus less local pressure changes occur at the plunger.
Reversing the flow direction does not yield the same
tendency, the flow reacts less with the plunger and Ff
is almost independent on z. It was expected that an
amount of energy would stagnate on the plunger as
is also seen in the pressure results from CFD in Fig-
ure 6a. However, this amount is insignificant and the
jet stream and VC are almost uncorrelated to the forces
acting on the plunger. The magnitude of Ff is rele-
vant since it governs the dimensioning of the mecha-
nism that maintains a normally open valve (when flow
is positive).

The flow results show a quadratic relation between
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(a) 2D, R = 15 & w = 5 mm (b) 3D, w = 5 mm (c) 4D (d) 4D, trained with LHC

Figure 12: Relation between amount of samples s, residuals of flow and force (x̃) and the correlation coefficient
(r2). The time periods required for training an ANN (tANN ) are shown in the bottom graphs (in
second for 2D). The ANN structure is as shown in Figure 10 with l = 4, where each hidden layer has
14, 15, 5, and 16 neurons respectively. LUT denotes Look-Up Table surrogate and is not displayed
for the 4D case. The improvements from using a LHC structure is visible in Figure 12d where samples
are proportional to d not raised in d.

X: 0.5248
Y: 0.4796

Figure 13: Pareto front of showing the surrogate accu-
racy vs the time required to call the surro-
gate model.

Q and ∆p. Furthermore, the results depend directly on
z as expected from Equation (2). The values of Cd and
Ret resulting in the lowest RMS are 0.66 and 54 which
is in the expected range from theory and the solution
with lowest RMS value chooses λ = 1.

The ANN model, being a universal approximator,
has a low prediction error and is fully capable of han-
dling this 4D task of limited samples. Over-fitting is
mostly avoided as indicated by the outlying data points
in the graphs, e.g. Ff at z = 2.5 mm where the algo-
rithm fitted function follows the tendency and not the
exact data-points. The main benefit of this surrogate
is that the engineering effort is limited when the n-
dimensional space grows and reasoning cannot be ap-
plied. Even for the case of 4D the LPM does struggle
to describe Ff at positive ∆p and the ANN is a more

accurate alternative.

Simulation of CFD below 0.05 mm causes numeri-
cal instability, but for static simulations this range is
not particularly interesting as observed from Q going
to zero at z = 0.1 mm and Ff does not change sig-
nificantly. However, when the flow is kept constant
and z is low, the pressure differential will grow and
produce a significant closing force. This is of partic-
ular importance when predicting the motion near me-
chanical impact that is correlated to durability. The
static evaluations are within reasonable accuracy and
in Bender et al. (2018) it was demonstrated that the
dynamic forces (FMI) can also be represented in the
LPM. Therefore, it is of interest to check how this
model holds up against dynamic CFD simulations with
different flow conditions than those validated in Fig-
ure 8.

The severity of the introduced simplifications is de-
termined based on the discrepancy in the velocity pro-
file of the plunger. Several simulations of valve clos-
ing have been conducted for different flow conditions.
The velocity profiles have been interpolated to yield
the graphs in Figure 14. The CFD simulations break
down before actual impact due to numerical instabili-
ties (solver divergence) when a high flow rate is forced
through a narrow gap. Two LPMs are presented where
one omits the flow that is induced from moving the
plunger, the MIF. Also, the results of using an ANN
surrogate are given. The graphs clearly show that the
MIF causes a significant dampening effect, causing ve-
locity reductions of around 1 m/s, which is most sig-
nificant as R is increased. This means that, as Ap and
Ao are increased, the lower ∆p and increased MIF cre-
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Figure 14: Simulation results of plunger movement with varying shaft angles (θ) (change of flow conditions)
and three increments of plunger radius. Q = kθ sin(θ) since this emulates the flow conditions of a
rotating fluid power machine.

ates more damping. The plunger mass and FMI are
also affected by these geometric changes and it is not
obvious how to create the optimal design due to the
many couplings between the governing forces, the mass
and throttling losses. This is an example of the impor-
tance of knowing the system dynamics when proposing
a valve design.

The LPM model fidelity is sufficient compared to the
dynamic CFD in the chosen design points, however, the
log scale on z exposes the variations that do exist and
the fact that the CFD solution breaks down means that
no conclusions can be made about the motion just be-
fore impact, which could be a topic of further research.

4 Discussion

Recent advances in computational power, data avail-
ability and ANN algorithms/tools have lead to a hype
like trend in the amount of publications in the field
of applied ANN in engineering. The results of this
study reveals that an ANN surrogate may also serve
a purpose in a dynamic fluid flow problem by using
e.g. a Latin Hypercube data structure as training data.
This type of structure yielded superior performance to
an evenly distributed grid which grows in size to the
power of d. However, the approach is of limited effect

when it is possible to derive the model structure ana-
lytically or when data is computationally too expensive
and thus not only training time must be considered. In
the analysis of flow and forces the dependencies are as
expected, although a positive flow does cause a non-
linear relation to z and w which is only partially rep-
resented by the LPM. In most optimization tasks this
is however not a significant error, but since the entire
design space cannot be validated it is unknown if some
designs are significantly different from what the LPM
predicts. The non-intrusive nature of surrogate mod-
els is not an issue when used as a sub-function in the
dynamic framework, but the application of ANN will
mostly be powerful if a relatively high amount of inputs
are required and when data is computationally cheap.
During valve switching a highly non-linear force was
observed with transient effects that were not entirely
predicted by the LPM. However, the presented model
structure is considered successful in the sense that the
physical systems understanding is maintained and that
the computational burden is reduced from hours to sec-
onds.
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5 Conclusion

A brief validation of the developed Computational
Fluid Dynamics (CFD) and Lumped Parameter Model
(LPM) was presented based on previously published
data of the same valve configuration as studied here.
After the validity was confirmed, a comprehensive sim-
ulation study showed that deep Artificial Neural Net-
work (ANN) may be applied as a surrogate in a static
problem with four inputs and two outputs. Around
400 samples were necessary to map the I/O relation.
Several constellations of the Artificial Neural Network
(ANN) was tested all yielding similar requirements to
training data, although a deeper structure with a mod-
est amount of neurons gave the most accurate results
without scaling function-call requirements accordingly.
In comparison a look-up table solution yielded high
accuracy, but with the drawback that data-structures
in high-dimensional space will cause the size of the
dataset to become infeasible. The valve is a dynamic
and coupled system, which means there will be a high
amount of input-dimensions meaning a comprehensive
amount of CFD simulations would be required to es-
tablish a surrogate. An attempt to reduce computation
time was done by partially converged solutions, which
showed marginal reductions in computation time and
actually showed that too few iterations will result in an
unstable solution. Therefore, the quasi-static LPM was
compared to a set of dynamic CFD simulations, which
indicated that the proposed LPM is able to predict the
critical dynamic quantities to a degree sufficient for op-
timization, and that this will for the given problem be
a better approach than utilizing a model also including
an ANN surrogate.
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Figure 15: The graphs show static flow force (Ff ) and flow (Q) as function of ∆p = p2 − p1. The results of
various methodologies are plotted, and this is repeated for various increments of the plunger position.
CFD settings are given in Table 1 and R = 10 mm & w = 2.5 mm.

Figure 16: Same as in Figure 15 but with R = 15 mm & w = 5 mm.

Figure 17: Same as in Figure 15 but with R = 20 mm & w = 7.5 mm.
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