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Abstract

To enhance the use of the Digital Displacement Machine (DDM) technology as the future solution for low
speed fluid power pump and motor units, a Model Predictive Control (MPC) strategy is presented. For
a low speed DDM, the conventional full stroke operation strategy is unsuitable, since the control update
rate is proportional to the machine speed. This creates an incentive to utilize sequential partial stroke
operation where a fraction of the full stroke is used, which thereby increases the control update rate and
control signal resolution. By doing this, the energy loss is increased and may become undesirable large if
the control objective is purely set-point tracking, why a trade-off is considered advantageous. Discretizing
the full stroke based on a chosen update rate results in a Discrete Linear Time Invariant (DLTI) model of
the system with discrete input levels. In this paper, the Differential Evolution Algorithm (DEA) is used to
determine the optimal control input based on the trade-off between set-point tracking and energy cost in
the prediction horizon. The paper presents a flow and a pressure control strategy for a fixed speed digital
displacement pump unit and shows the trade-off influence on the optimal solution through simulation.
Results show the applicability of the control strategy and indicate that a much higher energy efficiency
may be obtained with only a minor decrease in tracking performance for pressure control.
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1 Introduction

The Digital Displacement Machine (DDM) technology
is a promising alternative to conventional hydraulic
pump and motor units, since it provides excellent re-
dundancy and scalability due to its modular construc-
tion. Additionally, it provides the possibility of an im-
proved energy efficiency and reliability Linjama (2011).
As a result, a large amount of research regarding de-
sign and performance optimization of these machines
has been published Payne et al. (2005); M. Ehsan and
Salter (March 2000); Rampen (2010); Johansen (2014);
Roemer (2014); Noergaard (2017); Wilfong et al. (2010,
2011); Merrill et al. (2011).

One important task for successful deployment of the
machine technology is the control system, which is

a key feature with respect to proper operation and
energy efficiency. However, the challenges with re-
spect to control of such non-smooth dynamical sys-
tem are many and considered to be complicated Ped-
ersen et al. (2018a). Several research papers regard-
ing control strategies of digital displacement machines
has been published, but the strategies are often lim-
ited to open-loop control at simplified operation con-
ditions M. Ehsan and Salter (March 2000); Heikkila
and Linjama (2013); Song (2008); Armstrong and Yuan
(June 2006). Control strategies for high speed oper-
ated machines have further been exploited to include
closed loop control. Sniegucki et al. (2013) presents a
mixed logical dynamic programming control structure
for a fixed-speed machine. Although the method is
limited to offline optimization, promising result is ob-
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tained with respect to fluctuations and set-point track-
ing. A full stroke Pulse-Density Modulation (PDM)
technique is proposed by Johansen et al. (2015) in a
feedback structure. To allow for model based closed
loop control design, a Discrete Linear Time Invariant
(DLTI) approximation to the digital machine dynam-
ics is developed by Johansen et al. (2017) for constant
speed operation. To expand the use of this method
to be applicable for variable speed operation, Pedersen
et al. (2017a) transform the DLTI model to the spa-
tial domain, resulting in a fixed angle sampling rate
allowing for classical control synthesis. A combination
of the PDM technique and the DLTI model is further
used for control of a digital fluid power transmission
by Pedersen et al. (2017b, 2018b).

This paper proposes a closed-loop control strategy
for a slow rotating digital displacement machine with
a relatively low number of cylinders. Because of this,
full stroke operation is considered unfavorable, since
the control update rate is proportional to the speed of
the machine and the tracking performance thus suffers
heavily. To account for this, a sequential partial stroke
operation method is used with a higher control up-
date rate, which increases the control signal resolution
and thereby allows for an improved set-point tracking.
Since energy loss due to switching may be of major con-
cern using sequential partial stroke, a Model Predictive
Control (MPC) strategy is used. This allows for spec-
ifying the importance of tracking performance relative
to energy consumption, from where the optimal con-
trol input is determined based on a prediction model.
The MPC control strategy is tested for both flow and
pressure control by simulation in a non-linear model
representing the physical system. A fixed speed pump
unit is considered in this paper, but the strategy is
also applicable to variable speed pump-motor units by
the spatial domain transformation method presented
by Pedersen et al. (2017a).

2 System Description

To evaluate on the performance of the control strat-
egy, a non-linear mathematical model of the digital
displacement machine is established. The model hence
represents the physical system and is derived based on
a description of the machine characteristics. The digi-
tal displacement machine under consideration is illus-
trated in Fig. 1. The illustration to the left shows
the digital displacement machine with 10 cylinders be-
ing radially distributed around an eccentric shaft. The
flow to and from the pressure chambers is regulated
by manipulating the state of the fast switching on/off
high and low-pressure valves, HPV and LPV respec-
tively illustrated to the right. Maintaining a closed
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Figure 1: Illustration of the displacement pump-motor
unit.

LPV and an open HPV during piston retraction is
seen to pressurize the chamber, which result in a flow
being pumped to the high pressure manifold. Main-
taining the same valve positions results in a motor-
ing mode during piston extension. Using the oppo-
site valve positions results in an idling mode where
the chamber pressure remains low. In sequential par-
tial stroke operation, the position of the valves may
be changed independently of the cylinder position to
obtain a desired volumetric output fraction. However,
sequential partial stroke requires that the valves can
be opened against high pressure difference. Therefore,
larger valves with a higher actuation force are neces-
sary compared to full stroke or conventional partial
stroke, where the valve positions may only be altered
on a stroke-by-stroke basis.

2.1 Non-linear Simulation Model

To evaluate on the control performance, a non-linear
simulation model representing the physical system is
made. The local shaft angles for the respective cylin-
ders are given by

θi = θ +
2 π

Nc
(i− 1) i ∈ {1, .., Nc} (1)

where θ is the shaft angle and Nc is the number of
cylinders. Since the equations used to describe the dif-
ferent pressure chambers are the same, the following
model derivation is made for a single chamber. The
piston displacement, x, is seen to be a function of the
shaft angle described as

x (θ) = rs (1− cos(θ)) (2)

where rs is the eccentric shaft radius being equivalent
to half of the piston stroke length. The stroke volume
is thus given by Vd = 2 rs Ap, where Ap is the piston
area. The pressure chamber volume, Vc is then given
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by

Vc (θ) =
Vd

2
(1− cos(θ)) + V0

V̇c (θ) =
Vd

2
θ̇ sin(θ)

(3)

where V0 is the minimum chamber volume. Using the
continuity equation to describe the pressure dynamics
results in

ṗc =
βe

Vc

(
QH −QL − V̇c

)
(4)

The flows through the high and low pressure valve, QH

andQL respectively are modeled by the orifice equation
and given by

QL = kf

√
|pc − pL| sign (pc − pL) x̄L

QH = kf

√
|pH − pc| sign (pH − pc) x̄H

(5)

where x̄L and x̄H are the normalized valve positions
of the low- and high-pressure valve respectively and kf

is the valve flow coefficient. To reduce the model com-
plexity significantly, the valve dynamics is simplified to
be described as a first order system given by

˙̄xL =
1

τv
(uL − xL) ˙̄xH =

1

τv
(uH − xH) (6)

where tv is the valve time constant, uL and uH are the
valve inputs. Despite the simple valve description, the
important characteristics with respect to machine level
control is captured.

2.2 Valve timing and control

The valve actuation is described by considering the hy-
brid automaton shown in Fig. 2. Two mode switching
functions are defined as λH = FH − (pH − p) Av and
λL = FL − (p − pL) Av and are used to construct the
switching logic. The systems input is hence the valve

forces, u =
[
FH FL

]T
for the high and low pressure

valve respectively. Av is the effective valve area that
the pressure is generating a force on. It is seen that the
pressure chambers may operate in three modes namely
idling, compression and pressurization. The hybrid au-
tomaton shows that a pressure chamber is activated
if λL < −α, which results in a transition from idling
to compression mode. α represents a static force hys-
teresis band which has to be surmounted in order to
alternate the valve state and avoid numerous subse-
quently switchings. A further transition to the pres-
surization mode where the HPV is opened is obtained
when (pH − p) Av > α or a large force, FH is applied
to the HPV. The valve area Av is hence considered
identically on both sides of the valve plunger as a sim-
plification. Similar transitions occur when deactivating

Idle Compression Pressurization

q = 1 q = 2 q = 3
uL = 1 uL = 0 uL = 0

uH = 0 uH = 0 uH = 1

λL > α

d4

λH < −α
d3

λL < −α
d1

λH > α

d2

Deactivate

Activate

Figure 2: Hybrid automaton representation of valve
control of the digital displacement machine.

a pressure chamber, where the HPV is initially closed
and the LPV is subsequently opened.

In conventional partial stroke operation, passive
opening of the LPV and HPV due to pressure force is
used, such that small valves with a low actuation force
may be used. However, the control update is made on
a stroke-by-stroke basis and is thus proportional to the
machine speed. For a very low speed machine with a
low number of cylinders, the control update rate is very
low and may be troublesome with respect to obtaining
the desired control performance. By using a sequential
partial stroke strategy, the valves may be opened and
closed independent of the chamber pressure level, but
requires valves being able to deliver significantly higher
actuation force. Such sequential partial stroke strategy
is considered in this paper to significantly increase the
control update rate and thereby improve the reference
tracking performance. However, due to valve opening
against a high pressure difference, the energy loss may
also be significantly higher and the strategy is thus only
considered feasible for very low speed operation.

The total flow and torque of the digital machine is
given as the sum of flows and torques from each pres-
sure chamber and are given by

Q =

Nc−1∑

j=0

QH,j τ =

Nc−1∑

j=0

τj (7)

The parameters used in the simulation model is pro-
vided in Tab. 1.

3 MPC and DLTI model
approximation

Discrete Model Predictive Control (MPC) is charac-
terized as a sample-and-hold feedback control method,
where the optimal control input is determined based
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Table 1: Parameters of the 5 MW transmission
Parameter Symbol Value Unit

Motor rotation speed ω, θ̇ 10 rpm
Motor displacement volume Vd 153.4 cm3

Motor dead volume V0 153.4 cm3

Maximum bulk-modulus βe 16000 bar
Low pressure pL 10 bar

Valve flow constant kf 1.26 L/(min
√

bar)
Valve time constant ts 5 ms
Valve effective area Av 31.66 mm2

Force threshold α 50 N

on an estimation of the future plant states in a predic-
tion horizon. Since the system is discretely actuated,
a discrete dynamical model is demanded such that the
future states may be predicted and the valve switching
energy may be included. Two important parameters
in MPC is the sampling time and prediction horizon.
The sampling rate should be low enough such that the
next optimal control input may be calculated between
two samples, but high enough to ensure proper con-
trol performance. Similar, a small prediction horizon
reduces the solving time for the optimal control input
but reduces the control performance.

In this paper the optimal control input is chosen as a
trade-off between reference tracking accuracy and en-
ergy cost. For a digital displacement machine, it is
considered advantageously to use a prediction horizon
corresponding to the number of samples during one full
stroke, p = 5. This allows the controller to know that
it is cheaper to switch the valve states during a low
flow at the end of a stroke. Similar, since it is an ad-
vantage to switch valve states at the beginning of a
stroke at a low flow rate, the sampling time is chosen
as the time between two cylinders starting a stroke,
Ts = 2 π/(ω Nc). With 10 cylinders this results in 5
samples during a pumping stroke and 5 samples dur-
ing a motoring stroke, which means that each chamber
may switch valve states 5 times during a full stroke.

As long as the valve dynamics is sufficiently fast com-
pared to the machine speed, the switching only takes
a neglectable fraction of a full stroke. In this example
the valve is switched in Tv ≈ 5 τv = 25 ms and there
is 50 ms from the LPV closing signal is given until the
HPV opening signal is given, such that it takes 75 ms
from the LPV closing signal is given until the HPV is
fully open. At a speed of ω = 10 rpm a single revolu-
tion takes 6s, such that it is considered valid to neglect
the valve dynamics.

By neglecting the valve and pressure dynamics, a
DLTI-model is constructed where QH ≈ V̇c during an
active stroke. The model is established by consider-
ing the change in volume between samples using the
relation given by (8) as proposed in Johansen et al.

(2017).

Qd[k] ≈ ∆Vc[k]

∆T [k]
≈ Nc

2 π
ω[k] (Vc(θ[k + 1])− Vc(θ[k]))︸ ︷︷ ︸

∆Vc[k]

τd[k] ≈ ∆Vc[k]

∆θ
pH[k] ≈ Nc

2 π
pH[k] (Vc(θ[k + 1])− Vc(θ[k]))︸ ︷︷ ︸

∆Vc[k]

(8)

where the angle as function of sample number is given
by

θ[k] =
2 π

Nc
k k ∈ {0, . . . , Nc − 1} (9)

A simulation has been made where the response of the
discrete model is compared to that of the non-linear
model and is shown in Fig. 3.
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Figure 3: Comparison of non-linear and discrete model
of the digital displacement machine.

It is seen that every second decision is to activate
the chamber. Although the outputs are approximately
matched between samples, large pressure spikes are ob-
served in the non-linear model. These pressure spikes
are due to opening against high pressure difference and
since the pressure dynamics has been neglected in the
discrete model, they are not observed. The severity of
the spikes is seen to be larger for higher flow rates and
especially high for motoring where the pressure change
due to the change in volume is negative. Despite these
deviations, the output is matched quite fairly. The to-
tal flow and torque throughput of the digital displace-
ment machine is described by a sum of the individual
contributions given by

Q[k] =

Nc−1∑

m=0

Qd[k] ū[k] τ [k] =

Nc−1∑

k=0

τd[k] ū[k] (10)

where ū ∈ {1, 0} are the binary actuation decision (ac-
tive or inactive).
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3.1 Input combinations

With 10 cylinders, there are 10 pressure chambers that
may either be active or inactive for a total of 210 = 1024
combinations at every sample. However, due to sym-
metry it makes no sense to motor and pump simultane-
ous with different cylinders, such that there is 25 = 32
pumping and motoring combinations. The different
combination are shown in Fig. 4 and are illustrated
as normalized values (displacement fractions). The re-
lations between the displacement fraction to the flow
and torque are given by

Q[k] =
Vd Nc

2π︸ ︷︷ ︸
kq

ω[k] α[k] τ [k] =
Vd Nc

2π︸ ︷︷ ︸
kτ

pH[k] α[k]

(11)
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Figure 4: Combinations of discretized displacement
fraction.

As expected a displacement fraction of 1 is obtained
by activating all five pressure chambers operating in
the same mode (motoring or pumping). It is seen that
several of the combinations yield the same output, but
they may have significantly different energy cost re-
lated, since one may require a valve switch while the
other may not require a switch. Additionally, it is more
energy costly and the flow/pressure spikes are higher
when switching at high flow levels.

3.2 Input mapping

Having identified an optimal discrete input at a given
sample, the next step is to map the input to a pressure
chamber actuation sequence for the 10 cylinders. Let
the prediction horizon p = ceil(Nc/2) and j be such
that θ [j] = θ(t), where θ [j] ∧ θ(t) ∈ [0 ; 2 π]. Let
k and n be defined as m ∈ {0, . . . , Nc − 1} and n ∈

{0, . . . , p− 1} then the chamber actuation sequence is
given by

Φ[m] =

{
φ[n] for m = (j − n) modNc

0 otherwise
(12)

Φ hence contains information about whether each in-
dividual pressure chamber should be active or inactive.
If a value in the vector is changed from 0 to 1, the LPV
for the given pressure chamber is closed following an
opening of the HPV. Inversely, if a value is changed
from 1 to 0, the HPV is closed following an opening of
the LPV. An example of how the chamber actuation
vector Φ is constructed is shown in Fig. 6.
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Figure 6: Example of the chamber actuation sequence
generation.

In this example cylinder 1 (red) is at Bottom Dead
Center (BDC) where a pumping stroke starts. Cylinder
0, 9, 8 and 7 are in the pumping stroke part, while the
remaining cylinders are in the motoring stroke part.
At this sample, φ = [1 0 1 1 0] is identified as the
optimal input sequence. Since the first entry is 1, the
current cylinder 1 has to be activated, while the previ-
ous cylinder 0 has to be inactive given by the second
entry. Similarly, the cylinders 9 and 8 have to be active
given by the third and fourth entries in φ. Cylinder 7
which has almost completed its pumping stroke should
be inactive and the remaining cylinders are inactive as
well, since they are in the motoring stroke part. As a
result it is seen that Φ = [0100000011] is the resulting
chamber actuation vector, providing information about
the state of each pressure chamber.
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Figure 5: Illustration of the chamber actuation decisions in the prediction horizon for sample k−1 and k. Those
areas shown with a dark color illustrate an active period.

3.3 MPC flow control

This paper presents a flow and a pressure control
method for a low speed DD pump, where the flow con-
trol method is relatively simple since no dynamics is
present and the future state estimation is thus omitted.
The optimization problem of determining the optimal
displacement fraction input is found as a combination
of reference tracking accuracy and energy cost given as

α∗ = argmin
α∗∈α

{
JT1 J1 +W1 J

T
2 J2

}
(13)

J1 =

p∑

i=1

(kq ω α[i]∗ − yref[i]) (14)

α∗ is hence a vector containing the optimal inputs in
the prediction horizon. J1 is the cost function for the
reference tracking and J2 for the switching cost, where
W1 is a scaling parameter between the two cost func-
tions. The tracking error cost function J1 is seen to be
the sum of errors in the prediction horizon. The energy
cost function J2 is defined as

J2 =

Nc−1∑

i=0




λ[i]
Nc−1∑
j=0

λ[j]

|Φ[i]k − Φ[i]k-1|




λ[n] =

{
1 +W2 sin(θ[n]) for m = (j − n) modNc

0 otherwise

(15)

The (k)-index and (k-1)-index of the actuation vector
Φ indicate the current and previous optimized vector.
For every value change in the actuation vector, Φ, the
correspondent valves for the given pressure chambers
are switched and energy cost is added to the function.
Since no specific valve design is considered, the base en-
ergy cost of a switch is set to 1 by the function λ, using

the same definitions as in (12). The function sin(θ[n])
takes into account that it costs more to switch at higher
flow rates, where also the pressure spikes are larger, and
W2 is again a scaling parameter. The denominator in
J2 is introduced to normalize the function, such that
the value of J2 always has a value between 0 and 1.
An illustration of how the energy cost function is eval-
uated in the prediction horizon is shown in Fig. 5. It is
seen that the optimized input α∗ corresponds to an ac-
tuation sequence for the respective pressure chambers
in the prediction horizon. The energy cost function is
only evaluated for the current step i = 1, since only
the actuation vector for the current sample determines
which valves are switched. The energy cost could be
evaluated in the full prediction horizon, but this has
been found to yield slightly worse performance. Al-
ternatively, a weighted sum could be used to penalize
the early steps in the prediction horizon more than the
later ones.

3.4 Optimization algorithm

In this paper, the optimal solution to the optimiza-
tion problem is solved by the differential evolution al-
gorithm (DEA), due to its feature of searching a large
space and being able to solve discrete valued problems.
Better and faster algorithms for the given problem may
very well exist, but this is considered out of scope of
this paper. The algorithm has previously been suc-
cessfully applied to a similar problem for discrete force
control of a wave energy converter in Hansen et al.
(2017). For more information about the DEA, see e.g.
Bech et al. (2016). To show the best possible tracking
performance with the proposed control strategy, the
energy cost function scaling parameter is initially cho-
sen as W1 = 0, while W2 = 10. The optimized result is
shown in Fig. 7. For this relatively easy optimization
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Figure 7: Flow tracking response using the DEA-MPC
algorithm without the energy cost function.

problem, the optimal solution could be identified man-
ually by taking the discrete value in Fig. 4 that yields
the lowest value when evaluating |kqω α− yref|, which
gives the same result. yDLTI = kqωα

∗
1 is the chosen dis-

crete value. yideal is the ideal flow output considering
QH = V̇c and yNLM is the flow output of the non-linear
dynamic model. The results are as expected, where the
integrated value of yDLTI and yideal are identically and
that of yNLM is a bit higher due to the flow spikes. The
bottom part of Fig. 7 shows the optimal input u = α∗1
and the switching cost function value of J2. It is seen
that there are several valve switchings with a high cost
that may be unfavorable. When changing the cost scal-
ing parameter to W1 = 2e-9, results in the optimized
solution shown in Fig. 8. It is evident, that the track-
ing accuracy has been reduced, especially at low and
high flow rates. However, it is seen that the switchings
with a high cost have been removed completely. Tak-
ing the time integral of the absolute tracking error and
energy cost yield the results given in Tab. 2.

Table 2: Results with and without energy cost.

Parameter w/o. J2 w. J2

W1 0 2e-9
Integrated absolute error 1.6 L 2.1 L
Integrated energy (J2) 96.53 57.17

It is seen that the tracking error is 29% higher when
the energy cost is included in the cost function, but
the energy cost is 41 % higher without the energy cost
included. This is a simple example to illustrate how
the optimal solution changes based on the trade off be-
tween tracking and energy. A good choice of the scal-
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Figure 8: Flow tracking response using the DEA-MPC
algorithm with the energy cost function.

ing parameter W1 is of course dependent on the control
and energy requirements for the specific application.

3.5 MPC pressure control

A relatively simple system is constructed in this paper
to illustrate the applicability of the control structure,
but it is expected that the control method is suitable
for more advanced fluid power systems comprising low-
speed digital displacement machines with a relative low
number of cylinders. An illustration of the system con-
sidered for pressure control is shown in Fig. 9.
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Figure 9: Illustration of the simple load system used for
pressure control of the digital displacement
machine.

A simple orifice load is considered as a flow restric-
tion, where the objective is to control the pressure in
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the high pressure manifold, pH. For pressure control, a
DLTI model of the pressure dynamics is derived based
on the shown definition of variables. The dynamic
equation describing the pressure is given by

ṗH(t) =
βe

VL


kq ω α(t)︸ ︷︷ ︸

Q(t)

− kqo

√
pH(t)︸ ︷︷ ︸

Qo(t)


 (16)

where kqo = 2.2 L/(min
√

bar), VL = 0.1m3 is the
volume in the pressure line, βe is the effective bulk-
modulus and u = α is the input. Due to the non-linear
equation describing the flow through the orifice, a lin-
earization by first order Taylor approximation is made
and results in

δṗH(t)︸ ︷︷ ︸
ẋ

= − β kqo

2 VL
√
p0︸ ︷︷ ︸

Ac

δpH(t)︸ ︷︷ ︸
x

+
β

VL
kq ω

︸ ︷︷ ︸
Bc

δu(t)︸ ︷︷ ︸
u

(17)

A discretization is made by assuming a zero-order-hold
input as approximated by the discrete model having
the sampling time Ts = 2 π/(Nc ω). The resulting
DLTI model has the standard state-space form given
by

xk+1 = A xk +B uk

yk = C xk

(18)

It has been identified that integral action added to the
control system is necessary to obtain offset-free refer-
ence tracking, due to the model inaccuracies caused
by linearization and flow discretization. Incorporat-
ing integral action within the MPC control structure is
done by modifying the state model to a state difference
model in accordance with Stephens et al. (2013) and
result in

∆xk+1 = A∆xk +B ∆uk

∆yk+1 = C ∆xk

(19)

where ∆xk = xk − xk-1, ∆uk = uk − uk-1 and ∆yk =
yk − yk-1. Rewriting the output equation yields the
desired result given as

∆yk+1 = C ∆xk

yk+1 − yk = C (A∆xk +B ∆uk)

yk+1 = C A∆xk + C B ∆uk + yk

(20)

It is seen that the output yk+1 is now dependent on the
previous output yk similar to a conventional discrete
integrator. Forming the new state formulation yields
[
∆xk+1

yk+1

]

︸ ︷︷ ︸
x̄k+1

=

[
A 0
C A I

]

︸ ︷︷ ︸
Ā

[
∆xk

yk

]

︸ ︷︷ ︸
x̄k

+

[
B
C B

]

︸ ︷︷ ︸
B̄

∆uk

y(k) =
[
0 I

]
︸ ︷︷ ︸

C̄

x̄k

(21)

This state model is then used to predict the future
state development by use of recursive evaluation. The
recursive discrete state estimation method is given by




x̄k+1

x̄k+2

x̄k+3

...
x̄k+p




︸ ︷︷ ︸
x

=




B̄ 0 0 . . . 0
Ā B̄ B̄ 0 . . . 0
Ā2 B̄ Ā B̄ B̄ . . . 0

...
. . .

. . .
...

Āp−1 B̄ Āp−2 B̄ Āp−3 B̄ . . . B




︸ ︷︷ ︸
A




∆uk

∆uk+1

∆uk+2

...
∆uk+p




︸ ︷︷ ︸
∆u

+




Ā
Ā2

Ā3

...
Āp




︸ ︷︷ ︸
B

x̄k

y =




C̄ 0 0 . . . 0
0 C̄ 0 . . . 0
0 0 C̄ . . . 0
...

...
...
. . .

...
0 0 0 . . . C̄




︸ ︷︷ ︸
C

x (22)

In short notation the discretely predicted pressure may
thus be written as

y = C A︸︷︷︸
Ψ

∆u + C B︸︷︷︸
γ

x̄k
(23)

The optimization problem is very similar to that for
the flow control problem, except for how the predicted
output is used to estimate the tracking error cost func-
tion. The optimization problem becomes that given
as

u = argmin
u∈α

{
JT1 J1 +W1 J

T
2 J2

}

J1 =

p∑

i=1

((Ψ ∆uk[i] + γ x̄k)− yref[i])

J2 =

Nc−1∑

i=0




λ[i]
Nc−1∑
j=0

λ[j]

|Φ[i]k − Φ[i]k-1|




(24)

It should be noticed that the difference input ∆uk =
uk−uk-1 has to be evaluated at each function evaluation
using the current and previous optimal input vector.

4 Results

To investigate the influence of the energy cost function,
the control strategy is initially implemented with the
energy cost function scaling parameter chosen as W1 =
0, whileW2 = 10. The results of the optimized problem
is shown in Fig. 10.
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Figure 10: Pressure tracking response using the DEA
MPC algorithm without the energy cost
function.

It is seen that relative great reference tracking is
obtained with a minor amount of ripples around the
tracking point due to the non-smooth flow profile.
The bottom plot reveals that there is a high number
of expensive switchings, where a value of 1 indicates
that the maximum of 6 valves are switched simultane-
ously. When changing the cost scaling parameter to
W1 = 2e12, yields the optimized results shown in Fig.
11.
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Figure 11: Pressure tracking response using the DEA
MPC algorithm with the energy cost func-
tion.

As expected the reference tracking error has in-
creased and larger ripples around the set-point is ob-
served. It is also clear that the switching cost has
been reduced significantly. Additionally, the large flow

spikes due to switching at high flow rates have been re-
moved. Taking the time integral of the absolute track-
ing error and energy yields the results given in Tab. 3
for the two optimized control problems.

Table 3: Results with and without energy cost.

Parameter w/o. J2 w. J2

W1 0 2e12
Integrated absolute error 2.27e7 2.95e7
Integrated energy 30.3 6.1

It is seen that the tracking error is 30% higher when
the energy cost is included in the cost function, but the
energy cost is 397 % higher without the energy cost in-
cluded. For this particular example it is clear that it
might be beneficial to penalize the energy cost unless
there is strict requirement to set-point tracking. Based
on the specific application it is considered easy to ad-
just the cost function scaling parameter W1 based on
the desired trade-off between tracking performance and
energy cost. In all of the presented results for both flow
and pressure control, the problem has been solved in
much less time than the control sampling time, which
enables the algorithm to be implemented online. How-
ever, MPC control requires the reference trajectory to
be pre-specified or at least estimated within the pre-
diction horizon which may cause problems based on
the specific application. Also, there is a clear restric-
tion with regard to the maximum speed of the digital
displacement machine, both due to the problem solv-
ing time and valve switching time. Additionally, an
increased sample rate may be beneficial for very low
speed machines, but this comes with the cost of an
increased number of input decisions, which again in-
creases the problem-solving time.

5 Conclusion

A Model Predictive Control (MPC) method for a se-
quential partial stroke operated low speed Digital Dis-
placement Machine (DDM) with a relatively low num-
ber of cylinders is demonstrated in this work. The
method improves the set-point tracking capability com-
pared to full-stroke and conventional partial stroke op-
erated machines, while allowing the designer to spec-
ify the importance of energy consumption and reduced
flow/pressure/torque pulsations. To solve the discrete
valued optimization problem, the Differential Evolu-
tion Algorithm (DEA) is used. For a 10-rpm machine
with 10 cylinders the algorithm is online capable, since
the solving time is much less than the control sam-
pling time. Simulation results for both flow and pres-
sure control show great tracking performance if energy
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consumption is not considered, while a minor decrease
in tracking performance leads to a large decrease in
energy consumption in the case of pressure control.
The presented control strategy is however not suitable
for fast rotating digital displacement machines due to
both solving time and additional energy losses due to
excessive switchings compared to a full-stroke control
method.
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