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Abstract

Living organisms adapt to changes in environment by phenotypic plasticity and evolution by natural
selection (or they migrate). At detailed genetic levels these phenomena are complicated, and quantitative
genetics attempts to capture essential processes at a higher abstraction level. Phenotypic plasticity is
then commonly modeled by reaction norms, which describe how individual traits in a population are
expressed in response to changes in environmental variables. The mean reaction norms are evolvable, and
here I present a general quantitative genetics state-space model for evolutionary reaction norm dynamics.
Reaction norms make use of a reference environment, which is traditionally set to zero. This is problematic
when the reference environment is the environment a population is adapted to, for the reason that this
environment is a population property, which in itself may be evolvable. With reference to Ergon (2018), I
describe models that take such evolvability into account. The resulting models are fundamentally different
from most engineering system models, where given reference values are constant, and therefore without
consequences can be set to zero. For simplicity I assume only temporal variations in environment, although
there obviously are a lot of spatial variations in nature, and I assume that no mutations are involved.
Fundamentals from quantitative evolutionary theory are given in appendices.

Keywords: Reaction norms; reference environment; multivariate breeder’s equation; evolving equilibrium;
genetic assimilation

1. Introduction

Evolution of biological systems is a fascinating subject,
with reproduction, natural selection and mutations as
basic concepts (Page and Nowak, 2002). The subject
is challenging from a mathematical modeling point of
view, and it is an area where also an extensive amount
of field studies and field and laboratory experiments
are conducted. Natural selection will cause evolution
only if there is enough genetic variation in a popula-
tion, and this may be studied at different theoretical
levels. Here, I will use quantitative genetics methods
at the phenotypic level, i.e. assuming individual char-
acteristics (height, bird nesting time, etc.) that vary
continuously depending on genes, and environmental
and developmental factors. When such characteris-

tics result from infinitesimal effects of a large num-
ber of genes, it follows from the central limit theorem
that their distributions tend to be multivariate nor-
mal (Fisher, 1918; Turelli, 2017), and such normality
is a fundamental assumption in quantitative genetics.
This article will focus on some main aspects of quanti-
tative genetics, without mutations involved, and with
only temporal variations in environment. I will dis-
cuss some recent advances in evolutionary state-space
modeling that may be of interest also for the engineer-
ing control community (Ergon and Ergon, 2017; Ergon,
2018), and for that purpose some basic concepts are
first introduced.

The phenotype of a living organism is the set of ob-
servable characteristics, such as its physical and physi-
ological properties, behavior, etc. The phenotype is de-
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termined by the genotype, i.e. by the inherited genetic
instructions, but also by environmental conditions and
developmental stage. The mean phenotype in a wild
population is subject to evolution based on the prin-
ciple of natural selection (Darwin, 1859), which is a
slow adaptive process that requires sufficient pheno-
typic variation among individuals in the population,
such that the fittest individuals contribute the most to
the gene pool of new generations. Although there are
several alternative definitions related to reproductive
success (Caswell, 2001), we may here, for simplicity, de-
fine individual fitness as the number of offspring of the
individual. Assume, for example, that some migrating
birds are genetically programmed to arrive earlier to
their nesting sites in Norway than most other birds of
the same species. Also assume that owing to climatic
change, these early birds find more and better food,
and thus have more offspring than the rest of the birds
in the species. In such a case, the mean arrival time in
the population may evolve towards earlier dates, such
that the population adapts to the warmer climate. As
discussed below, however, this is not the obvious result
when phenotypic plasticity is involved.

Natural selection is the differential survival and re-
production of individuals due to differences in pheno-
type. The mathematical theory of natural selection has
some of its background from breeding theory, and for
simplicity non-overlapping generations are assumed.
For illustration, consider an individual phenotypic trait
yi,t determining the individual fitness Wi,t, where t is
time measured in unit of generation. Assume a given
environment, and fitness function and distribution of
yi,t in a population as shown in Figure 1. As is often
done in theoretical analysis (e.g., Lande (2009)), the
fitness function is here given by the Gaussian function

Wi,t = Wmax exp

(
− (yi,t − θt)2

2ω2

)
, (1)

where θt is the phenotypic value that maximizes indi-
vidual fitness in the given environment ut, and where
ut and θt are correlated stochastic processes. As ex-
plained below, the phenotypic trait yi,t is here a func-
tion of the environment ut. The correlation may, for ex-
ample, be caused by environmental fluctuations within
each generation, and a time delay between a critical
development stage and the reproduction stage (Lande,
2009).

Equation (1) describes how the individual fitness
varies as function of the phenotypic trait. Since per
definition individuals with phenotype closer to the fit-
ness peak will have more offspring than others, the
population mean value ȳt will gradually, generation
by generation, be shifted towards the fitness peak.
Assume now that y has one part x determined by

the genetics and one part e determined by the en-
vironment, i.e. yi,t = xi,t + ei,t, where xi,t and ei,t
are independent and normally distributed, and where
ēt = 0. Also assume (i) that xi,t and ei,t have con-
stant population variances Gxx and σ2

e , respectively,

(ii) that E
[
Wi,t

(
x̄offi,t − xi,t

)]
= 0, where x̄offi,t is

the mean value of x of the offspring of individual i,
and (iii) that fitness is determined only by y (and not
directly by x or e). In that case it can be shown
that the selection process in breeding is governed by

ȳt+1 = ȳt + Gxx
(
Gxx + σ2

e

)−1
S, where S is the se-

lection differential defined as the difference in mean
phenotype between a group selected for breeding and
the entire population. This is the univariate breeder’s
equation, first proposed by Lush (1937), with the no-

tation Gxx
(
Gxx + σ2

e

)−1
= h2 (heritability). It was

later shown that for natural selection in the wild, S
can be replaced by cov (Wi,t, yi,t) (Price, 1970; Lande,
1979), such that the univariate breeder’s equation can
be expressed as

ȳt+1 = ȳt +Gxx
(
Gxx + σ2

e

)−1
cov (Wi,t, yi,t) . (2)

When ȳt is located as in Figure 1, cov (Wt, yt) is pos-
itive, i.e. fitness increases for increasing values of phe-
notype. Note that selection does not require Gaussian
functions, as used in Figure 1, although the breeder’s
equation (2) is valid only when at least the phenotypic
values in the population are normally distributed. Also
note that the assumption of a constant phenotypic vari-
ance, σ2

y = Gxx + σ2
e , may be problematic, because

the selection process in itself will gradually reduce the
variance Gxx. There is, however, ample empirical ev-
idence that this often is compensated by various pro-
cesses, like mutations and migration of individuals be-
tween subpopulations, and the simplifying assumption
of constant phenotypic variance is therefore often used
in theoretical analysis (Rice, 2004).

Natural selection in populations with genetic vari-
ability is thus a necessary prerequisite for evolution.
Phenotypic plasticity, on the other hand, is the abil-
ity of a living organism to express different phenotypes
in different environments, also when no evolution is
involved. Such plasticity will normally be adaptive
in the sense that it increases fitness, but in extreme
environments it may be maladaptive. An example is
plants that reduce their photosynthesis and growth,
in order to use less water when they become water-
or salt-stressed (Tallman et al., 1997). The fact that
some migrating birds return to Norway earlier owing
to climatic change, may be partly caused by pheno-
typic plasticity, although it may also be caused by evo-
lution. It is in fact an important consequence of the
models in Ergon and Ergon (2017) and Ergon (2018),
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Figure 1: Fitness function Wi,t (blue) and phenotype
distribution p (yi,t) (magenta) in a given en-
vironment u and at a given time t, for a
case that gives cov (Wi,t, yi,t) > 0, and thus
ȳt+1 > ȳt. The mean phenotypic value is
here ȳt = 10, while the phenotypic value that
maximizes individual fitness is θt = 20.

that responses to climate change that at first may be
explained by phenotypic plasticity, over time may be
totally explained by evolution. As explained in more
detail below, such a development is called complete ge-
netic assimilation. Since phenotypic plasticity and evo-
lution may be at work at the same time, evolutionary
models must take both plasticity and natural selection
into account. They should also include models of mu-
tations, although that is not further discussed here.

Phenotypic plasticity can be described and modeled
by means of reaction norms, which show how pheno-
types vary as function of environmental variables. As
an illustration, Figure 2 shows linear individual reac-
tion norms for a population with a univariate pheno-
typic variable in a univariate environment, which is
also used in the simulation examples in Subsections 4.1
and 4.2. In the figure, the environmental cue is defined
as the environment during a critical period of develop-
ment. The figure also introduces reaction norm param-
eters that may be treated as traits in their own right,
often referred to as latent traits. Just as ordinary phe-
notypic traits, such latent traits may have evolvable
mean values in a population, as described in Figure 1.
In Figure 2, solid lines indicate the range of environ-
ment where the reaction norms may be recorded in an
experimental study, while the dashed lines show ex-
trapolations.

Assuming reaction norms as in Figure 2, with c̄ = 0
andGcc = 0, and using a multivariate version of eq. (2),

Figure 2: Reaction norms for 100 individuals with reac-
tion norms according to y = a+ b (u− c)+e,
with ā = c̄ = ē = 0 and b̄ = 0.5. The
traits a, b and c, and the residual e, are inde-
pendent and normally distributed, with vari-
ances Gaa = 0.5, Gbb = 0.045, Gcc = 0.5,
and σ2

e = 0.5, respectively. Theoretically,
the minimum phenotypic variance is found
for u = 0 (Lande, 2009).

we obtain the model

yi,t = ai,t + bi,tut + ei,t, (3)

z̄t+1 = z̄t +
1

Wt
GP−1cov (Wi,t, zi,t) , (4)

where z̄t =
[
āt b̄t

]T
, while G =

[
Gaa 0

0 Gbb

]
and

P =

[
Gaa + σ2

e 0
0 Gbb

]
. As in Lande (2009), it is as-

sumed that the two latent traits are independent, and
that bi,t has no residual component. As discussed in
detail below, eq. (4) is an example of the multivari-
ate breeder’s equation, and here it is necessary with a
note on notation. The individual phenotype is denoted
yi,t, while zi,t is the vector of individual reaction norm
traits. The evolution of the mean values ȳt and z̄t are
governed by the fundamental Price equation, as given
in Appendix A, and in that respect there is no differ-
ence between the phenotypic traits yi,t and the latent
traits zi,t. For simplicity, however, the notation zi,t is
used in Appendix A.

The outline of the subsequent parts of the article is as
follows. Section 2 gives a more general introduction to
state-space modeling of phenotypic plasticity and evo-
lution using traditional quantitative evolutionary the-
ory (Lande, 1979; Lande and Arnold, 1983; Gavrilets
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and Scheiner, 1993b,a; Lande, 2009). For simplicity it
is assumed that there are only temporal variations in
environment, although there obviously are a lot of spa-
tial variations in nature. Section 2 also introduces the
fundamental problem of evolvable phenotypic plastic-
ity reference environments, recently discussed in Ergon
(2018). The solution to this problem requires an aug-
mented multivariate breeder’s equation, as developed
in Section 3.

Section 4 presents simulations in order to show
the consequences of the state augmentation. Subsec-
tion 4.1 shows the step response of a univariate and lin-
ear reaction norm system, while Subsection 4.2 shows
the ramp response of the same system. In Subsec-
tion 4.3 I simulate the step response of a multivariate
and nonlinear reaction norm system. Finally, conclu-
sions and discussions are given in Section 5.

Appendix A shows how the multivariate breeder’s
equation (4) by means of several assumptions fol-
lows from the fundamental selection equation of Price
(1970). Appendix B shows how an assumption of
frequency-independent selection leads to an alterna-
tive form of the multivariate breeder’s equation, z̄t+1 =

z̄t +G
∂ ln(W̄t)
∂z̄t

. This shows that at equilibrium, where

E

[
∂ ln(W̄t)
∂z̄t

]
= 0, the geometrical mean fitness is max-

imized (Appendix C).

A major difficulty of the approach with evolvable
reference traits is to find empirical measures of the re-
action norm parameters. In the univariate and linear
reaction norm example in Figure 2, for example, indi-
vidual reference traits c (horizontal reaction norm vari-
ation) cannot be distinguished from traits a (vertical
reaction norm variation) by means of static experimen-
tal data. Different values of the variance Gcc of trait c
will, however, give different dynamical responses to en-
vironmental variations, and assuming that the variance
Gaa of trait a is known this can be used to find Gcc
by use of system identification methods (Appendix D).
However, the practicability of this for slow evolution-
ary processes must be expected to be limited.

Appendix E discusses an alternative model formula-
tion using so-called function-valued traits, in order to
show that the plasticity reference environment needs
to be modeled also in such models. Two additional
problems in such cases are also described.

As an example, Matlab code for the step response
simulation in Subsection 4.1 is provided in Appendix F.

2. The problem with traditional
reaction norm models

As exemplified in Section 1, a traditional quantita-
tive genetics state-space model of an evolving popula-
tion system with plastic organisms has three equations.
First, the phenotypic plasticity is modeled by individ-
ual reaction norms, which describe how a multivari-
ate individual phenotype yi,t is expressed as a linear
or nonlinear function of latent quantitative traits z0,i,t

and a stochastic multivariate developmental environ-
ment (environmental cue) ut,

yi,t = g (z0,i,t, ut − uref ) . (5)

I will here assume that z0,i,t is an individual pa-
rameter vector as function of time t (generations) in
a parametrized model of the reaction norm. The ref-
erence environment is defined as the environment the
population is adapted to (Lande, 2009). It is often set
to uref = 0 (Gavrilets and Scheiner, 1993b,a; Lande,
2009), but that disguises the plasticity reference prob-
lem, as discussed in Ergon (2018), and in Section 3 be-
low. Examples of individual reaction norms are shown
in Figure 2.

Second, the individual and scalar fitness function is

Wi,t = h (yi,t − θt) , (6)

where θt is the stochastic vector of phenotypic expres-
sion that maximizes fitness in a given stochastic en-
vironment ut at a given time (generation). Figure 1
shows an example with an instantaneous value θ = 20.
In eqs. (5) and (6), ut and θt are correlated stochas-
tic processes. Note that in the univariate and linear
reaction norm case, the covariance between ut and θt
determines the mean reaction norm slope in a station-
ary stochastic environment (Lande, 2009; McNamara
et al., 2011; Ergon and Ergon, 2017). Third, the state
equation that propagates the mean trait values forward
in time may under given assumptions be the multivari-
ate breeder’s equation (Lande, 1979)

z̄0,t+1 = z̄0,t +
1

W̄t
GP−1cov (Wi,t, z0,i,t) , (7)

where G and P are covariance matrices as described
just below. By means of several assumptions, eq. (7)
follows from the fundamental selection equation of
Price (1970) (Appendix A). The reason for these as-
sumptions is that the Price equation is not dynam-
ically sufficient, i.e. it cannot be used for prop-
agation of the mean state from one generation to
next. An important assumption is that the phenotypic
traits can be split into two mutually independent and
multinormally distributed parts, z0,i,t = x0,i,t + e0,i,t,
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with mean value ē0,t = 0, and covariance matri-

ces G = E
[
(x0,i,t − x̄0,t) (x0,i,t − x̄0,t)

T
]

and E =

E
[
e0,i,te

T
0,i,t

]
, respectively. As a consequence also z0,i,t

is multinormally distributed, with the covariance ma-

trix P = E
[
(z0,i,t − z̄0,t) (z0,i,t − z̄0,t)

T
]
.

I will here assume P and G to be constant, as in,
e.g., Lande (2009) and Ergon and Ergon (2017). I will
assume populations with non-overlapping generations,
where all individuals live in the same time-varying en-
vironment, and make standard assumptions necessary
for the multivariate breeder’s equations (4) and (7) to
be valid (Appendix A). For analytical purposes, expres-
sions for mean values ȳt and W̄t can in theory be found
from equations (5) and (6), but they are not needed for
simulations.

Equation (7) may be expressed as z̄0,t+1 = z̄0,t +
Gβ0,t, where β0,t is the selection gradient, and we thus
have β0,t = 1

W̄t
P−1cov (Wi,t, z0,i,t). Under the assump-

tion of so-called frequency-independent selection, the
selection gradient may alternatively be expressed as
β0,t = ∂

∂z̄0,t
ln
(
W̄t

)
(Appendix B). This is a nice form

for interpretation of fitness landscapes (Arnold et al.,
2008), although eq. (7) is better suited for simulations.
The population system (5,6,7) reaches an equilibrium
when E [β0,t] = 0, i.e. when E [z̄0,t] reaches a peak
in the multivariate mean fitness landscape (assuming
frequency-independent selection).

As pointed out in Ergon (2018), the fundamental
problem with traditional reaction norm models is that
the reference environment is an inherent part of the
population state, independent of the actual environ-
ment where the individuals develop. The state of the
population thus determines which environment it is
adapted to, i.e. where the expected geometric mean
fitness is maximized (Appendix C). In the simple uni-
variate and linear case, with the individual reaction
norm y = a+ b (u− c) + e and independent traits a, b
and c (Figure 2), this is simply the environment where
the phenotypic variance has a minimum (Lande, 2009;
Ergon and Ergon, 2017). The environment the pop-
ulation is adapted to is, in other words, an internal
population property, independent of the external envi-
ronment. It is, however, only when the external envi-
ronment coincides with the internal reference environ-
ment, or vice versa, that the population is adapted to
the current environment. As a consequence, the ref-
erence environment should be modeled as part of the
evolutionary model, which implies a modification of
the model (5,6,7). How this should be done is an open
question, where the best answer may depend on the
problem under study. One alternative is to let uref
be a function of an evolvable G matrix (e.g., Arnold
et al. (2008)). That would give a complex solution,

especially in the multivariate and nonlinear case, and
this alternative is not studied here. As a straightfor-
ward solution, Ergon (2018) proposed that the refer-
ence environment vector may be modeled as a vector
z̄c,t of mean traits in their own right, just as other re-
action norm traits. Equation (7) must accordingly be
augmented with the z̄c,t state variables. The details
of this for parametrized models are developed in Sec-
tion 3. Whether the mean reference traits in z̄c,t are
evolvable is also an open question, but considering the
complexity of evolutionary processes, such evolvability
cannot be excluded without good arguments (Pigliucci,
2008). Note that only the elements in the environmen-
tal reference trait vector that are genetically variable,
should be included in the augmented state equation.
If all elements in the reference environment have zero
genetic variance in the population, they can without
consequences be set to zero, and this is thus an implicit
assumption in traditional reaction norm models. Also
note that evolvable reference traits may be combined
with an evolvable G matrix.

3. Augmented evolutionary models

3.1. Background state-space theory

As a background and reference for the theoretical
development, I include a summary of the under-
lying state-space theory for discrete-time systems.
The starting point is then the idea of an abstract
discrete-time system that interacts with its environ-
ment through a vector φt of input variables and a vec-
tor yt of response variables. A vector xt of variables
that takes its values in some set X (a state space) is
a state vector if it satisfies the following two require-
ments:

1. There exists a function g(·) that uniquely deter-
mines the response at any discrete time t as a
function of the input and the state at t,

yt = g(xt, φt). (8)

2. There exists a function f(·) that uniquely de-
termines the state at any discrete time t as a
function of the state at any earlier discrete time
t0 and the input sequence from t0 to t − 1, for
any t0 and sequence φ0, φ1, . . . , φt−1, i.e. xt =
f (x0, φ0, φ1, . . . , φt−1). From this follows that
x1 = f (x0, φ0), and generally that xt at any dis-
crete time t can be propagated one step forward
in time according to (Åstrom and Murray, 2008)

xt+1 = f(xt, φt). (9)
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The function g(·) is known as the output or observa-
tion function, and the function f(·) as the state or state
transition function, while xt is the state. At t = t0 the
state variables will have or be given some initial val-
ues, and from then on all information from the past
is carried by the state variables. It should be noted
that any specific current state may be the result of a
large number of different initial states and input se-
quences, especially if t0 is far back in time, and the
initial state cannot therefore be reconstructed from the
current state without detailed knowledge of the entire
input sequence.

3.2. State-space augmentation

Assuming sufficient genetic variation, the mean phe-
notypic values in a population will evolve when the
environment varies from generation to generation. As
summarized in Section 2, mathematical modeling of
this evolution for plastic organisms involves a state-
space model, which assuming non-overlapping genera-
tions requires three equations. First, eq. (5) describes
how a multivariate individual phenotype yi,t is ex-
pressed as a linear or nonlinear function of quantitative
traits z0,i,t and a continuously varying developmental
environment (cue vector) ut. Second, eq. (6) describes
how the individual fitness depends on the difference
between the phenotype yi,t and the vector θt of phe-
notypic expressions that maximizes fitness in the given
environment at a given time (generation). Third, the
state equation is traditionally and under the assump-
tions in Appendix A the multivariate breeder’s equa-
tion (7) (Lande, 1979).

When eq. (5) is compared with the general state
space output function (8), it is apparent that the envi-
ronmental reference vector uref must be part of either
the current state or the current input. Since eq. (8) de-
scribes how the abstract discrete-time system interacts
with the current environment through the vector φt of
input variables, and since a reference environment pos-
sibly far away from the current environment cannot be
part of the current input, it must necessarily be an in-
herent part of the current state of the population. This
is illustrated in Figure 2 in Section 1, where uref = 0 is
the environment where the phenotypic variance has a
minimum, also when the environment varies in a range
far from u = 0. The current individual state is thus[
zT0,t uTref

]T
, which leaves ut as the current input in

eq. (8). Note, however, that also θt in the fitness func-
tion (6) is an input variable, such that the total current

input is φt =
[
uTt θTt

]T
.

In traditional reaction norm models, the reference
environment is assumed to be the same for all individ-
uals in the population, and the current mean state is

then
[
zT0,t uTref

]T
, i.e. the reference environment is

in principle a population state variable, although it is
implicitly assumed be constant. The environment the
population is adapted to, is, in other words, an inter-
nal population property, independent of the external
environment. It is, however, only when the external
environment coincides with the internal reference envi-
ronment, or vice versa, that the population is adapted
to the current environment. The state variable uref
thus determines which environment the population is
adapted to, whether it coincides with the current envi-
ronment or not.

Any population state variable must be modeled as
a population mean value, a variance or a higher or-
der statistical moment, or functions of the statistical
moments. Since we must assume that the population
may be adapted to different stationary stochastic envi-
ronments, independent of constant G and P matrices,
and since the elements in uref must have the same
dimensions as the elements in ut (for example tem-
perature and salinity), the remaining choice is a mean
trait vector, which may denoted z̄c,t. We should thus
represent the reference environment by discrete-time
integrators, as done to obtain integral action in state
feedback design (Åstrom and Murray, 2008). Note that
uref should be modeled in this way also when it is set
to zero, and that it in general must be assumed that
z̄c,t may be evolvable (Pigliucci, 2008). As mentioned
in Section 2, uref could alternatively be a function of
an evolvable G matrix (e.g., Arnold et al. (2008)), but
that possibility is not discussed further here. As also
mentioned in Section 2, an evolvable G matrix may
come in addition to an evolvable reference trait vector.

Setting uref = z̄c,t raises the question of possible
biological mechanisms for individual traits zc,i,t. Er-
gon and Ergon (2017) proposed that individual reac-
tion norms may be shifted along the cue-axis according
to how individuals perceive the environment, which re-
sults in individual perception traits. In the general
multivariate and nonlinear case such perception effects
will lead to individual trait vectors zc,i,t, that thus
should replace uref in eq. (5). Assuming that zc,i,t, just
as z0,i,t, can be split into two independent and multi-
normally distributed parts, zc,i,t = xc,i,t + ec,i,t, with
ēc,t = 0, and that the additive genetic covariance ma-

trix Gcc = E
[
(xc,i,t − x̄c,t) (xc,i,t − x̄c,t)T

]
is positive

definite, the mean traits in z̄c,t will be evolvable. This
results in a dynamical reference environment, which in
a stationary stochastic environment will evolve into an
equilibrium.

With uref = zc,i,t, the model (5,6,7) will accord-
ing to the multivariate breeder’s equation result in the
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augmented state-space model

yi,t = g (z0,i,t, ut − zc,i,t) (10)

[
z̄0,t+1

z̄c,t+1

]
=

[
z̄0,t

z̄c,t

]
+

1

W̄t
GaugP

−1
aug

×
[
cov (Wi,t, z0,i,t)
cov (Wi,t, zc,i,t)

]
=

[
z̄0,t

z̄c,t

]
+Gaugβt, (11)

where Gaug =[
G E[(x0,i,t−x̄0,t)(xc,i,t−x̄c,t)T ]

E[(xc,i,t−x̄c,t)(x0,i,t−x̄0,t)
T ] Gcc

]
and Paug =[

P E[(z0,i,t−z̄0,t)(zc,i,t−z̄c,t)T ]
E[(zc,i,t−z̄c,t)(z0,i,t−z̄0,t)T ] E[(zc,i,t−z̄c,i,t)(zc,t−z̄c,t)T ]

]
,

while βt is the selection gradient. Here, Gcc = 0 results
in xc,i,t = x̄c,t, and thus a constant mean state variable
z̄c,t+1 = z̄c,t. In that special case we may without
further consequences set z̄c,t = zc,i,t = uref = 0. In
case only some of the traits in zc,i,t have genetic vari-
ability, only such traits should be included in eq. (11),
while the others may be set to zero. In eq. (11), Wi,t

and W̄t are still computed from eq. (6). Evolution
in a stationary stochastic environment will lead to
an equilibrium, where E [cov (Wi,t, z0,i,t)] = 0 and
E [cov (Wi,t, zc,i,t)] = 0, i.e. where the expected selec-
tion gradient is E [βt] = 0. The expected geometric
mean fitness will then be maximized (Appendix C).

The reference environment vector z̄c,t is closely re-
lated to the environment the population is adapted to,
which may be denoted u0. As discussed in detail for
the special case in Ergon and Ergon (2017), an unsym-
metrical distribution of the phenotype y results in a
difference between z̄c,t and u0, but at equilibrium in a
stationary stochastic environment the expected devia-
tion is independent of the mean values µU and µΘ of
ut and θt, respectively.

The idea of an evolvable reference trait was intro-
duced in Ergon and Ergon (2017), but then based on
biological arguments, and as a result of the novel idea
of a perception trait as a means of relaxing constraints
on the evolution of reaction norms. A main purpose
of Ergon (2018) was to show that the plasticity refer-
ence environment not only may be modeled, but that
it in principle must be modeled, in one way or another,
as part of the quantitative genetics state-space model
(although this is not necessary if the reference environ-
ment is not evolvable).

As discussed in Ergon and Ergon (2017), an impor-
tant result of a fully evolvable plasticity reference en-
vironment is the property of complete genetic assimi-
lation, by which “selection can act in such a manner
as to turn an environmentally stimulated phenotype
(i.e., plasticity) into a fixed response to prevalent en-
vironmental conditions (assimilation)” (Pigliucci and

Murren, 2003). I here use the term ‘complete genetic
assimilation’ as in Ergon and Ergon (2017), to describe
the evolutionary scenarios where, after an abrupt en-
vironmental change, there is an initial increase in phe-
notypic plasticity, after which the mean plasticity is
reduced and the environment range, or value, to which
the population is adapted moves towards the current
mean environment. This entails that all elements in
the reference environment vector have genetic variabil-
ity, such that they are evolvable.

3.3. Parametric reaction norm modeling

With z0,i,t split into elevation traits za,i,t and slope
and shape traits zb,i,t, the reaction norm function in
eq. (10) becomes

yi,t = g (za,i,t, zb,i,t, ut − zc,i,t) . (12)

Following Gavrilets and Scheiner (1993b),
this function can be approximated by a power
series in terms of the components of q envi-
ronmental cues, with p different products of
u1,t−zc,1,i,t, u2,t−zc,2,i,t, . . . , uq,t−zc,q,i,t, such as u1,t−
zc,1,i,t, (u1,t − zc,1,i,t)2

, (u1,t − zc,1,i,t) (u2,t − zc,2,i,t)
etc. This yields the individual reaction norm equation

yi,t = za,i,t + Zb,i,tũi,t, (13)

where ũi,t is a p × 1 vector of all the differ-
ent cue products involved, as for example u1,t −
zc,1,i,t, (u1,t − zc,1,i,t)2

, (u1,t − zc,1,i,t) (u2,t − zc,2,i,t)
etc.. With m phenotypic variables, yi,t and za,i,t
are m × 1 vectors, and Zb,i,t an m × p matrix of
individual quantitative traits (see multivariate and
nonlinear simulation example in Subsection 4.3). The
elements in Zb,i,t can be ordered in an individual
vector zb,i,t in any chosen way. We may for example
have zb,i,t = vec (Zb,i,t), where vec (Zb,i,t) is a vector
form of Zb,i,t such that the columns are linked into a
single column vector of length m× p. Note that all of
za,i,t, zb,i,t and zc,i,t may have independent additive
genetic and non-additive parts. When eq. (10) is
replaced by eq. (13), eq. (11) must be replaced byz̄a,t+1

z̄b,t+1

z̄c,t+1

 =

z̄a,tz̄b,t
z̄c,t

+
1

W̄t
GaugP

−1
aug

×

cov (Wi,t, za,i,t)
cov (Wi,t, zb,i,t)
cov (Wi,t, zc,i,t)

 . (14)

The total number of state variables is thusm+m×p+q,
where q is the number of environmental cues.

As exemplified in Ergon and Ergon (2017), the sys-
tem (13,14) has the external references µΘ, µU and
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cov (U,Θ). It follows fromErgon and Ergon (2017) that
a symmetric phenotypic distribution p(y) at equilib-
rium in a stationary stochastic environment results in
E [z̄a,t] = µΘ and E [z̄c,t] = µU , while an unsymmetri-
cal p(y) leads to deviations from µΘ and µU . These de-
viations will, however, be independent of the actual val-
ues of µU and µΘ, such that a positive definite matrix
Gcc gives complete genetic assimilation in any station-
ary stochastic environment. It also follows from Ergon
and Ergon (2017) and McNamara et al. (2011), that
the mean slope values around the origin in a station-
ary stochastic environment is a function of cov (U,Θ).

4. 4 Simulation results

4.1. A step response simulation

Step responses for a system with the reaction norm
used in Figure 2,

y = a+ b (u− c) + e, (15)

are shown in Figure 3. The individual fitness was given
by the Gaussian function

W = Wmax exp

(
− (y − θ)2

2ω2

)
, (16)

and the state equation in eq. (14) was used, with diag-
onal matrices Gaug and Paug. The population size was
N = 1000, and at each generation individual trait val-
ues around the updated mean trait values were drawn
from distributions according to Gaug and Paug (see Ap-
pendix F for Matlab code).

Step response phase plots c̄ = f (ā) corresponding to
Figure 3 are shown in Figure 4. This figure also shows
phase plots with a smaller change in µΘ, as well as with
no change.

Mean fitness plots are shown in Figure 5. Note
that the mean fitness for Gcc = 0.5 is recovered after
application of the environmental step function, while
Gcc = 0 results in a permanent loss of mean fitness.
The reason for this permanent loss of mean fitness is
that the point [6, 12] in Figure 4 is reached by phe-
notypic plasticity, such that the phenotypic variance
has an extra term u2Gbb. Also note that the mean fit-
ness in the original environment is somewhat higher for
Gcc = 0 (see Ergon and Ergon (2017) for details).

4.2. A ramp response simulation

The system in Subsection 4.1 above was also simulated
with µU and µΘ = 2µU as ramp functions over 5000
generations, starting at 1000 generations. The ramp
responses are shown in Figure 6, and the corresponding

Figure 3: Step responses for the system (14,15,16),
with changes in the mean environmental cue
µU from 0 to 6, and in the mean µΘ of the
phenotypic value θ that maximizes fitness
from 0 to 12, at t = 1000 (blue). The ex-
citation signals u − µU and θ − µΘ on top
of the mean values µU and µΘ were white,
with variances σ2

U = 0.4 and σ2
Θ = 1.6, while

cov (U,Θ) = 0.2. The population size was
N = 1000, and the width of the fitness func-
tion was ω2 = 10. The variance of the white
and zero mean non-additive component was
σ2
e = 0.5, and the trait covariances were
Gaa = 0.5, Gbb = 0.045 and Gcc = 0.5. Re-
sults with Gcc = 0, as in Lande (2009), are
included (magenta). Note that the expected
equilibrium mean slope value with Gcc = 0
is E

[
b̄
]

= 0.5, while it with Gcc = 0.5 is

E
[
b̄
]
≈ 0.22 (Ergon and Ergon, 2017).

mean fitness results are shown in Figure 7. Note that
for Gcc = 0.5 the mean traits ā and c̄ follow µΘ and
µU , respectively, with constant time lags, with a very
minor decrease in mean fitness as result. A plot of
ȳ = ā + b̄ (u− c̄) would show that ȳ follows µΘ even
better than ā, but that ȳ is more noisy than ā. After a
transient period, the tracking errors are ∆ā = µΘ−ā ≈
1 and ∆c̄ = µU − c̄ ≈ 2, while b̄ ≈ 0.5, such that
ȳ ≈ ā+ b̄ (µU − c̄) ≈ µΘ. The tracking properties with
Gcc = 0 are poor, with a permanent loss in mean fitness
as result.

Here it should be noted that the multivariate
breeder’s equation in general requires that the non-
additive part e of z = x + e is a zero mean and white
stochastic process, which when plasticity is involved
implies white environmental variations (Appendix A).
When the temporal environmental variations are mod-
eled as in eq. (15), however, it is not required that the
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Figure 4: Step response phase plots corresponding to
the step response plots in Figure 3, with
Gcc = 0.5 (blue) and Gcc = 0 (ma-
genta). Note that with Gcc = 0.5, the point
[E [c̄] , E [ā]] evolves from [0, 0] to [6, 12], such
that the system at the end is completely as-
similated in the new environment without
use of plasticity (blue). With Gcc = 0 the
system evolves to [0, 9], such that the point
[6, 12] is reached by means of a plasticity
component (dashed magenta). For Gcc =
0.5, the phase plane plot for the case that
µΘ changes from 0 to 3 is also shown (vi-
olet). For Gcc = 0, the point [6, 3] is in
this case reached by means of pure plasticity
(dashed black), without evolution of ā. With
no change in µΘ, Gcc = 0.5 results is no fi-
nal change in E [ā] (green), while Gcc = 0 re-
sults in a negative value of E [ā] (cyan). Note
that all the dashed lines have the equilib-
rium expected mean slope value E

[
b̄
]

= 0.5,
but that for Gcc = 0.5 the expected mean
slope is finally reduced to E

[
b̄
]
≈ 0.22 (Fig-

ure 3). Also note that the individual slope
values vary around b̄ with variance Gbb, as
indicated in Figure 3. For u = 6 and Gcc = 0
this gives an extra phenotypic variance in y
of 36Gbb. These extra variations around the
fitness peak give a reduction in mean fitness
(Figure 5).

Figure 5: Mean fitness plots corresponding to the step
response plots in Figure 3. The upper figure
shows mean fitness for Gcc = 0.5, while the
lower figure is for Gcc = 0. The maximum
fitness in eq. (16) is set to Wmax = 1.2, such
that the mean fitness with Gcc = 0.5 over
time is approximately 1, which means that
the population size is sustained.

environmental cue u is white. The requirement is in-
stead that the residual e in eq. (15) is white, i.e. that
the rest of the non-additive effects are white (spatial
environmental effects, dominance, epistasis).

4.3. A multivariate and nonlinear reaction
norm case

As discussed in Ergon and Ergon (2017), as well as in
Section 3, an important consequence of an evolvable
reference environment is complete genetic assimilation
in any stationary environment. This is illustrated in
the phase plot in Figure 4. Here, I in addition simulate
a multivariate and nonlinear system, where complete
genetic assimilation as defined in Section 1 takes place.
Figure 8 shows step response phase portraits, i.e. ā1 =
f (c̄1) and ā2 = f (c̄2), for a system with the individual
reaction norm model

[
y1

y2

]
=

[
a1

a2

]
+

[
b11 b12 0
0 b22 b23

]

×

 u1 − c1
(u1 − c1)

2

(u1 − c1) (u2 − c2)

+

[
e1

e2

]
, (17)

with correlated cues u1 and u2, and with independent
and zero mean white noise components e1 and e2. The
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Figure 6: Ramp responses for the system in Subsec-
tion 4.1, with Gcc = 0.5 (blue) and Gcc = 0
(magenta). The input values of µU and µΘ

are also shown (dashed).

Figure 7: Mean fitness corresponding to the ramp re-
sponses in Figure 6, for Gcc = 0.5 (upper
panel) and Gcc = 0 (lower panel).

fitness function was

W = Wmax exp

(
− (y1 − θ1 + y2 − θ2)

2

2ω2

)
, (18)

with correlated values of θ1 and θ2.
The state equation (14) was used, with

za,i,t =
[
a1,i,t + e1,i,t a2,i,t + e2,i,t

]T
, zb,i,t =[

b11,i,t b12,i,t b22,i,t b23,i,t

]T
and zc,i,t =[

c1,i,t c2,i,t
]T

.
Figure 9 shows the corresponding mean plasticity

slope plots. Note that only b̄11 is different from zero in
a stationary stochastic environment, which may have
implications for the possibilities to find parameter val-
ues from collected data (see discussion in Section 5 and
Appendix D).

Figure 8: Step response phase portraits, i.e. ā1 =
f (c̄1) and ā2 = f (c̄2), for the sys-
tem (14,17,18), with steps in µU1

and µU2

from 0 to 6, and in µΘ1 and µΘ2 from 0
to 12, applied at t = 5000 generations.
The simulation ended at t = 10000 gener-
ations. The G matrix was diagonal with
Ga1a1 = Ga2a2 = Gc1c1 = Gc2c2 = 0.5 and
Gb11b11 = Gb12b12 = Gb22b22 = Gb23b23 =
0.045. The other parameters were σ2

e1 =
σ2
e2 = 0.5, σ2

U1
= σ2

U2
= 0.4, cov (u1, u2) =

0.2, σ2
Θ1

= σ2
Θ2

= 1.6, cov (Θ1,Θ2) = 0.05,
cov (u1,Θ1) = cov (u2,Θ1) = cov (u1,Θ2) =
cov (u2,Θ2) = 0.2, and ω2 = 10.

5. Conclusions and discussion

This article is limited to a specific problem concerning
phenotypic plasticity and evolution, but it still illus-
trates some of the complexities of evolutionary theory
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Figure 9: Mean plasticity slopes as function of time
(generations) corresponding to the step re-
sponse phase plots in Figure 8. Upper panel
shows b̄11 (blue) and b̄12 (magenta), and
lower panel shows b̄22 (blue) and b̄23 (ma-
genta). All initial parameter values were set
to zero.

and quantitative genetics in general. Although the ba-
sic principle of natural selection is intuitively simple,
a number of assumptions are necessary in order to de-
velop the multivariate breeder’s equation, i.e. the state
transition equation (7) (Appendix A). The state-space
model (13,14) further assumes only temporal variations
in the environment, although there obviously are a lot
of spatial variations in nature. It is also assumed that
no mutations are involved, although errors during DNA
replication or other types of damage to DNA play vi-
tal roles (Rice, 2004). The model (13,14) also assumes
that there is only a single population involved, and that
this population has no influence on the environment,
while in the real world many populations and subpop-
ulations interact with each other and with the physical
environment. Also the physical environment is in fact,
often very much shaped by living organisms. The rel-
atively new epigenetic theories of heritable changes in
gene function that do not involve alterations in the
DNA sequence is closely related to plasticity (Valena
and Moczek, 2012). This is, however, not discussed in
this article.

The main point in the article is that the plasticity
reference environment uref is a population character-
istic, that ought to be modeled as such, and this is
the case also if it is set to zero. Under the assumption
of constant additive genetic and phenotypic covariance
matrices, the remaining choice is to model uref as a
vector z̄c of mean traits. The corresponding additive
genetic covariance matrix Gcc may be zero, and we

may then set uref = 0, as is often done in traditional
evolutionary models. However, if Gcc 6= 0, at least
some of the ‘reference traits’ will evolve in a changing
environment, and they must then be included in the
augmented state equation (14).

The question whether the reference environment
traits are evolvable is a difficult one, but as indicated
by especially the mean fitness plots in Figure 7, a pop-
ulation with an evolvable reference trait may over time
have better mean fitness than without such evolvabil-
ity. It therefore seems reasonable that such evolvabil-
ity, at least in some populations, has evolved over the
long time of life on earth. As Pigliucci (2008) states,
it is clear “that evolvability - no matter how it is de-
fined - does evolve”. This appears to be closely re-
lated to the fact that the emergence of order in living
systems requires far from equilibrium thermodynamics
(Prigogine, 1977; Pross and Pascal, 2013). Note, how-
ever, that the mean reference trait vector z̄c, as well as
the elevation trait vector z̄a, in any case evolves slowly,
such that mutations may play an important role. As
can be seen in Figure 3, the shape and slope traits in
z̄b may evolve much more rapidly. As pointed out in
Lande (2009), this may be necessary to prevent extinc-
tion as a consequence of rapid environmental changes.
However, in a discussion of ‘good’ or ‘bad’ properties
of wild populations, with regard to different traits and
their influence on fitness and survival, it is important
to remember that such population systems are not de-
signed. They may certainly be affected by human ac-
tivities, but they have in any case evolved based on
the basically simple principles of natural selection and
mutations, and if a certain property is ‘good’ it is so
as a result of evolution. This is of course different for
domesticated animals and plants, where breeding has
played a major role.

One may ask why not the covariance matrix G also
should be modeled, and included in the augmented
state equation (14), and the answer is yes, in princi-
ple it should. In such cases, evolvability of G cannot
be based on individual selection, but on for example
mutations. Here, however, I assume that G is con-
stant, such that augmentation with G is not necessary.
See Arnold et al. (2008) for a review of empirical, ana-
lytical, and simulation studies of the G matrix, with a
focus on its stability and evolution.

The biological mechanism behind evolvable ‘refer-
ence traits’ may be that individuals perceive the en-
vironment differently, as discussed in Ergon and Ergon
(2017), and we could accordingly introduce individual
‘perception traits’ zc. As shown, such perception traits
may be used also in multivariate and nonlinear cases,
leading to parametrized models according eqs. (6), (13)
and (14). As shown in Appendix E, perception traits
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may be used also in models based on index environ-
ment phenotypes, which through interpolation leads
to function-valued models. In such models, however,
Gcc > 0 leads to non-normal distributions, which is in
conflict with the assumptions behind the augmented
multivariate breeder’s equation (14). Another added
difficulty is that the individual state variable zc,i,t does
not fit into a function found through interpolation be-
tween phenotypic index traits z1,i,t to zr,i,t (Irwin and
Carter, 2013).

The state-space model (13,14) could have been for-
mulated just as a generalization of the model in Ergon
and Ergon (2017), based on biological arguments for
perception traits. In addition to that, however, the
intention in Ergon (2018) was to show that modeling
of the reference environment is in principle necessary,
from a basic state-space modeling point of view.

The most important result from a practical point of
view, is that population systems with a positive def-
inite covariance matrix Gcc obtain complete genetic
assimilation in any stationary stochastic environment,
as discussed in Section 3. This means that the re-
action norms at equilibrium after a change from one
stationary environment to another, will be shifted to
the new environment without any change in slope and
shape. The adaptive peak, as determined by the state
of the population, thus moves such that the popula-
tion becomes adapted to the new environment. This
movement is illustrated in a phase plane plot in Er-
gon and Ergon (2017), as well as in Figures 4 and 8.
Long after the change in mean environment, complete
genetic assimilation will return the mean fitness to its
original value, which is an essential difference from the
partial genetic assimilation obtained in Lande (2009).
More generally, the mean phase space position values
in z̄a and z̄c in eq. (14) will evolve to new equilib-
rium values, while the mean slope and shape values
in z̄b after a transient period will return to the orig-
inal values. As a result, the dynamical responses to
variations around the mean of a stationary stochastic
environment, will be independent of the specific mean
environmental value. This is demonstrated in Figures 4
and 8. In practice, however, complete genetic assimi-
lation in any environment must necessarily be limited
by biological constraints, plasticity costs etc.

As mentioned in the Section 1, a main difficulty ap-
pears to be to find estimates of Gcc from data. With
linear reaction norms, it is theoretically impossible to
find Gcc from data collected at stationarity, but as dis-
cussed in Ergon and Ergon (2017), signs of Gcc 6= 0
will show up in transient situations. For the simple
example in Ergon and Ergon (2017), it may in fact be
possible to find Gcc from dynamical experiments, as
used in engineering control system identification (Ap-

pendix D). A more general application of such methods
on evolutionary problems is an interesting area for fu-
ture research.

It is interesting to note an important difference
from modeling of most dynamical engineering systems,
where without loss of generality equilibrium values of
inputs ut and state variables xt can be set equal to
zero (Ch. 5 in Åstrom and Murray (2008)). An equi-
librium point of such a system represents a station-
ary condition for the dynamics, and such a point is
often found from the phase portrait for the system
(Ch. 4 in Åstrom and Murray (2008)). For discrete
time systems an equilibrium point is characterized by
xt+1 = xt for all t. For the parametrized evolutionary
system (13,14), the situation is more complex, as illus-
trated by the simple step response simulations in Sub-
section 4.1. As shown in the basic simulation results
in Figure 4 (blue), the equilibrium point after a step in
the environmental mean value is with Gcc = 0 given by[
E [ā] , E

[
b̄
]
, E [c̄]

]
= [9, 0.5, 0], while Gcc = 0.5 gives[

E [ā] , E
[
b̄
]
, E [c̄]

]
= [12, 0.5, 6]. Despite the differ-

ent state equilibrium points, the final expected mean
output value E [ȳ] = 12 is the same in the two cases.
With Gcc = 0 the final stable point [µU , E [ȳ]] = [6, 12]
is reached by use of a final and permanent plasticity
component E

[
b̄
]
µU = 0.5 × 6. With this follows an

increased phenotypic variance, and a corresponding re-
duction in mean fitness. With Gcc = 0.5, on the other
hand, the same point is reached without a final plastic-
ity component, which means complete genetic assimi-
lation and thus a complete mean fitness recovery (Fig-
ure 5). Finally, it is interesting to note similarities with
control system design. In eq. (14), the reference envi-
ronment z̄c is modeled as a multivariate discrete-time
integrator, driven by the covariance between individual
fitness and reference environment. This results in com-
plete genetic assimilation in any stationary stochastic
environment, and good tracking properties as shown
in Figure 6. This is an interesting parallel to what
is obtained with integral action in state feedback de-
sign (Åstrom and Murray, 2008), where an integrator
driven by the deviation between set point and output
value gives zero control error for constant set points,
as well as good tracking properties. The difference is,
of course, that biological systems are not designed, but
have evolved (although proponents of intelligent de-
sign will presumably argue differently, e.g., Dembski
and Ruse (2004).
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A. The Price and multivariate
breeder’s equations

A.1. The Price equation

The univariate Price equation (Price, 1970) for selec-
tion in a population can in its multivariate form be
formulated as (Rice, 2004)

z̄t+1 = z̄t +
1

W̄t
cov (Wi,t, zi,t)

+
1

W̄t
E
[
Wi,t

(
z̄offi,t − zi,t

)]
, (19)

where we for simplicity may assume non-overlapping
generations and use one generation as time interval.
Here,

zi,t = Phenotype of individual i in a population at
generation t

z̄t = Mean phenotype in the population at gener-
ation t

z̄offi,t = Mean value of the phenotype of the off-
spring of individual i in generation t

Wi,t= Number of offspring of individual i in gen-
eration t (the individual fitness)

W̄t = Mean number of offspring per individual in
generation t (the mean fitness).

Note that population size N may be finite, in which
case

cov (Wi,t, zi,t) = E
[(
Wi,t − W̄t

)
(zi,t − z̄t)

]
=

1

N

N∑
i=1

[(
Wi,t − W̄t

)
(zi,t − z̄t)

]
, (20)

and

E
[
Wi,t

(
z̄offi,t − zi,t

)]
=

1

N

N∑
i=1

[(
Wi,t − W̄t

) (
z̄offi,t − zi,t

)]
. (21)

It is important to realize that the Price equation (19)
is just an identity, where the right hand side is not a
causal explanation of the left hand side. The notational
use of covariance function and expectation operator for
a final population size N may be unusual, but these
notations are very much used in the literature, and the
important thing is that we define and understand what
they stand for here.
Proof of eq. (19): Since cov (Wi,t, zi,t) =

E [Wi,tzi,t] − W̄tz̄t, all that must be shown is that

W̄tz̄t+1 = E
[
Wi,tz̄

off
i,t

]
. For this purpose, note that

with population size Nt at generation t given, and fit-
ness Wi,t defined as above, we find

Nt+1 =

Nt∑
i=1

Wi,t = Nt
1

Nt

Nt∑
i=1

Wi,t = NtW̄t. (22)

Defining zoffi,j,t as the traits of offspring j (belonging
to generation t+ 1) of individual i in generation t, and
zk,t+1 as the traits of individual k in generation t+ 1,
eq. (22) gives

W̄tz̄t+1 = W̄t
1

Nt+1

Nt+1∑
k=1

zk,t+1

=
1

Nt

Nt∑
i=1

Wi,t
1

Wi,t

Wi,t∑
j=1

zoffi,j,t


= E

[
Wi,tz̄

off
i,t

]
. (23)

Adding cov (Wi,t, zi,t) and subtracting E [Wi,tzi,t]−
W̄tz̄t on the right hand side of eq. (23) completes the
proof of the multivariate Price equation.

The multivariate Price eq. (19) is the starting point
for the multivariate breeder’s equation, based on a se-
ries of assumptions. The main reason for these as-
sumptions is that the Price equation can be used only
retrospectively, i.e. after selection and reproduction,
when the individual fitnessWi,t is known, and it cannot
therefore be used to propagate the state z̄t forward in
time. Also note that before reproduction fitness must
be treated as a stochastic variable (Rice, 2008; Engen
and Sæther, 2013), but that type of modeling is not
discussed in this article.

A.2. The multivariate breeder’s equation

We are now ready to introduce the assumptions that
are necessary in order to develop the multivariate
breeder’s equation (4).

1. The vector zi,t of individual traits is the sum of
independent additive genetic effects xi,t and envi-
ronmental effects ei,t (including non-additive ge-
netic variation), i.e. zi,t = xi,t + ei,t.

2. The non-additive effects ei,t are zero mean and
white.

3. There are no expected fitness weighted changes
in the mean additive effect x̄t from one gen-
eration to the next besides selection, i.e.

E
[
Wi,t

(
x̄offi,t − xi,t

)]
= 0.
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4. The additive genetic effects xi,t and non-additive
effects ei,t are jointly multivariate normal.

5. The additive genetic effects xi,t and fitness Wi,t,
as well as the non-additive effects ei,t and fit-
ness Wi,t), are conditionally independent given the
phenotypic trait zi,t, such that xi,t and ei,t influ-
ence fitness only through the values of zi,t.

From Assumption 1 follows that cov (Wi,t, zi,t) =
cov (Wi,t, xi,t) + cov (Wi,t, ei,t), where according to
Assumption 2 cov (Wi,t, ei,t) = E [Wi,tei,t]. Since
E [Wi,tei,t] cancels out, and also making use of As-
sumption 3, the Price equation (19) can be expressed
as

z̄t+1 = z̄t +
1

W̄t
cov (Wi,t, xi,t) . (24)

From Assumption 1 follows that Pt = Gt + Et,
where Pt, Gt and Et are the covariance matrices of
zi,t, xi,t and ei,t, respectively. Since cov (xi,t, zi,t) =
Gt + cov (xi,t, ei,t) = Gt, it further follows from As-
sumption 4 that the conditional distribution of xi,t
given zi,t is multivariate normal with (Johnson and
Wichern (2008), Result 7.14)

E [xi,t|zi,t] = x̄t +GtP
−1
t (zi,t − z̄t) . (25)

From Assumption 5 and eq. (25) follows that

E [Wi,txi,t|zi,t] = E [Wi,t|zi,t]E [xi,t|zi,t]
= Wi,t

(
x̄t +GtP

−1
t (zi,t − z̄t)

)
, (26)

such that

cov (Wi,t, xi,t) = E [Wi,txi,t]− W̄tx̄t

= E
[
E
{
Wi,txi,t|z(i,t

]}
− W̄tx̄t

= E
{
Wi,t

(
x̄t +GtP

−1
t (zi,t − z̄t)

)}
− W̄tx̄t

= GtP
−1
t E [Wi,t (zi,t − z̄t)]

= GtP
−1
t cov (Wi,t, zi,t) , (27)

where the last equality follows because
E
[
W̄t (zi,t − z̄t)

]
= 0. From eqs. (24) and (27)

finally follows the multivariate breeder’s equation (4),

z̄t+1 = z̄t +
1

W̄t
GtP

−1
t cov (Wi,t, zi,t) . (28)

Here,
P−1
t cov(Wi,t,zi,t)

W̄t
= βt is the selection gradient.

B. Selection gradient for
frequency-independent selection

When the individual fitness depends only on individ-
ual trait values zi,t and not on mean values, the se-
lection is frequency-independent. When Wi,t depends

also on mean trait values z̄t the selection is frequency-
dependent, which implies that the fitness of a pheno-
type depends on its frequency relative to other pheno-
types in a given population. Interactions among indi-

viduals in the population may then result in
∂W (zi,t)
∂z̄t

6=
0 also at equilibrium (Lande, 1979).

In order to find an alternative expression for the se-

lection gradient than βt =
P−1
t cov(Wi,t,yi,t)

W̄t
, as follows

from eq. (28), we may under the assumption of multi-
normal distribution of zi,t use that

W̄t =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

W (zi,t)

× p (zi,t) dzi,1,tdzi,2,t · · · dzi,m,t

=

∫ ∞
−∞

W (zi,t) p (zi,t) dzi,t, (29)

with

p (zi,t) = c

× exp

(
−1

2
(zi,t − z̄t)T P−1

t (zi,t − z̄t)
)
, (30)

where c is a proportionality constant.
Using that per definition E [g (X)] =∫∞
−∞ g (x) p (x) dx, frequency-independent selection

gives, after differentiation of W̄t and p (zi,t),

∂

∂z̄t
W̄t =

∫ ∞
−∞

∂W (zi,t)

∂z̄t
p (zi,t) dzi,t

+

∫ ∞
−∞

W (zi,t)
∂p (zi,t)

∂z̄t
dzi,t

=

∫ ∞
−∞

W (zi,t)
∂p (zi,t)

∂z̄t
dzi,t

= P−1
t

∫ ∞
−∞

(zi,t − z̄t)W (zi,t) p (zi,t) dzi,t

= P−1
t

(
E [zi,tW (zi,t)]− z̄tW̄t

)
= P−1

t cov (Wi,t, zi,t) . (31)

Since eq. (28) gives βt =
P−1
t cov(Wi,t,zi,t)

W̄t
, this gives

the alternative selection gradient expression, first de-
rived in a somewhat different way by Lande (1979)

βt =
1

W̄t

∂

∂z̄t
W̄t =

∂

∂z̄t
ln
(
W̄t

)
. (32)

Equation (32) shows that βt is a gradient vector that
points in the direction of the steepest mean fitness as-
cent, and that the length of W̄tβt is given by the slope
of the mean fitness function in that direction. Inserted
into eq. (28) this leads to (Lande, 1979)

z̄t+1 = z̄t +Gt
∂

∂z̄i,t
ln
(
W̄t

)
. (33)
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Note that the point z̄t will climb uphill in the mul-
tivariate mean fitness landscape, but along the steep-
est ascent only when Gt is diagonal. Also note that
E [z̄t] at equilibrium will reach a peak in the mean fit-
ness landscape only when the selection is frequency-
independent, such that the geometric mean fitness is
maximized (Day and Taylor, 1996).

C. Mean fitness maximization

Evolution towards a fitness peak, as illustrated in Fig-
ure 1, will according to eq. (32) reach an equilibrium

when E [βt] = E
[
∂
∂z̄t

ln
(
W̄t

)]
= 0. Since the sum rule

of differentiation applies, we have

E

[
∂

∂z̄t
ln
(
W̄t

)]
= lim
x→∞

1

T

T∑
t=1

∂

∂z̄t
ln
(
W̄t

)
=

∂

∂z̄t
lim
x→∞

1

T

T∑
t=1

ln
(
W̄t

)
=

∂

∂z̄t
E
[
ln
(
W̄t

)]
, (34)

which shows that the equilibrium is reached
when the expected geometric mean fitness

limT→∞

(∏T
t=1 W̄t

)1/T

is maximized.

D. Preliminary example of
evolutionary system
identification

System identification is a mature discipline in the engi-
neering control community, with prediction error meth-
ods developed during the 1980s (Ljung, 1999), and sub-
space methods mainly from the 1990s and later (Qin,
2006). For evolutionary system identification, predic-
tor error methods of the output error (OE) type is a
straightforward choice.

Here is an example of the OE prediction error
method applied on an evolutionary system identifica-
tion problem. Assume a system essentially as in Ergon
and Ergon (2017), with the individual reaction norm

y = a+ b (u− c) + e, (35)

the individual fitness function

W = exp

(
− (y − θ)2

2ω2

)
, (36)

and the multivariate breeder’s equation

z̄a,t+1

z̄b,t+1

z̄c,t+1

 =

z̄a,tz̄b,t
z̄c,t

+
1

W̄t
GP−1

×

cov (Wi,t, za,i,t)
cov (Wi,t, zb,i,t)
cov (Wi,t, zc,i,t)

 , (37)

where za = a + e, zb = b and zc = c. Here,
u is the environmental cue, while θ is the pheno-
typic value that maximizes fitness. Assume ω = 10,

and G =

[
Gaa 0 0

0 Gbb 0
0 0 Gcc

]
=
[

0.5 0 0
0 0.045 0
0 0 0.5

]
, and P =[

Paa 0 0
0 Pbb 0
0 0 Pcc

]
=
[

1 0 0
0 0.045 0
0 0 0.5

]
.

Also assume θt = µΘ + vθ,t as shown in Figure 10,
upper panel, where µΘ is piecewise constant, while vθ,t
is white noise with variance σ2

vθ,t
= 1.6. Assume ut =

µU + vu,t, where also vu,t is white noise with variance
σ2
vu,t = 0.4, and where µU = 0.5µΘ, and let θt and ut be

correlated, with cov (θt, ut) = 0.2. Inputs like µΘ and
µU can formally be generated as pseudo-random binary
signals (PRBS), which are often used for identification
of engineering control systems (Ljung, 1999).

Apply the input sequences θt and ut on the evolu-
tionary system (35) to (37), and collect the mean phe-
notype ȳt for t = 1 to T .

Now assume that Gcc is the only unknown parameter
in the system (35) to (37). In order to find Gcc, apply
the input sequences θt and ut on a system model with
different values of Gcc, and collect the resulting outputs
ˆ̄yt. Also compute the prediction error εt = ȳt − ˆ̄yt for
each value of Gcc. Results for three values of Gcc are
shown in Figure 10, lower panel.

We may search for the value of Gcc that minimizes
the quadratic criterion function J = 1

T

∑T
t=1 ε

2
t . Re-

sults for 100 values of Gcc from 0.402 to 0.600 with
population size N = 10000 are shown in Figure 11.
Smaller population sizes increase the noise in this plot
significantly.

For identification of several unknown parameters, a
better search method is needed. This requires experi-
mental data that are informative enough, but it also
requires a theoretical identifiability analysis (it may
not be theoretically possible to identify all parameters).
Also note that we must assume a model, i.e. a linear
or nonlinear reaction norm, a fitness function, and a
covariance structure.

The applicability of dynamical system identification
methods in an evolutionary setting remains to be in-
vestigated.
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Figure 10: The input function θt = µΘ + vθ,t (upper
panel), and the model output ˆ̄yt for Gcc = 0
(magenta), Gcc = 0.5 (green) and Gcc = 1
(blue). The green curve is also the output ȳt
from the assumed evolutionary system (35)
to (37) itself.

Figure 11: Identification of Gcc = 0.5 based on model
with population size N = 10000.

E. Modeling based on index
environment phenotypes

In order to show that the plasticity reference envi-
ronment needs to be modeled also in function-valued
models, I here consider models based on index environ-
ment phenotypes. Such models lead to function-valued
models through interpolation between the index envi-
ronments (Kirkpatrick and Heckman, 1989; Kingsolver
et al., 2001). Two additional problems in such cases
are also described. For clarity, a univariate individual
phenotype yi,t and a univariate environmental cue ut
are assumed.

In an index environment model, the phenotypic val-
ues yi,t in eq. (10) are defined as the individual pheno-
typic values at r discrete index environments,

y(i, t) =

y1,i,t

...
yr,i,t

 =

(γ (u1,t − zc,i,t)
...

γ (ur,t − zc,i,t)

 (38)

where γ is the in general nonlinear reaction norm func-
tion, and where zc,i,t is the individual reference trait
(which is set to zero in traditional models). The in-
dividual phenotypic values are also used as individual
traits, i.e. z1,i,t = y1,i,t etc., and these traits have a
phenotypic covariance matrix Pr = cov (yi,t, yi,t), and
a corresponding additive genetic covariance matrix Gr.
Setting zc,i,t = 0, the multivariate breeder’s eq. (4)
would thus lead toz̄1,t+1

...
z̄r,t+1

 =

z̄1,t

...
z̄r,t

+
1

W̄t
GrP

−1
r

×

cov (Wi,t, y1,i,t)
...

cov (Wi,t, yr,i,t)

 . (39)

When zc,i,t 6= 0, this state equation must be aug-
mented into

z̄1,t+1

...
z̄r,t+1

z̄c,t+1

 =


z̄1,t

...
z̄r,t
z̄c,t

+
1

W̄t
GrcP

−1
rc

×


cov (Wi,t, y1,i,t)

...
cov (Wi,t, yr,i,t)
cov (Wi,t, zc,i,t)

 , (40)

where Grc and Prc are the covariance matrices of the
vector yi,t augmented with zc,i,t. This raises two prob-
lems. First, with zc,i,t 6= 0 the traits z1,i,t = y1,i,t
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etc. will not be normally distributed, even if the re-
action norm has underlying normally distributed pa-
rameters, which is in conflict with the assumptions be-
hind the multivariate breeder’s equation (Lande, 1979).
Eq. (40) will therefore be more of an approximation
than it otherwise would be. Second, the state variable
zc,i,t does not fit into a function found through inter-
polation between z1,i,t to zr,i,t. A similar problem in a
life-history trait setting is discussed in Irwin and Carter
(2013). A possible solution is to assume that zc,i,t is
independent of z1,i,t to zr,i,t, and model the evolution
of z̄c,t independently, i.e. to use eq. (39) combined with

z̄c,t+1 = z̄c,t +
1

W̄t
GccP

−1
cc cov (Wi,t, zc,i,t) . (41)

F. Matlab code for step response
example in Subsection 4.1

%% Step response example
clear
T=10000
N=1000
w2=10;
varu =0.4 ;
vartheta =1.6 ;
covutheta =0.2 ;
x=covutheta /varu ;
y=sqrt ( vartheta−xˆ2∗ varu ) ;
Gaa=0.5;
Gbb=0.045;
Gcc =0.5 ;
Paa=Gaa+0.5;
Pbb=Gbb ;
Pcc=Gcc ;
vare =0.5 ;
%% Generate u( t ) and t h e t a ( t )
du=sqrt ( varu )∗randn(T, 1 ) ;
dtheta=x∗du+y∗randn(T, 1 ) ;
for t =1:1000

u( t)=du( t ) ;
theta=dtheta ;

end
for t =1001:T

u( t)=6+du( t ) ;
theta ( t)=12+dtheta ( t ) ;

end
%% I n d i v i d u a l p o p u l a t i o n t r a i t s
%% around abar , bbar and cbar
for t =1:T

a ( : , t )=sqrt (Paa)∗randn (1 ,N) ;
b ( : , t )=sqrt (Pbb)∗randn (1 ,N) ;
c ( : , t )=sqrt ( Pcc )∗randn (1 ,N) ;
e ( : , t )=sqrt ( vare )∗randn (1 ,N) ;

end
%% Simulat ion
abar =0;
bbar =0.3 ;
cbar =0;
Wbar=0;
abarp lot=zeros (1 ,T) ;
bbarp lot=zeros (1 ,T) ;
cbarp lo t=zeros (1 ,T) ;
Wbarplot=zeros (1 ,T) ;
for t =1:T

abarp lot ( t)=abar ;
bbarp lot ( t)=bbar ;
cbarp lo t ( t)=cbar ;
Wbarplot ( t)=Wbar ;

W=1.2∗exp(−( abar+a ( : , t )+e ( : , t )
+(bbar+b ( : , t ) ) . ∗ ( u( t)−cbar
−c ( : , t ))− theta ( t ) ) . ˆ 2 / ( 2∗w2 ) ) ;

Wbar=mean(W) ;
meany ( : , t )=mean( abar+a ( : , t )+( bbar

+b ( : , t ) ) . ∗ ( u( t)−cbar
−c ( : , t ) ) ) ;

covabcW=cov ( [ a ( : , t ) b ( : , t ) c ( : , t )
W] ) ;

abar=abar+(Gaa/Paa)
∗covabcW (1 ,4 )/Wbar ;

bbar=bbar+covabcW (2 ,4 )/Wbar ;
cbar=cbar+covabcW (3 ,4 )/Wbar ;

end
figure (1 )
subplot ( 3 , 1 , 1 ) , plot ( abarp lot ) , grid
ylabel ( ’mean( a ) ’ )
axis ( [ 0 T −2 1 4 ] )
subplot ( 3 , 1 , 2 ) , plot ( bbarp lot ) , grid
ylabel ( ’mean(b) ’ )
subplot ( 3 , 1 , 3 ) , plot ( cbarp lo t ) , grid
ylabel ( ’mean( c ) ’ )
xlabel ( ’ Generat ions ’ )
axis ( [ 0 T −2 7 ] )
f igure (2 )
plot ( cbarp lot , abarp lo t ) , grid
xlabel ( ’mean( c ) ’ )
ylabel ( ’mean( a ) ’ )
f igure (3 )
i f Gcc>0.01 subplot ( 2 , 1 , 1 ) ,

plot ( Wbarplot ) , grid
axis ( [ 0 T 0 1 . 2 ] )
ylabel ( ’Mean f i t n e s s ’ )

else subplot ( 2 , 1 , 2 ) , plot ( Wbarplot , ’m’ ) ,
grid

axis ( [ 0 T 0 1 . 2 ] )
xlabel ( ’ Generat ions ’ )
ylabel ( ’Mean f i t n e s s ’ )

end
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