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Abstract

This paper presents the development and validation of a simplified dynamic model of a Venturi channel.
The existing dynamic models on open channels are based on the open channel flow principles, which are
the shallow water equations. Although there are analytical solutions available for steady state analysis,
the numerical solution of these partial differential equations is challenging for dynamic flow conditions.
There are many complete and detailed models and numerical methods available for open channel flows,
however, these are usually computationally heavy. Hence they are not suitable for online monitoring and
control applications, where fast estimations are needed. The orthogonal collocation method could be used
to reduce the order of the model and could lead to simple solutions. The orthogonal collocation method
has been used in many chemical engineering applications. Further, this has been used in prismatic open
channel flow problems for control purposes, but no literature is published about its use for non–prismatic
channels as per the author’s knowledge. The models for non–prismatic channels have more non–linearity
which is interesting to study. Therefore, the possibility of using the collocation method for determining
the dynamic flow rate of a non–prismatic open channel using the fluid level measurements is investigated
in this paper. The reduced order model is validated by comparing the simulated test case results with a
well–developed numerical scheme. Further, a Bayesian sensitivity analysis is discussed to see the effect of
parameters on the output flow rate.

Keywords: model reduction, shallow water equation, return flow estimation, Bayesian sensitivity analysis,
open channel

1 Background

Kick and loss detection in an oil drilling process is a key
requirement to reduce the risk and cost in the drilling
industry. In the drilling process, a drilling fluid is circu-
lated from the tanks into the well through the drill bit,
up the annulus and then back to the tanks, as shown in
Figure 1. This drilling fluid is used to balance the pres-
sure inside the well, to bring the drill cuttings out of

the well and also to lubricate the drill bit. If the pres-
sure inside is not well balanced, a kick or a loss can
occur. When the pressure inside the well exceeds the
formation pressure, the drilling fluids can seep into the
formation and commonly known as a loss. When the
well pressure is too low than the formation pressure,
the formation fluids (air, water, oil or a combination)
can flow into the well, producing a kick. A kick or a
loss can be catastrophic, if not controlled.
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Figure 1: The schematic of a typical drilling fluid circu-
lation process with the inclusion of the pro-
posed Venturi channel

The difference of the fluid flow rate pumped in to the
well and the return flow rate coming out of the well is a
commonly used indicator of a kick/loss. However, the
return flow rate is quite difficult to measure because
it contains the drill cuttings as well as dissolved gas.
A novel approach of using a Venturi rig for this pur-
pose is proposed in previous studies done by Pirir et al.
(2017); Jinasena et al. (2017); Chhantyal et al. (2016).
This is a low cost and an easy to maintain solution.
The flow rate through the Venturi can be estimated
online with the use of mathematical models. However,
the modeling and simulation of free surface flows are
complex and challenging. Generally, the open channel
hydraulics are often modeled by the wellknown and ef-
ficient shallow water equations which are also known as
SaintVenant equations (Chow, 1959; Chaudhry, 2008;
Litrico and Fromion, 2009; Chanson, 2004). These
are nonlinear, hyperbolic Partial Differential Equations
(PDEs) which are difficult to discretize and solve. The
classical finite difference of finite volume methods are
usually computationally expensive, hence less suitable
for an online estimation application.

Therefore, the use of a model reduction method is
explored in this study, to obtain accurate and fast
solutions for the shallow water equations. Orthog-
onal collocation method is used to reduce the PDE
model into Ordinary Differential Equations (ODEs) ef-
ficiently, and the model results are validated using sim-
ulations. For the validation, a well balanced and well
developed numerical scheme, which is specifically de-
veloped for the shallow water equations by Kurganov

and Petrova (2007) is used. The use of collocation
method in solving open channel problems has been
studied previously by a lot of researchers including
Georges et al. (2000); Dulhoste et al. (2004); Jinasena
et al. (2017); Layton (2003), but these are limited only
to prismatic channels. The Venturi is a non–prismatic
channel which gives better fluid level differences along
the channel length, therefore the model reduction for
the non–prismatic channels is described in this study.
Further, a sensitivity analysis is done to find the effect
of different input, geometrical and fluid parameters on
the model output.

The paper is organized as follows. The develop-
ment of the mathematical model from the shallow wa-
ter equations and the model reduction is described in
detail in the Section 2. This is followed by the sensitiv-
ity analysis in Section 3. Then the simulation results
and the discussion based on the results are stated in
Section 4. Finally, the conclusions drawn by the results
are summarized.

2 The Model

The model is the 1D shallow water equations for a
non–prismatic channel, with the following assumptions
(Chaudhry, 2008; Litrico and Fromion, 2009).

• The pressure distribution is hydrostatic.

• The channel bed slope is small i.e. the cosine of
the angle it makes with the horizontal axis may be
replaced by unity.

• The head losses in unsteady flow (due to the effect
of boundary friction and turbulence) can be cal-
culated through resistance laws analogous to those
used for steady flow.

The Equations for a 1D, unsteady, non–prismatic, open
channel system, is expressed as,

∂A

∂t
+
∂Q

∂x
= 0, (1)

∂Q

∂t
+
∂(βQ2/A+ gI1)

∂x
= gI2 + gA (Sb − Sf ) , (2)

where A(x, h, t) is the wetted cross sectional area nor-
mal to the flow, h(x, t) is the depth of flow, Q(x, t)
is the volumetric flow rate and Sf (Q, x, h) is the fric-
tion slope. I1, the first moment of area represents the
hydrostatic pressure term and I2 represents the pres-
sure forces in the fluid volume, which occur from the
longitudinal width and slope variations. g is the gravi-
tational acceleration, t is the time and x is the distance
along the flow direction (Chow, 1959; Chaudhry, 2008).
β is known as the momentum correction coefficient or
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the Boussinesq coefficient and corresponds to the devi-
ations of the local velocity over the mean velocity of the
flow. The channel bed slope Sb(x) is calculated by − ∂z

∂x
(z is the absolute fluid level), where it is considered pos-
itive when sloping downwards. The friction slope Sf is
defined from the Gauckler–Manning–Strickler formulae
as follows (Chow, 1959).

Sf =
Q |Q|n2M
A2R

4
3

, (3)

where nM is the Manning roughness coefficient andR is
the hydraulic radius given by A

P . Here, P is the wetted
perimeter. For a channel with an isosceles trapezoidal
cross section I1 and I2 can be found as follows,

I1 =
1

2
h2W +

1

3
h3Ss, and (4)

I2 =
1

2
h2
dW

dx
+

1

3
h3
dSs
dx

. (5)

For a channel with a uniform side slope dSs

dx would be
zero. Therefore, the Eqs. 1 and 2 can further be simpli-
fied for an isosceles trapezoidal channel with uniform
side slope and no lateral inflow rate. This simplified
set of equations can be presented in a simpler form as
follows,

∂U

∂t
+
∂F

∂x
= S (6)

where U vector is the vector of conserved variables as
follows,

U = (A,Q)T , (7)

F =

(
Q,

βQ2

A
+ gI1

)T
, (8)

and S is the source term as follows,

S = (0,
gh2

2

dW

dx
+ gA (Sb − Sf ))T . (9)

Then the mass flow rate ṁ is calculated by multiplying
the volumetric flow rate Q with a constant density ρ
for a given drilling fluid.

2.1 Model Reduction for Non–Prismatic
Channel

The shallow water equations are (as described earlier),
a nonlinear hyperbolic system of PDEs. These are
commonly known as very complicated systems to solve,
because of the non-smooth solutions which could also
contain shock and rarefaction waves, and the possible
discontinuities (occurs due to discontinuous bottom to-
pography or cross section) (Kurganov, 2018). Further,
the numerical solutions could break down even for a

system with smooth initial data and no discontinu-
ities. Therefore, solving the shallow water equations
in a stable and accurate manner, specially for a non–
prismatic channel (with discontinuities) is a difficult
task (Kurganov, 2018). There are well–balanced and
well–developed numerical schemes available, which ad-
dress these issues. However, due to the demand of high
computational resources these schemes are not suitable
for a real time estimation application. Therefore, a
model reduction is applied here, in order to obtain fast
and accurate enough, application oriented solutions.

The model reduction is done by the use of orthogonal
collocation method. The use of the orthogonal collo-
cation method for shallow water equations for a pris-
matic channel is described in detail in (Jinasena et al.,
2017). The construction of ordinary differential equa-
tions from orthogonal collocation on the spatial do-
main, for a non–prismatic channel is briefly described
here.

The spatial length x of the channel is divided into
n− 1 non–equidistant spaces between n points, which
are known as collocation points (CP). The state vec-
tor U of the shallow water model at these specific
points can be approximated by polynomial interpola-
tion (Isaacson and Keller, 1966). In this study, the
Lagrange interpolating polynomial is used for this pur-
pose. The approximated states vector Ua can be ex-
pressed as follows,

Ua(x, t) =

n∑
i=1

Li(x)Ui(t), (10)

Here, the subscript i denotes the ith position along the
channel and Li is a weighted fraction defined as follows,

Li =

n∏
j=1
j 6=i

x− xj
xi − xj

, (11)

where, x is the entire set of n number of positions. The
derivatives of these approximated states can be derived
as follows,

∂Ua
∂x

=

n∑
i=1

L
′

ijUi, (12)

where L
′

ij is the element at ith row and jth column of

the matrix L
′
,

L
′

=

(
∂L1

∂x
,
∂L2

∂x
, . . . ,

∂Ln
∂x

)T
. (13)

Similarly, the other functions of x,(
βQ2

A , I1, h and W
)

can be approximated using

the same method and the derivatives can also be
found. The equations expanded from the original
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Eqs. 6 can be approximated with these approximated
functions as follows,

dAa
dt

+

n∑
i=1

L
′

ijQa ≈ 0, (14)

and

dQa
dt

+

n∑
i=1

L
′

ij

βQ2
a

Aa
+ g

n∑
i=1

L
′

ijI1a

−gh
2
a

2

n∑
i=1

L
′

ijWa − gAa (Sb − Sf ) ≈ 0.

(15)

Considering the functions at the selected CPs, the ap-
proximated value will be the same as the functional
value, since the approximation of the function was
done at these particular points. Therefore, the approx-
imated Eqs. 14 and 15 would be equal to zero and can
be expressed as follows after re–arranging,

dAi
dt

= −
n∑
i=1

L
′

ijQi, (16)

and

dQi
dt

=−
n∑
i=1

L
′

ij

βQ2
i

Ai
− g

n∑
i=1

L
′

ijI1i

+
gh2i
2

n∑
i=1

L
′

ijWi + gAi (Sb − Sf ) .

(17)

The number of CPs in this study are selected as 2, 3
and 4, and the position of these points are selected ac-
cording to the shifted Legendre polynomials (Jinasena
et al., 2017). The corresponding matrices for L

′
for 2,

3 and 4 CPs are stated below, respectively,

L
′

=
1

L

[
−1 1
−1 1

]
, (18)

L
′

=
1

L

−3 4 −1
−1 0 1
1 −4 3

 , (19)

L
′

=
1

L

−7.0005 8.1964 −2.1959 1
−2.7326 1.7328 1.73190 −0.7321
0.7321 −1.7319 −1.7328 2.7326
−1 2.1959 −8.1964 7.0005

 , (20)

where L is the length of the channel. The geometry of
the channel that is used for the simulations is shown
in Figure 2.

2.2 Kurganov–Petrova (KP) Scheme for
Validation

To compare the results from the collocation model, a
well developed, semi-discrete, second order and cen-
tral upwind scheme, which has specifically been used
to solve Saint–Venant systems (Bernstein et al., 2016;
Bollermann et al., 2013) is used. With the use of the
KP scheme by Kurganov and Petrova (2007), the PDE
model is discretized in space into a set of ODEs. For
a control volume as shown in Figure 3, the ODEs are
written as follows,

d

dt
U j = −

Hj+ 1
2
−Hj− 1

2

∆x
+ S(t). (21)

S is the average value of the source term calculated us-
ing the average values of the conserved variables. Hj± 1

2

represent the fluxes flowing into the cell (minus sign)
and out of the cell (plus sign) respectively. Assuming
that there are no changes in the bed slope the fluxes
are given by,

Hj+ 1
2

=
a+
j+ 1

2

F
(
U−
j+ 1

2

)
− a−

j+ 1
2

F
(
U+
j+ 1

2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

− U−
j+ 1

2

] (22)

Hj− 1
2

=
a+
j− 1

2

F
(
U−
j− 1

2

)
− a−

j− 1
2

F
(
U+
j− 1

2

)
a+
j− 1

2

− a−
j− 1

2

+
a+
j− 1

2

a−
j− 1

2

a+
j− 1

2

− a−
j− 1

2

[
U+
j− 1

2

− U−
j− 1

2

] (23)
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Figure 2: The sketch of the used Venturi channel (measurements are given in meters)
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Figure 3: A Control Volume of the KP scheme

where the local speed of wave propagations a±
j± 1

2

can

be calculated as the largest and smallest eigenvalues of
the Jacobian of the system.

a+
j± 1

2

= max
{
u+
j+ 1

2

+
√
ghd

+
j± 1

2

, u−
j+ 1

2

+
√
ghd
−
j± 1

2

, 0
} (24)

a−
j± 1

2

= max
{
u+
j+ 1

2

−
√
ghd

+
j± 1

2

, u−
j+ 1

2

−
√
ghd
−
j± 1

2

, 0
} (25)

Here hd is the hydraulic depth and is equal to the cross-
sectional area of the flow divided by the top width of
the flow (T ) that is exposed to the atmospheric pres-
sure (hd = A/T ).

3 Bayesian Sensitivity Analysis

A sensitivity analysis is a generic method used to eval-
uate models. This is a way of decomposing the input
uncertainty, where we can determine the parameters
which are the most influential on the model output.
This is done by analyzing the changes in the model out-
put values that happen due to modest changes in the
model input values. There are several techniques avail-
able for sensitivity analysis, where most approaches de-
termine the effect of changes in one parameter when the
others are not changing. However, the combined effect
of multiple parameters can also be found. The sensi-
tivities are determined as a percentage variation of the
output for a percentage change of each input and/or
parameters.

The errors and approximations in the input data
measurements, parameter values, model structure and
the numerical schemes (model solution algorithm) are
the sources of uncertainty in this system. This model
highly depends on the values of the parameters, there-
fore, only the uncertainty in parameters were studied

and the analysis of the other sources of uncertainty is
out of scope of this study. For this study, all the pa-
rameters were tested for sensitivity on the model out-
put flow rate. All the geometrical parameters can be
measured directly for a particular system. But the pa-
rameters which depend on the fluid properties (nM and
β) cannot be measured always. Therefore a further
analysis was done to quantify the effect of uncertain-
ties in these two parameters on the model output and
to understand the relationship between these two pa-
rameters and the model output.

A Bayesian analysis is used here. The Bayesian
method will find the posterior probability with the use
of a chosen prior and a likelihood. According to the
Bayes theorem,

p (Y |X) =
p (X|Y )× p (Y )

p (X)
. (26)

The probability of Y given X (posterior p (Y |X)) is
found by the probability of X given Y (likelihood
p (X|Y )), the probability of Y (prior p (Y )) and the
probability of X (model evidence p (X)) (Sivia and
Skilling, 2006). Also the marginal likelihood can be
obtained by marginalization over the parameters (for
example X) as follows,

p (Y ) =

∫
X

p (Y |X) p (X) dX. (27)

The posterior probability of the output flow rate can
be obtained using marginalization for the above men-
tioned two parameters as follows.

p (ṁ|M,D) =

∫ b

a

∫ d

c

p (ṁ, nM , β|M,D) dnMdβ (28)

Here, ṁ is the output of the model i.e. mass flow
rate (volumetric flow rate Q × density ρ), that we are
interested in. The model is denoted by M and the
input data is denoted by D, which are considered to
be noise free data. a, c, b and d are the minimum and
maximum values for the two parameters, respectively.
These values are chosen from test simulations, where
the full range of values for which the model converges
is taken. Further, with use of the product rule and the
independence between nM and β, the right hand side
can be expanded as follows,

p (ṁ, nM , β|M,D) = p (nM |M,D) p (β|M,D)×
p (ṁ|nM , β,M,D) , (29)

which leads to the following expression.

p (ṁ|M,D) =
∫ b
a

∫ d
c
p (nM |M,D) p (β|M,D)×

p (ṁ|nM , β,M,D) dnMdβ (30)
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Here, nM and β are assumed to be random variables
with Gaussian distributions of known means and stan-
dard deviations. The mean value is decided based on
the test simulations, where it will give a certain de-
sired flow rate as the output. The standard deviation
is selected to cover the entire range of values that are
possible for the simulated flow condition and model
convergence. Further, both the data and the model
are deterministic, therefore p (ṁ|nM , β,M,D) can be
written as a delta function as follows,

p (ṁ|nM , β,M,D) = δ {ṁ−M (D,nM , β)} , (31)

which is zero everywhere except at M (D,nM , β) = ṁ.

4 Results and Discussion

The models are simulated for the trapezoidal non–
prismatic channel geometry using MATLAB (9.2). The
initial conditions for the simulation are selected care-
fully. Runge–Kutta 4th order time integrator is used
with a fixed time step. The design of the channel ge-
ometry (see Figure 2) ensures trans–critical flow condi-
tions for all conditions at the upstream. For example,
if the upstream conditions are sub–critical, the flow be-
comes critical or super–critical at the throat. And if
the upstream is at super–critical conditions, the flow
at the throat becomes sub–critical. The trans–critical
flows allow the possibility of using one or more bound-
ary conditions. Hence, both of these trans–critical flow
conditions are simulated with the inlet fluid level (con-
verted in to the wetted cross sectional area) as the

boundary condition for each different model. The dif-
ferent models are the model with KP scheme, and the
models with different numbers of CPs. The results
and the discussion for these followed by the sensitiv-
ity study results are stated below. The position of the
collocation points along the channel were selected in a
way that always the last point would lie in the middle of
the throat, and the rest of the points are at upstream.
Both the flow rate and the fluid levels were calculated
at all points, except the boundary fluid level.

4.1 Comparison of Different Models

The collocation models were simulated for one bound-
ary condition at the upstream, which is the wetted
cross sectional area at the inlet. Step responses were
given to check the model responses for changes with
time. Figure 4 shows the results obtained for the mass
flow rates for the super–critical to sub–critical flow con-
dition using each model. The mass flow rates are calcu-
lated from the volumetric flow rates for a given drilling
fluid density. The results for the collocation models are
compared with the KP scheme in Figure 4. It is worth
mentioning that the KP scheme is difficult to imple-
ment for super–critical upstream conditions with fluid
level as a boundary. Therefore, KP scheme is used with
the upstream flow rate as the boundary and the result-
ing fluid level at upstream is used as the boundary for
the collocation models.

The mass flow rates for the super–critical to sub–
critical, trans–critical conditions are well comparable
in all the models. These are relatively easier simulation
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Figure 4: The mass flow rates calculated from different models for super–critical upstream conditions. ‘KP’:
KP scheme and ‘2, 3 or 4 CP’: model with 2, 3 or CPs.
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Figure 5: The mass flow rates calculated from different models for sub–critical upstream conditions. ‘KP’: KP
scheme and ‘2, 3 or 4 CP’: model with 2, 3 or CPs. The subscripts 1 and t denote the first and last
positions of the collocation points along the channel.

conditions because the interference from waves (oscil-
lations in fluid levels which propagates to the mass flow
rate calculations) is less significant due to high veloci-
ties of the flow. However, more interesting flow behav-
iors can be observed with the trans–critical condition
from sub–critical to super–critical, which is shown in
Figure 5. Here, the KP scheme is also simulated taking
the wetted cross sectional area at the upstream as the
boundary.

From Figure 5, it can be clearly seen that the model
with 3 and 4 CPs is more comparative with the KP re-
sults than the model with 2 CPs. Further, the results
with 4 CP model is closer to the KP results than the
results with 3 CP model. This is expected because the
more the CPs, the better the approximation is. How-
ever, the number of oscillations that occur due to step
changes is higher when the number of CPs are higher.
But the time taken to reach steady state is shorter
with the increase of number of CPs. Further, the am-
plitude of the oscillations are bigger, with 3 CP model.
This is due to the Runge’s phenomenon, which is the
occurrence of oscillations when using polynomial inter-
polation over equi–spaced interpolation points. The 4
CPs are not equi–spaced, therefore, this effect is not
seen with 4 CP model.

The shallow water equations, which are used in this
study, is presented in the conservative form, so that it
preserves the mass conservation along the entire spatial
domain at steady state. This mass conservation can be
seen in the collocation models, since the mass flow rates
at all the CPs are the same.

The 2 CP model was the quickest to simulate and
the 3 and 4 CP models take about 10–15 times more
simulation time than the 2 CP model. KP scheme usu-
ally takes 40–50 times more simulation time than the
CP models. The results from the 2 CP model for sub–
critical upstream conditions is unsatisfactory. How-
ever, the use of 3 or 4 CPs for any flow condition, is
enough to obtain similar results to KP scheme. There-
fore, in an online estimation application the use of 3
or 4 CP model would give sufficiently accurate results
with less computational time. This means that with
the 3 or 4 CPs model it is possible to obtain a fast es-
timate of the flow rate in real–time. Although there are
oscillations in the presence of an abrupt step change in
a sub–critical flow condition will eventually reach to
the steady state in a relatively short period of time.

As a summary, the reduced order model was able
to capture the general fluid flow behaviors. Appear-
ance of transient oscillations can be observed in both
the models (reduced order model as well as the KP
scheme), when a step change is given to the input. The
CP models (especially the 2 CP model) show prolonged
oscillations before settling down to a steady state value
in the presence of sharp step changes in the input/inlet
boundary conditions (at t = 2500s in Figure 4). Such
abrupt step changes in the input is simulated here as
this can be expected to occur during a kick or loss
in drilling system. When the stepping is done grad-
ually throughout a longer time period (ramping, at
t = 2000s in Figure 4), the flow comes to a steady
state value quickly, with less oscillations. This behav-
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ior is expected during the pipe connection procedure in
drilling, where the mud pump is stopped and started
gradually.

4.2 Sensitivity Analysis Results

The sensitivity analysis was done for all the models
(KP scheme and collocation with 2, 3 and 4 CPs) for
sub–critical upstream flow conditions. The inlet fluid
level and all of the fluid and geometrical parameters
are tested for sensitivity of the flow rate.

A spider plot, which shows the sensitivity of the in-
put parameters on the output flow rate for each model
is shown in Figure 6. For all the models, the channel
bed slope has the highest sensitivity. In addition, the
inlet fluid level and the bottom widths of the chan-
nel are also sensitive parameters. However, the cal-
culations are done using the nominal fluid levels for
bed slope changes. But in reality, when the chan-
nel bed slope changes, the fluid levels in the channel
also change accordingly, thus may reduce the sensitiv-
ity to the flow rate. This is also true for the bottom
width W1. The change of fluid level due to the changes
in the bed slope and the bottom width W1, are not
taken into account in the calculations, for simplicity
of comparison. Nonetheless, the effect of the channel
bed slope should be taken into consideration in a real
fluid flow scenario due to its high sensitivity with the
flow rate and the fluid flow conditions. A small in-
crease in the channel bed slope of the Venturi channel
that is taken into consideration can change the sub–
critical upstream conditions into super–critical condi-
tions. Therefore, in this study, the bed slope is changed
only within a small range, due to the limitation of the
flow conditions based on the used geometry.

Most of the parameters have a bigger impact on the
2 CP model than on the other models.

Even though the effect of geometrical parameters
(W1, Wt, Ss and L) on the 3 and 4 CP models are
comparatively lower, the flow rate can still be affected
significantly. In order to reduce the effect on the mag-
nitude of the flow rate, the geometrical parameters can
be measured accurately for each geometry. The fluid
properties such as friction factor nM and β are tunable
parameters, hence can be estimated together with the
flow rate, in the context of adaptive estimation. How-
ever, the input (Ain) and the channel bed slope may
change with time, hence have to be measured with a
good accuracy and precision due to their high sensitiv-
ity.

For an estimation application, an analysis of the sen-
sitivity of the estimable parameters on the output flow
rate will be informative in advance. Therefore, the
change of flow rate due to perturbations in the two es-
timable parameters (nM and β) is analyzed with the

use of the Bayesian sensitivity analysis described in
Section 3. In order to determine the marginal poste-
rior distribution of the mass flow rate shown by Eq. 30,
a large number of independent samples (10000 pairs),
representing nM and β, were generated from their re-
spective Gaussian distributions. Then for each pair,
depending on the model, the corresponding steady
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Figure 6: The spider plots showing the relationship of
percentage mass flow rate to the percentage
deviation of each parameter (θ) from their
nominal values.
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state mass flow rates were calculated. The histogram of
nM , β and ṁ can be considered as an estimate for the
joint posterior distribution of these triples, conditional
on the appropriate model (p(nM , β, ṁ|M)). Similarly,
the marginal posterior distribution of the mass flow
rate (p(ṁ|M)) can be approximated by considering
only the histogram of the mass flow rate of the sam-
ples. These posterior distributions for each model are
shown in Figure 7. For the sake of comparison, the
histograms are vertically scaled so that their highest
value is unity. Further, a Gaussian distribution is fit-
ted to the marginal posterior histogram of the output
flow rate (shown by red curve in Figure 7).

The two parameters for the models had to be tuned
to ensure the model convergence for sub–critical to
super–critical flow conditions. Therefore, in some of
the models (especially in 3 and 4 CP models) the pa-
rameter values may not be meaningful. It is shown that
the used Gauckler–Manning–Strickler formulae with a
constant nM is suitable only for uniform flows (Chow,
1959). During the transition the flow is not uniform.
Further, it is suggested that the nM depends on the hy-
draulic radius and the Froude number, hence could not
be a constant (Tullis, 2012). However, it is also shown
that at super–critical flow conditions this is relatively
constant (Tullis, 2012). This might be the reason that
the collocation models had to be tuned for sub–critical
flow conditions.

The mean (µ) and the standard deviation (σ) of the
estimated mass flow rate distributions together with
the values of the chosen parameter distributions for
each model are tabulated in Table 1. For comparison,
the percentage deviation is shown in Table 2. The full
range of possible parameter values for nM and β are not

Table 1: Details of input parameters and output flow
rate for different models

Model nM β ṁ

µ σ µ σ µ σ
2 CP 0.0135 0.0007 0.98 0.039 236.4 10.3
3 CP 0.0305 0.0015 0.6 0.024 283.8 8.1
4 CP 0.0465 0.0023 0.46 0.019 282.7 9.2
KP 0.0133 0.0007 0.98 0.04 283.0 5.4

Table 2: Percentages of Parameters and flow rate

Model nM % β % ṁ %

2 CP 4.96 3.96 4.36
3 CP 5.02 4.04 2.86
4 CP 5.00 4.05 3.25
KP 5.26 4.10 1.91

used here due to the limitation of model convergence.
Because of this the distribution could be truncated to-
wards the tails, even though it is approximated with
the Gaussian distribution.

As shown in the tables, the 2 CP model has a signif-
icant change in flow rate, due to the high sensitivity of
the parameters. Further, it can be seen from the tab-
ulated percentage changes, that the perturbations in
the two parameters have caused less impact on the flow
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Figure 7: The probability distributions of the output
mass flow rate (p(ṁ|M)) for different models.
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rate, when the number of CPs are 3 or 4. Since there is
no significant improvement with the 4 CP model than
the 3 CP model, it is a trade off between the slightly
better accuracy and the slightly higher computation
time.

However, the dominance of the correlation of the
two parameters with the output flow rate will strictly
depend on the choice of these two parameter values,
which then indirectly affects the output flow rate it-
self. These correlations between the parameters and
the flow rate can clearly be seen from the scatter plots
obtained from the simulations. The scatter plots and
the contours drawn on their densities are shown in Fig-
ure 8, for all the models. The 3 and 4 CP models show

a dominant correlation of flow rate with nM , while the
KP model shows more dominance with β. This could
be due to the choice of the mean values of the param-
eters for a desired output flow rate. Since the param-
eters are tuned in order to get a desired flow rate, we
cannot decide about the accuracy between the mod-
els based on the parameter values. However, we can
have an idea about the desired flow rate and the pre-
cision. Further, the 3 CP results with β (in Figure 8b)
are truncated due to the crossing into the sub–critical
region at the throat as oppose to the super–critical re-
gion. This further indicates that a careful selection of
the values for these two parameters by means of esti-
mation/adaptation will be needed for an accurate flow
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Figure 8: The scatter plots with the input parameters and output flow rate. (a) for nM and (b) for β.

270



Jinasena et.al., ‘Open Channel Flow Modeling and Analysis’

rate estimation. This study will be carried out in the
future.

Further, the expected relationship of both nM and β
with the flow rate is generally a negative relationship,
based on the model structure. This cannot be seen
with nM and the flow rate with the 2 CP model as
shown in Figure 8, in fact it shows a complete opposite
relationship, which is difficult to interpret according to
physical laws. Since the 2 CP model is highly sensitive
to most of the parameters, this might have occurred
due to improper domination of other parameters over
nM . With 2 CP model the CPs fall on the boundaries,
and the information of the states inside the channel
between the boundaries is not captured by the model.
2 CP model is faster and simpler but less accurate and
less physically sound than the other models. This fur-
ther implies that the model simplification comes with a
cost on accuracy and physical explanation. Although
these models are not suitable for estimating the fric-
tion factor, it is (3 CP or 4 CP model) accurate and
fast enough to estimate the flow rate based on the level
measurement.

However, to obtain a better understanding of the
model, other uncertainty sources such as the structural
uncertainty and numerical uncertainty may also need
to be explored. The structural uncertainty which oc-
curs due to the improper approximations of the real
system and the numerical uncertainty which occurs
due to the discretization and model reduction could be
studied in future with a comparison to a real system.
Further, a proper selection of the tunable parameters
(nM and β) should be done in order to ensure a good
estimation of the flow rate. Due to the high sensitivity
of the bed slope and the inlet fluid level in all the mod-
els, a careful consideration of the uncertainty in these
two measurements should be taken into account in a
real world application. The knowledge and results ob-
tained from this study will be beneficial for such studies
and applications in the future.

5 Conclusions

This paper highlights a reduced order open channel
model which can be used to estimate the flow rate
in an open channel. The model is developed to be
used for a Venturi channel in the drain back flow line
during an oil well drilling to estimate the flow rate of
the return fluid. The simplified model is simulated for
a non-prismatic open channel Venturi with a throat.
The reduced order model is a set of ODEs hence faster
and less complex than the shallow water equations.
The reduced order models are validated using simu-
lations from a well–developed finite volume method.
Two trans–critical conditions (super–critical to sub–

critical and sub–critical to super–critical) are simulated
using the upstream fluid level as the boundary condi-
tion. Three or four collocation points seem to be suffi-
cient to obtain a good accuracy for the determination
of the flow rate in both the flow conditions. Further, a
parameter sensitivity analysis of all the models is also
done to evaluate the reduced order models. This model
structure is well suited to be used in process control and
state estimation algorithms, where the state estimates
have to be computed in real–time. The proposed solu-
tion of using a Venturi channel for on–line estimation of
return flow rate during drilling seems possible together
with the use of a reduced order collocation model.
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