Modeling, Identification and Control, Vol. 39, No. 4, 2018, pp. 233244, ISSN 18901328

eXogenous Kalman filter (XKF) for Visualization
and Motion Prediction of Ships using Live
Automatic ldentification System (AIS) Data

S. Fossen! T. I. Fossen 2

! Department of ICT and Natural Sciences, Norwegian University of Science and Technology, N-6025 Alesund,
Norway. E-mail: sindre@fossen.biz

2 Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim,
Norway. E-mail: thor.fossen@ntnu.no

Abstract

This paper addresses the problem of ship motion estimation using live data from Automatic Identification
Systems (AIS). A globally exponentially stable observer for visualization and motion prediction of ships has
been designed. Instead of using the extended Kalman filter (EKF) to deal with the kinematic nonlinearities

the eXogenous Kalman Filter (XKF) is applied and by this global stability properties are proven.
The proposed observer was validated using live AIS data from the Trondheim harbor in Norway and
it was demonstrated that the observer tracks ships in real time. It was also demonstrated that the observer

can predict the future motion of ships.

The motion prediction capabilities are very useful for decision-support systems since this can be
used to improve situational awareness e.g. for manned and unmanned autonomous ships that operate in

common waters.
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1. Introduction

AIS is a global system, which allows ships to view
marine traffic in their area and to be seen by other
ships (Automatic Identification System, 2018). Vessels
are equipped with a dedicated VHF AIS transceiver,
which allows local traffic to be viewed on a chartplot-
ter or computer monitor while transmitting informa-
tion about the ship itself to other AIS receivers, see
Fig. 1.

Ships can be tracked by AIS base stations located
along coast lines or satellites when far away from the
base stations. The International Maritime Organiza-
tion (IMO) requires AIS to be fitted aboard interna-
tional voyaging ships with 300 or more gross tonnage.

doi:10.4173 /mic.2018.4.1

1.1. AIS data

There are 27 AIS messages with different priority that
are transmitted using class A and B transceivers (US
Coast Guard, 2018). Class B transceivers are smaller,
simpler and lower cost than Class A transceivers. For
ship tracking and motion prediction the position re-
ports of messages 1, 2, 3 and 18 are particularly useful.
These messages contain longitude, latitude, speed over
ground (SOG), course over ground (COG), yaw rate,
true heading etc.

The AIS data are transmitted at asynchronous time
samples using TCP/IP of the Internet protocol suits,
which implies that a state estimator must take into
account that the measurement update times are dif-
ferent from the sampling time. Several multi-rate fil-
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Figure 1: AIS receiver and software components for motion prediction.

ter approaches such as Andrisani and Gau (1987) and
Cristi and Tummala (2000) can be used to overcome
this problem. In this article, a novel approach for han-
dling asynchronous data is applied. The system model
of a discrete-time Kalman filter (KF) can be propa-
gated at 30-60 Hz to predict the ship’s motions. Since
the asynchronous AIS measurements are received and
decoded at a much lower frequency than the sampling
frequency, the update time of the corrector can be cho-
sen in multiples of the sampling frequency (Gelb, 1974).

1.2. Motion prediction

Live AIS data can be used to predict the motion of
ships using a linear discrete-time KF as shown by
Jaskolski (2017). Our approach is a nonlinear observer
with proven global exponential stability (GES) proper-
ties using a generic ship model, which does not require
information about the ship model parameters. The
discrete-time EKF implementation for the same model
is found in Fossen and Fossen (2018). However, the
EKF only guarantees local stability.

Ship motion prediction has been addressed by nu-
merous authors. The most popular approaches are
time-series prediction using the Support Vector Ma-
chine (Sapankevych and Sankar, 2009), (Fu et al.,
2010), (Jiang et al., 2013), Kalman Filtering (Tri-
antafyllou and Bodson, 1982), (Perera and Soares,
2010), on-line neural networks (Yin and Zou, 2011),
(Yin et al., 2013) and autoregressive models (Yumori,
1981), (Lin et al., 2011).

Statistical methods have been applied to AIS data
for maritime traffic probabilistic forecasting (Xiao
et al., 2017), analysis of motion patterns (Ristic et al.,
2008), and position prediction using historical AIS data
(Mazzarella et al., 2015).
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Game technology is used more and more in engi-
neering applications for simulation, 3-D visualization
and virtual reality (VR). The human eye requires 30-
60 frames per second (FPS) to make pictures appear
as a smooth film. This also applies to a pilot who op-
erates an unmanned surface vehicle (USV) using a 3-D
visualization system. Hence, the position and course of
the AIS ships must be estimated at 30-60 Hz to satisfy
human constraints.

An observer will also improve the accuracy of the
AIS data by removing measurement noise. Even more
important is that the dynamic model of the state esti-
mator makes it possible to predict future ship motion
at least for a limited time horizon. This is very use-
ful in a simulation and visualization environment for
decision support where the operator would like to ob-
serve actual and future movements of ships in his oper-
ational space. A typical scenario is manned ships and
USV operating close to each other. In such cases, the
remote control centre would like know present and fu-
ture movements of all ships operating close to the USV
in order to decide if human intervention is necessary to
avoid a collision. In addition, autonomous ship oper-
ations will benefit from having accurate ship motion
predictors in order to improve situational awareness.

1.3. Global exponential stability and
robustness

The main contribution of the article is the design of a
GES observer for live AIS data as illustrated in Fig. 1
using the XKF (Johansen and Fossen, 2017). GES is
an important property since it guarantees exponential
convergence to zero of the estimation errors. In addi-
tion, GES implies that the observer is robust to large
uniformly bounded disturbances (Khalil, 2014). On
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the contrary, the EKF only guarantees local stability.
The design objectives of the XKF are:

e Ship motion prediction: Decision-support and
systems and USV pilots would like to receive the
current and predicted positions of all AIS ships
operating in the vicinity of their vehicle.

e AIS estimates at 30-60 FPS for visualiza-
tion: A fixed frame rate of 30-60 FPS is necessary
for smooth 3-D visualization of ship operations.
Hence, the estimator must be designed for asyn-
chronous measurements and smoothing of data be-
tween successive measurements.

The XKF is implemented and tested using live AIS
data obtained from a VHF AIS receiver. The AIS data
is decoded in real time using a parser, which feeds the
decoded ship motion measurements to the XKF, see
Fig. 1.

The performance of the XKF is demonstrated in a
ship motion prediction scenario. The motion predictor
clearly demonstrates that live AIS data can be used to
accurately predict future ship positions.

2. Ship dynamics and
measurements

2.1. Ship model

Let the North-East positions and course angle be de-
noted (z,y) and x, respectively. Consequently, a ship
moving at forward speed U and course x is given by
Fossen (2011):

= U cos(x) (1)
y = Usin(x) 2)
U=a (3)
X=r (4)

The linear acceleration a and course rate r are ship
dependent and unknown.

For slow AIS measurements (i.e. update frequencies
less than 0.5 Hz) it is recommended to choose the in-
putsasa=1r=0.

AIS measurements faster than 0.5 Hz can be used to
compute estimates r. and a. of a and r, respectively.
The estimates must be filtered in order to avoid rapid
changes. Moreover,

()
(6)

a = — (sat(a.) — a)

7= — (sat(r.) — r)

5= 8-

where T, and T, are user defined time constants. The
saturation function sat(x) ensures that |z| < Zpmax,
which adds robustness to AIS wildpoints.

Let the last three AIS speed and course measure-
ments at times (fm, tm_1,tm_2) be denoted (UAS
UAIS UAIS ) and (x2S, xA5 YAIS,) | respectively.
Furthermore, let hy = t,,—t,,_1 and ho = t,,_1—tm_o.
Unfortunately, the data is not evenly spaced, that is
h1 # ho. To deal with this problem, a backward dif-
ference approximation of the first derivative for non-
evenly data is derived (see Appendix A for details):

(1 — )UAS 4 qUAIS, — UATS,

fe = (1 — a)hy + ha @
= L= 0+ iy — X ®)
(1 —a)hy + hs
where (b 1 hy)?
o= U1 -}ll-% 2) )

2.2. AIS measurements

The following AIS measurements are used by the XKF:
e SOG and COG (states U and ).
e Longitude [ and latitude pu.

As shown in Farrell (2008), longitude and latitude can
be mapped to Cartesian coordinates using the World
Geodetic System (WGS-84), which is the standard co-
ordinate system for the Earth.

For local navigation and visualization it is convenient
to use a flat Earth approximation based on WGS-84.
The procedure is outlined below.

2.3. North-East positions from longitude
and latitude (WGS-84)

Assume that the flat Earth coordinate origin is located
at longitude and latitude (lo, po) and define:

Al:=1—1
Ap = p— po

The Earth radius of curvature in the prime vertical
Ry and the radius of curvature in the meridian Ry,
are Farrell (2008):

a

Ry =
1 — e2sin?(uo)

1—¢€?

Ry = RN
1 — e2sin?(uo)
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where a = 6378137 m is the semi-minor axis (equato-
rial radius) and e = 0.0818 is the Earth eccentricity.
Small changes in the North and East positions (z,y)
are computed as:
Ap
T atan2(1, Rpy) (14)
Al

atan2(1, Ry cos(j))

y= (15)

where atan2(y,x) is the 4-quadrant inverse tangent con-
fining the result to [—m, 7).

3. Ship motion estimator

3.1. The eXogenous Kalman filter

It is well known that the linear KF is GES and optimal
in the sense of minimum variance under some condi-
tions. However, its nonlinear extension, known as the
EKF, linearizes the system about the estimated state
trajectories. Unfortunately, this can lead to stability
problems.

Johansen and Fossen (2017) propose to use a cascade
of two observers where the first observer generates a
globally convergent state estimate, which can be used
to design a linearized KF. This approach is referred
to as the eXogenous Kalman filter (XKF) and it is
illustrated in Fig. 2.

Linearized
Kalman filter I

Kinematic X
observer

eXogenous Kalman filter (XKF)

Figure 2: The XKF as a two-stage estimator. The kine-
matic observer produces an estimate X used
in a linearized KF, which returns the im-
proved estimate Xx.

The first stage is to construct a deterministic ob-
server with global stability properties. This is done
without optimality consideration and the presence
of unknown measurement errors and process distur-
bances. The estimate, X, from the kinematic observer
is an exogenous signal used in a linearized KF.

As shown by Johansen and Fossen (2017), the cas-
cade of the kinematic observer and KF will inherit the
global stability property of the kinematic observer and
also benefit from the local optimality properties of the
linearized KF.
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3.2. Stage 1: Kinematic observer

The first step is to design a fixed-gain kinematic ob-
server for the XKF in Fig. 2 based on the ship model
in Section 2.1. The purpose of the kinematic observer
is to generate a smooth globally convergent signal x
for the linearized KF. This can be done by using four
fixed-gain observers copying the dynamics (1)—(4):

7 =Ucos(x) + Ki(z — ) (16)
y=Usin(x) + K2(y — ) (17)
U=a+Ks(U-0) (18)
X =7+ Ki(x —X) (19)

where K; > 0 (i = 1,2,3,4). It is straightforward to
verify that the equilibrium point of the error dynamics
[x_iﬁl/_g?U_UvX_X]T =0 is GES.

3.3. Stage 2: Linearized Kalman filter

The next step is to express the nonlinear system model
(1)—(6) as:
x=f(x)+Bu+w
y=Hx+e

(20)
(21)

where w and e are Gaussian process and measurement
noise, and the only nonlinearity is the vector field f(x).

The XKF design process involves constructing a lin-
earized KF about x = X using a Taylor-series expan-
sion:

x =f(x) + F(x)(x — %) + Bu+ K(y - HX) (22)
P=F(xP+PF(x) +Q-KRK' (23)
where X = [z,7,U,x] ", u= [a,7]T
T3 cos(T4) 00
| Z3sin(Z4) |00
f(x) = 0 ,B= 1 0 (24)
0 0 1
of
Fix) = L5
(%) = 5. %)
0 0 cos(ZTy) —Z3sin(Ty)
| 0 0 sin(Z4) Tzcos(Za)
100 0 0 (25)
0 0 0 0
10 0 0
01 0 0
H = 0 010 (26)
0 0 01
The Kalman gain is computed as:
K=PH'R™! (27)
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Figure 3: Signal flow of the eXogenous Kalman filter.
Theorem 1 (XKF) The fized-gain kinematic ob- is:
server (16)—(19) in cascade with the linearized KF .
(22)—(23) as shown in Fig. 3 renders the equilibrium Tp1 = Tk + hUy cos(Xx) (28)
point of the two-stage observer error dynamics GES'. G = Un + hU, sin (k) (29)
Sketch of proof: A detailed version of the proof is U1 = Ug + hay, (30)
found in Johansen and Fossen (2017, Theorem 2.1), Nkl = Xk + hry (31)
which makes use of three Assumptions A1-A3. The h
kinematic observer and linearized KF is a cascaded ag+1 = ap + T (sat(ac) — ax) (32)
system. The equilibrium point of the error dynam- ha
ics of the kinematic observer in Section 3.2 is GES. Thal =Tk + T (sat(re) — 1) (33)

Hence, Assumption A8 clearly holds. This also implies
boundedness of F(X) due to the smoothness of the vec-
tor field £(x). Hence, Assumption A1 holds since the
LTV system (F(x),B,H) is uniformly completely ob-
servable and controllable. Finally, Assumption A2 is
satisfied by choosing the KF tuning matrices P(0),Q
and R symmetric and positive definite. Since Assump-
tions A1-A3 are satisfied, Johansen and Fossen (2017,
Theorem 2.1) guarantees that the equilibrium point of
the cascaded system inherits the GES property of the
kinematic observer.

3.4. Ship motion prediction

The ship motion predictor is designed by using a
discrete-time version of the system model (1)—(6).
Consequently, an N-step predictor with £ = 1,..., NV
using Euler’s integration method with sampling time h

LAs shown by Bhat and Bernstein (2000), mechanical systems
with rotational degrees of motion cannot be globally stabi-
lized by continuous feedback due to the topological obstruc-
tion imposed by SO(3). Hence, the GES property is based on
the assumption that x € R and not [—m, 7]. However, if x is
mapped to [—7, 7] when implementing the XKF, Theorem 1
still guarantees local exponential stability.

r

3.5. Implementation aspects for
asynchronous AIS data

The AIS data is transmitted using the TCP/IP proto-
cols. Hence, the XKF must handle delayed measure-
ments, asynchronous communication as well as loss of
packets. The XKF (16)—(19) and (22)—(23) will run at
a fixed time step, typically 30-60 Hz for 3-D visualiza-
tion applications. Since, the AIS data are transmitted
at asynchronous time samples the XKF is implemented
in discrete time using the predictor-corrector represen-
tation (Gelb, 1974). Moreover,

e The discrete-time system model of the XKF is
propagated at 30-60 Hz to predict positions, ve-
locity and course angle.

e The state vector is updated and corrected at each
time an AIS measurement is received. This hap-
pens at much lower frequency (typically 1-2 Hz).
Hence, the update times of the corrector must be
chosen in multiples of the sampling frequency.

Let ¥ and ~— denote the states after and before
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Figure 4: 3-D visualization of two AIS detected ships moving down the Nidelven river in Trondheim using the

Unity game engine (Unity, 2018).

the measurements are applied. Hence, the predictor-
corrector representation for (22)—(23) and (27) become:

Corrector (AIS measurements at 1-2 Hz):

5 =%, + Ki(yr — HXy)
P/ = (L -K:HP, (I, - K;H)" + K,RK]

where

K,=P,H (HP,H' +R)™!

is the Kalman gain matrix.

Predictor (30-60 Hz for visualization):

Xpp1 = X +h (f(Xb + P (X — %i) + Buy,)

Py, = (L+hFE)) P (L+hF(x)) +Q

where h is the sampling time. Notice that X is com-
puted using the kinematic observer.
4. Experimental validation

This section shows how live AIS data can be decoded
and used for ship motion prediction and visualization.

4.1. Live AIS data

The observer and its prediction capabilities are vali-
dated using live AIS data from the Trondheim har-
bor in Norway. Live AIS data were obtained using a
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VHF antenna. Approximately 30 ships were close to
the harbor when logging the data. The North-East
coordinate origin was chosen at Munkholmen island,
approximately 2 km west of Trondheim harbor.

The longitude and latitude measurements were
transformed to xy—positions using the WGS-84 ref-
erence systems as outlined in Section 2.3. Figure 4
show the live positions of two ships moving down the
Nidelven river in Trondheim.

Figure 5: The passenger ship MS LADEJARL (gross
tonnage 490 t, length 38 m, breadth 10 m)



Fossen and Fossen, “XKF for Visualization and Motion Prediction of Ships using Live AIS Data”

30 ‘

Out of the fjord

km

25 —

20 —

15—

10—

Lensvik

Trondheim

km
-15 -10 -5 0

Figure 6: North-East positions of MS LADEJARL in km when moving from Trondheim to Lensvik on its way
out of the fjord. The return bypasses Lensvik harbor. The red arrows indicate the chosen locations

for motion prediction.

4.2. High-speed passenger ferry
MS LADEJARL

The high-speed passenger ferry MS LADEJARL was
chosen in the case study, see Fig. 5. The ship has MMSI
number 257082200. Detailed information about the
ship can be obtained by using the Marine Vessel
Traffic webpage: http://www.marinevesseltraffic.
com/2013/06/mmsi-number-search.html where the
MMSI number uniquely identifies the ship:

The top speed of the ship is 37 knots (19.0 m/s).
Data was logged for approximately two hours such that
the ship had time to move out the fjord via Lensvik
towards the North Atlantic and return to Trondheim
harbor, see Fig. 6.

4.3. Motion prediction

The linearized KF was implemented in discrete time
at 50 Hz using the predictor-corrector representation
(Gelb, 1974) and Euler’s integration method.

The fixed-gain kinematic observer was implemented
with K1 = Ky = 10, K3 = 30 and Ky = 50.
The KF covariance matrices were chosen as Q =
diag(1.0,1.0,10.0,10.0), R = I; and P(0) = L.

The AIS course angle measurement is in many cases
unreliable and it is not reported for all ships. Conse-
quently, the XKF was implemented by computing the
COG using the traveled path. The standard way to
implement this is to use two data points at times ¢,,
and t,,_1 to compute:

Xm = atan2(Ym — Ym—1, Tm — Tm—1) (34)

Sensitivity to wildpoints and corrupted measure-
ments is handled by using a relative large value for
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Figure 7: 3-D visualization of a catamaran passenger boat in the Trondheim fjord using the Unity game engine
(Unity, 2018), and the Hydroform Ocean System and Terraland plugins from the Unity Asset Store
(http://assetstore.unity.com). The green arrow shows the predicted path of the vessel.

the yaw rate time constant 7). in the estimator. This
explains why the yaw rate time constant 7, = 50 s is
chosen 5 times larger than the surge acceleration time
constant T, = 10 s.

Two cases as shown in Fig. 6 were considered:

e Case 1: 30 seconds motion prediction just before
the ship arrives Lensvik harbor.

e Case 2: 60 seconds motion prediction on the
route to Trondheim harbor.

As seen from Figs. 89 the ship positions are pre-
dicted quite well both for the 30 s and 60 s cases. The
first ship indicates were motion prediction is started
and the second ship shows the pose of the ship after
30 and 60 s, respectively. The position accuracy will of
course be best for ships on a straight course. However,
the motion predictor should be restarted each time a
new measurement is received such that it automatically
adjusts to turning maneuvers.

Figs. 8-9 also show the difference of the kinematic
observer (red) and the XKF (cyan). The red curve
is used for linearization of the Kalman filter. As ex-
pected the accuracy of the kinematic observer is not so
good as the XKF since this is a simplified decoupled
fixed-gain observer. However, the red trajectory is ac-
curate enough to provide the XKF with a trajectory
for linearization.

An obvious advantage of the XKF' to the fixed-gain
kinematic observer is that the covariance of the esti-

240

mation errors are computed. Hence, it is possible to
include outlier detection based on growth in the co-
variance estimates. Fig. 8 also indicates that the per-
formance of the XKF is better than the fixed-gain kine-
matic observer. Similar observations were made in the
case studies presented by Johansen and Fossen (2017).
Fig. 7 is a 3-D visualization of catamaran vessel in the
Trondheim fjord. The green arrow shows the predicted
path of the vessel.

The computational requirements typically increase
with 25 % when using the XKF instead of the fixed-
gain kinematic observers. This is not a problem when
using state-of-the-art computers.

Fig. 10 shows the measured signals (circles) and the
estimates in red and cyan. As before, red denotes the
kinematic observer and cyan is the XKF. The smooth-
ing effect and increased accuracy of the XKF is more
visible in Fig. 8 where a clear performance improve-
ment is observed.

5. Conclusions

The problem of estimating the motion of ships from live
automatic identification system (AIS) data has been
addressed. To the authors knowledge, this problem
has not been addressed previously using nonlinear ob-
server theory. For this purpose a nonlinear globally
exponentially stable (GES) observer for visualization
and motion prediction of ships has been constructed.
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Instead of using the well-celebrated extended Kalman
filter (EKF) algorithm, the eXogenous Kalman Filter
(XKF) has been applied in order to guarantee global
stability properties.

AIS data are transmitted from ships globally and
a VHF AIS receiver was used to pick up the coded
signals, which are in ASCII character format as spec-
ified by the National Marine Electronics Association
(NMEA). The AIS sentences were successfully decoded
using a parser to obtain real-time ship position, course
and speed measurements.

Finally, the proposed observer was validated using
asynchronous AIS data from the Trondheim harbor in
Norway and it was demonstrated that the observer es-
timates ship position, velocity and course in real time
with good accuracy at 50 Hz, which is a good frame
rate for 3-D visualization. It was also demonstrated
that the observer could predict future ship positions
and thus be used in decision-support systems. Typi-
cal applications of AIS data are motion prediction and
intelligent situation awareness of autonomous ship op-
erations as well as operation of manned and unmanned
ships together in restricted areas.
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A. Backward difference operator
for non-evenly spaced data

The backward difference approximation of the first
derivative for non-evenly spaced data at times ¢y, t5_1
and tg_o is derived by using the Taylor-series expan-
sions:

1
F(k—1)=F(k) — h F'(k) + ihfF”(k) +O(h3)
(35)
1
F(k—2) = F(k) — (hy + ho) F'(k) + i(hl + ho)?F" (k)
+ O((h1 + h2)?) (36)
where hy =ty —tx_1 and ho = tp_1 —tr_o. Multiplying
(35) with

hi + h)?
NS -
1

and subtracting (36) from (35) makes F” (k) vanish.
Hence, the error will be of order O((hy + ho)?). This
gives

aF(k—1)—F(k—2) = (o — 1)F(k)
+ (—(Oé — l)hl + hg) F/(ki)

(38)
Solving for F'(k), finally gives
1—-a)F(k)+aF(k—1)— F(k—-2)
F'(k) = ( 39
(k) A= a)hi T ha (39)
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Figure 8: The 30 seconds predicted motion of MS LADEJARL just before the ship arrives Lensvik harbor. The
red and cyan lines are the kinematic observer and XKF, respectively
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Figure 9: The 60 seconds predicted motion of MS LADEJARL when on route to Trondheim harbor. The red
and cyan lines are the kinematic observer and XKF, respectively 943
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Figure 10: Course angle x [deg], speed U [m/s], z-position [km], y-position [km], acceleration a [m/s?] and
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yaw rate r [deg/s] versus time s. The circle denotes the live AIS measurements, while the red and
cyan lines are the kinematic observer and XKF estimates, respectively. The period of inactivity
corresponds to the stop in Lensvik harbor.
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