
Modeling, Identification and Control, Vol. 38, No. 3, 2018, pp. 157–165, ISSN 1890–1328

Software Components of the Thorvald II
Modular Robot

Lars Grimstad P̊al Johan From

Faculty of Science and Technology, Norwegian University of Life Sciences, N-1432 Ås, Norway. E-mail:
lars.grimstad@nmbu.no

Abstract

In this paper, we present the key software components of the Thorvald II mobile robotic platform. Thor-
vald II is a modular system developed by the authors for creating robots of arbitrary shapes and sizes,
primarily for the agricultural domain. Several robots have been built and are currently operating on
farms and universities at various locations in Europe. Robots may take many different forms, and may be
configured for differential drive, Ackermann steering, all-wheel drive, all-wheel steering with any number
of wheels etc. The software therefore needs to be configuration agnostic. In this paper we present an
architecture that allows for simple setup of never-seen-before robot configurations. The presented soft-
ware is organized in a collection of ROS packages, made available to the reader. These packages allow a
user to create her or his own robot configurations and simulate these robots in Gazebo using a provided
plugin. Although the presented packages were created to be used with Thorvald robots, they may also be
useful for people who are looking to develop their own robot and are interested in testing various robot
configurations in simulation before settling on a specific design. To create a robot, the user lists modules
with key parameters in one single configuration file and gives this as an input to the robot at startup.
Example configuration files are provided within the packages. In this paper, we discuss key aspects of
the ROS packages and provide directions on where to find updated information on how to install and use
these.

Keywords: modular robots, agricultural robots, mobile robots

1 Introduction

As robots are moving from structured to non-
structured environments, new challenges emerge. This
is especially true for mobile robots that need to be
adapted to preexisting infrastructure originally in-
tended for human workers. Humans are agile creatures
highly capable of assessing and adapting to new envi-
ronments. This is less true for robots. In many cases,
even slight changes to a robot’s environment may ren-
der the robot useless. Here, flexibility in the robot’s
mechanical and kinematic design becomes useful, as it
allows the robot to be modified to accommodate varia-
tion in working environments. Agriculture is a domain

where one-size-fits-all is not adequate. Farms tend to
be different from one another, and it will therefore re-
quire robots with a wide variety of shapes and sizes
to serve all production types found in agriculture. In
this paper, we present software packages for a class of
modular robots that can be assembled in environment-
specific configurations. The main motivation of this
work has been the agricultural domain, but the pre-
sented material can be used in a wide range of appli-
cations.

It is well established that food production needs to
increase in efficiency and reduce its environmental im-
pact to meet future needs brought around by increased
population and increased demand for environmental

doi:10.4173/mic.2018.3.2 c© 2018 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2018.3.2


Modeling, Identification and Control

friendly production. Getting high-precision, energy-
efficient robots into the fields and greenhouses may be
part of the solution.

There is increasing academic and commercial effort
aimed at getting robots into farms, and several new
and interesting robots appear every year. One early
robot by van Henten et al. (2002) was designed to har-
vest cucumber in greenhouses. This robot uses heat-
ing pipes found between plant rows as rails for loco-
motion. Two other early robots were the API robot
(Bak and Jakobsen (2004)) and the BoniRob (Ruck-
elshausen and et.al (2009)), which both are robots with
four-wheel drive and four-wheel steering for the open
fields. Some agricultural robots are designed to be
used for solving several tasks, like the AgBot II (Baw-
den et al. (2014)), which is a differential drive robotic
carrier that can be equipped with various implements.
Other robots are specialized in solving one type of task,
like the Robotanist (Mueller-Sim et al. (2017)), a robot
for high-throughput crop phenotyping. Various robots
have also been developed for harvesting (Lehnert et al.
(2017) Feng et al. (2018)) and pruning (Botterill et al.
(2016)), while yet other robots have been developed
for in-farm transportation, such as the Bin-Dog (Ye
et al. (2017)), a robotic platform for bin management
in orchards.

Common for most agricultural robots is that they are
designed to work in one specific environment. Many
robots are also intended to solve only one specific task
in that environment. Mobile robots may vary greatly
in design depending on where they are to operate and
normally offer little to no options for customization.

One of several challenges faced by those who are
looking to commercialize their robotic systems, is the
great variation found in farm infrastructure. Although
variation may be expected between farms that grow
different crops, also farmers who grow the same crop
may use different systems. One example is strawberry
production. A farmer may grow strawberries in the
open field, in polytunnels or in greenhouses. This rep-
resents three widely different environments for a robot.
To add to the challenge, there may also be great vari-
ation within each of these three environments. One
farmer growing strawberries in polytunnels may have
crop growing in beds in the ground, another may have
crop growing on tabletops mounted on poles, and yet
another may have crop in trays suspended from the
ceiling. Then there is also great variation between dif-
ferent varieties of strawberries, variation in row spac-
ing, variation in tunnel design and so on.

Looking at the example above, one can argue that
there should be added some flexibility in the design
of robots to accommodate variation found in agricul-
tural environments. This was the thinking behind the

Thorvald II robotic system created by the authors.
Thorvald II robots are assembled from modules.

These modules can be combined in various ways to
create a wide range of robots. By using a modular de-
sign, robots can quickly be created or rebuilt for new
tasks in new environments. Several robots have been
assembled from these modules and are operating in a
wide range of agricultural environments.

In this paper we present key components of the
robot’s software and an early release of packages for
Robot Operating System (ROS) (Quigley and et.al
(2009)) that can be used for simulating arbitrary Thor-
vald II robots in Gazebo (Koenig and Howard (2004)).
This includes a package containing a plugin for Gazebo,
a package for generating robot descriptions in Unified
Robot Description Format (URDF), including tags for
mass and inertia properties, packages for simulating
the robot base, a package for teleoperation, a pack-
age with example launch files for starting simulations
and more. When publishing velocity commands to a
real or simulated robot, the robot will calculate the
correct joint commands for the current robot configu-
ration, and output velocity estimates based on real or
simulated joint states.

Robots are generated from one single configuration
file, and the user may copy one of the provided robot
configurations or combine modules freely to create a
robot to his or her own specifications. The ROS pack-
ages are therefore useful for people who are planning to
create their own robot, even if this robot is not based
on Thorvald modules, and are looking for a tool for
testing various robot designs in simulation.

The paper is organized as follows: Section 2 gives an
overview of the Thorvald II robotic system hardware
and describes the presented ROS packages. Section 3
deals with velocity commands and odometry, and Sec-
tion 4 describes our approach to simulating arbitrary
Thorvald robots. Finally, we conclude the paper and
provide information on how to install the presented
ROS packages in Section 5.

2 The Thorvald II Modular Robot

Thorvald II is a system for creating custom robots,
primarily for the agricultural domain. The system is
based on a handful of modules that can be assembled
in various ways to create a wide array of robots with
different shapes and properties. Working in several
projects on different farms, the authors saw the need
for a robot that could easily be reconfigured to fit more
than one farm environment. The Thorvald II system
was therefore created. This modular approach to cre-
ating robots helps save both time and costs when cre-
ating new environment-specific robots. E.g. when a

158



Grimstad and From, “Software Components of the Thorvald II Modular Robot”

Figure 1: A handful robots created from Thorvald II mod-
ules. The tall robot in the background on the
right has a custom frame made from welded
steel pipes.

(a) (b)

Figure 2: Small robots created with Thorvald II modules.
(a) A differential drive robot for greenhouses.
This robot has a simple custom frame made
from sheet metal. (b) A one-wheel drive, one-
wheel steering robot.

research project finishes, a robot that has been used in
the project is easily rebuilt for new tasks, in a different
crop or on a different farm.

Several robots have been constructed from Thor-
vald II modules, a handful of which can be seen in
Figure 1 and 2. These robots have been operating in
open fields, polytunnels and greenhouses, in various
types of crop at different locations in Europe. Many of
the robots go through frequent rebuilds, as they move
from environment to environment.

2.1 Robot Hardware

When creating or rebuilding a Thorvald robot, mod-
ules are connected through simple mechanical and elec-
trical interfaces. The robot’s structural frame is in
most cases made using aluminum pipes and clamps,
with special clamps providing simple mechanical con-
nections for attaching modules to the frame. As com-

Figure 3: The most important robot modules. (A) bat-
tery enclosure, (B) drive module, (C) steering
module, (D) suspension module.

plexity is contained within modules it is also possible
to create custom frames, for example by welding pipes
or sheet metal together. This is done when creating
robots with special frame requirements, like the tall
robot in the background in Figure 1 and the low green-
house robot depicted in Figure 2a.

Mechanical and electrical aspects of the Thorvald II
system are described in more detail in Grimstad and
From (2017a) and Grimstad and From (2017b). Mod-
ules relevant for this paper are described in brief below.
Some of the modules are depicted in Figure 3.

2.1.1 Battery Enclosure

The battery enclosure module holds a battery and elec-
tronics, and is used as a connection point for power and
communication to other modules. Several battery en-
closures can be connected in parallel to increase the
robots range.

2.1.2 Drive Module

The drive module is used for propulsion. The module
holds a motor and gear assembly with a flange on the
output. A wheel connects to this flange.

2.1.3 Steering Module

The steering module holds a motor and gear assembly
with a flange on the output shaft. This flange connects
to a drive module. The steering module acts as a servo
motor and turns the drive module about a vertical axis,
pointing the drive wheel in whichever direction is de-
sirable.

2.1.4 Suspension Module

The suspension module is fitted with a shock absorber
and allows for vertical travel. This module can be con-
nected between a steering module and the robots frame
to increase the robot’s traction on uneven terrain, as
it helps with keeping wheels in the ground.

159



Modeling, Identification and Control

Figure 4: Simplified diagram of ROS nodes and robot base
hardware

Figure 5: Excerpt of robot configuration file. Modules
used to create a robot are listed here with key
parameters.

2.1.5 Passive Wheel Modules

Various passive wheel modules can be used to support
the robot. One example is the rear caster wheels on
the tall differential drive robot seen in the background
in Figure 1, another example is the rear support wheels
seen on the one-wheel drive robot in Figure 2b.

2.2 ROS Packages

Robot Operating System (ROS) is used as the software
framework for the robot. The robot’s software is de-
signed to support the modular hardware. This means
that all Thorvald II robots run the same software for
driving the robot base, calculating odometry from joint
states and so on. The only aspect separating one robot
from another, is one single configuration file.

Figure 6: Simplified diagram of the BaseDriver class

Several ROS packages have been made available to
the community. Packages that are relevant to this pa-
per include:

• thorvald base simulates or communicates with a
real robot.

• thorvald teleop provides a hardware-independent
node for teleoperation.

• thorvald gazebo plugins provides a plugin for
gazebo for simulating robots.

• thorvald model provides a script for generating
robot descriptions from robot configuration files.
It also provides example robot configuration files.

• thorvald can devices provides interfaces for vari-
ous types of CAN devises, such as motor drives
and batteries. It also provides libraries that im-
plement these interfaces.

• thorvald twist mux provides configuration param-
eters for the twist multiplexer twist mux from the
external package with the same name.

• thorvald bringup provides some useful example
launch files for launching some common and some
not so common robot configurations.

Figure 4 shows a simplified setup for a real
robot. Here we have two topics for velocity

160



Grimstad and From, “Software Components of the Thorvald II Modular Robot”

commands: telop joy/cmd vel and auto nav/cmd vel.
telop joy/cmd vel is used for teleoperation, and is
published to by telop node from the package thor-
vald teleop, while auto nav/cmd vel is a placeholder
for one or more topics used for commands during au-
tonomous navigation. A multiplexer node subscribes
to the velocity command topics and publishes mes-
sages from whichever topic that has the highest pri-
ority (and to which messages are currently being pub-
lished) to twis mux/cmd vel. The base driver from the
thorvald base package subscribes to this topic. The
node calculates joint commands, which it sends to the
robot base. The node also receives feedback from the
base, which it uses to estimate robot velocities. Veloc-
ity estimates are published to odometry/base raw. In
the case of a simulated robot, base driver will simu-
late joint states internally, and estimate robot veloci-
ties from these.

Modules containing motor controllers or batteries
are connected to a Controller Area Network (CAN).
The addresses of these modules are specified in the
robot configuration file. If other devices are connected
to the same CAN, the base driver can be used to relay
communication to and from these devices as well, on
the can frames device t and can frames device r top-
ics, respectively. This is useful in the case where the
robot is fitted with an implement that communicates
through CAN.

2.3 Robot Configuration

For each robot configuration, there is one
configuration-specific file. This file lists the mod-
ules used on a given robot with relevant parameters,
like position in the robot’s coordinate frame, com-
munication ID, simulation parameters and so on.
The configuration file also specifies which kinematic
model plugin base driver — the node responsible for
driving the base — should use for calculating joint
commands and odometry. The parameters found in
the configuration file selected by the user are loaded
to the ROS parameter server at startup, where they
are available for all nodes in the ROS network.

The user can easily create a new configuration file
or modify existing files, and will normally have one
file for each of her or his preferred hardware configura-
tions, and then switch between these as the robot goes
through rebuilds. An excerpt of a configuration file can
be seen in Figure 5.

3 Driving the Robot Base

As our robots may take many forms, our software must
be able to handle robots with different kinematic prop-

erties. Our robot must be able to calculate joint com-
mands from configuration-independent velocity com-
mands given in the robots coordinate frame, and it
must be able to estimate the robot’s actual velocity
in the same coordinate frame based on joint feedback.
Here we look at how our robot handles this.

3.1 Base Driver Node

The ROS node base driver from the package thor-
vald base is responsible for communicating with a real
robot or simulating the robot base. The node uses an
instance of the BaseDriver class from the same package
to drive the robot base. Figure 6 depicts a simplified
diagram of this class.

The node subscribes to robot velocity commands
of type geometry msgs/Twist, and outputs robot ve-
locity estimates of type nav msgs/Odometry. The
node looks up the current robot configuration at
startup. This information is passed to the members
base calculator and base handle.

The base driver’s base handle is an instance of Ba-
seCtrl and implements base related CAN hardware on
the current robot configuration. Its members include
motor controllers and batteries. Various motor con-
trollers and batteries can be used, as long as they ad-
here to the motor controller interface, or the battery
interface respectively, provided by the thorvald base
package.

The base driver’s base calculator is a plugin repre-
senting the kinematic model. This calculates joint com-
mands from target robot velocities given in the robot’s
coordinate frame, base link, and outputs odometry es-
timated from real or simulated motor feedback. The
type of plugin to use is specified in the above mentioned
configuration file. Most robots use the default plugin
as this is designed to handle a wide variety of robots.
Currently one-wheel drive robots have their own plu-
gin. Two-wheel differential drive robots are supported
by the default plugin, but a specialized and more effi-
cient plugin is also available. In this paper, only the
default plugin is considered.

Parameters used for calculating commands and ve-
locity estimates can be changed at run-time. One ex-
ample where this is useful can be found in a greenhouse
environment. The robot shown in Figure 2a, assem-
bled for greenhouse applications, is fitted with special
double wheels for driving on flat floors and rails, re-
spectively. These wheels have different diameters, and
the robot therefore updates the diameter to be used in
calculations whenever it transitions between flat sur-
faces and rails. This robot is described in more detail
in Grimstad et al. (2018).

161



Modeling, Identification and Control

3.2 Joint Commands

The robot’s velocity commands are given in the
base link coordinate frame. This coordinate frame is
rigidly attached to the robot, with x-axis in the forward
direction and z-axis pointing directly upward. This
means that the robot can translate in the x and y and
rotate about z. For velocity commands with non-zero
rotation, the center of the arc that the robot is moving
on is calculated, and steering angles and wheel speeds
are calculated accordingly. For pure translation, steer-
ing angles and wheel speeds are the same for all wheels,
and its just a matter of pointing all wheels in the de-
sired direction.

Joint commands are passed to each motor controller
instance, and sent to the robot base. For steering mod-
ules, rotation is constrained by the power and signal ca-
ble going to the drive module. The motor controllers
are therefore electrically limited to 180 degrees in ei-
ther direction. The steering module allows for fast ro-
tation of the drive module, but we do not want to turn
more than necessary. In many cases smoother opera-
tion can be achieved by offsetting the desired steering
angle by 180 degrees and reversing the wheel speed
command. A simple example is a robot altering be-
tween driving straight forward and straight backwards.
According to the calculated joint commands, steering
position should alter between 0 and 180 degrees, and
wheel speed should remain positive. In this case it is
obvious that it is better to leave the steering in the
straight ahead position and reverse wheel speed when
backing. For this reason, steering position commands
will be offset and wheel speed commands reversed if
this means reaching the target faster, or better avoid-
ing the rotation limits. This is done before commands
are sent to the base. Each motor is connected to a mo-
tor controller with a control loop for reaching target
wheel speeds and steering positions.

3.3 Odometry

Calculating joint commands for the robot is somewhat
trivial, calculating robot odometry from joint states
is less so. First, we may encounter robots with very
different kinematic properties, and second, the various
wheels do not necessarily fully agree on which direction
the robot is moving at any given time.

3.3.1 Estimating Robot Velocity

All the robot’s steering and propulsion motors are fit-
ted with encoders, and wheel speeds and steering po-
sitions are therefore available. Motor positions in the
base link frame are known from the robot configuration
file. For a number of iterations, we pair wheels at ran-

Figure 7: One of the robots that were used for testing the
robot’s ability to estimate velocity from joint
states. This robot has six-wheel drive and six-
wheel steering.

dom and calculate the point of intersection between the
lines normal to each wheel in the ground plane. The
average intersection point gives us a decent estimate of
the robot’s center of rotation, that is, the center of the
arc on which the robot is driving. We use this together
with wheel speeds to estimate the robot’s movement.

3.3.2 Verification of Estimated Robot Velocity

Wheel-slip varies across different ground surfaces, tires
may be of slightly different diameters, be inflated
to slightly different pressures, and so on. As such,
encoder-based odometry is, on its own, not sufficient
for keeping track of the robot’s absolute pose in the
world. Encoder-based odometry is, however, still very
useful e.g as input for SLAM algorithms, or for keeping
track of the robot between low-frequency GPS mea-
surements. It is therefore important that the robot is
capable of providing accurate velocity estimates from
encoder feedback.

The simple approach for estimating robot velocity
from joint states, described above, has shown to work
well with all configurations it has encountered. Tests
with two different robot configurations can be found in
in Grimstad and From (2018). Here the robot’s path
calculated from odometry was plotted against ground
truth. Ground truth was recorded using RTK-GNSS
and IMU. The result of one of these test are summa-
rized below.

Figure 7 depicts the six-wheel drive, six-wheel steer-
ing, asymmetric robot used in the test. The results are
shown in Figure 8 and 9. In this particular test, the
robot was driving mostly on tarmac with some gravel
patches. Commands given in the robot’s base link

162



Grimstad and From, “Software Components of the Thorvald II Modular Robot”

Figure 8: Path calculated from estimated robot velocity
based on motor feedback together with the path
recorded using RTK-GNSS. The robot model is
to scale and the grid is 1 m x 1 m.

frame consisted of translation in x and y, as well as
rotation about z, and the robot drove for 1 minute and
17 seconds before stopping in roughly the same posi-
tion as it started. During this time the robot traveled
80.2 m according to ground truth and 81.0 m accord-
ing to odometry. When the robot stopped, the differ-
ence between the robot’s position in the world frame
according to ground truth and odometry was 2.2 m.
There is in other words little slip, and we conclude
that the robot provides accurate encoder-based veloc-
ity estimates.

4 Simulation

When tasked with creating a new robotic system, be-
ing able to simulate that system may be vital to reduce
costs and risk to human life or property. However, set-
ting up a realistic simulated environment with realistic
robots driving about may be a time consuming and te-
dious endeavor. If custom robots are used, the devel-
oper must spend time on creating a good robot model
and all the surrounding aspects related to getting it to
move in the simulated environment.

Our modular system enables us to create a wide
range of robots. We do not wish to reinvent the wheel
every time a new robot design is to be run in simula-
tion. As described above, our robot’s software is de-
signed to support a great deal of variation in hardware.

(a) Linear velocity, x component

(b) Linear velocity, y component

(c) Angular velocity, z component

Figure 9: Velocity commands and raw odometry from a
six-wheeled robot

It is therefore important that our simulation too is able
to cope with the robots we wish to build. To achieve
this, a Xacro script was created for generating robot
descriptions from the above mentioned configuration
file. A Gazebo model plugin was also created.

4.1 Robot Description

The Xacro script for generating robot descriptions is
found in the thorvald model package and takes the pa-
rameters found in the above mentioned robot configu-
ration file as input. The script outputs the robot de-
scription in URDF. This can for example be used to
visualize the robot in RViz (3D visualization tool for
ROS).

The user may specify additional Xacro files that

163



Modeling, Identification and Control

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Robots generated by the presented system. (a) 4WD, 4WS, wide, with suspension, (b) 4WD, 2WS, custom
tall frame, (c) 6WD, 6WS, with suspension, (d) 1WD, 1WS, rear-wheel drive, (e) 2WD, 0WS, custom
frame, (f) 4WD, 4WS, slim, (g) 1WD, 1WS, front-wheel drive, (h) 9WD, 9WS.

should be included by the script. Here the user can
add sensors or custom frame members that are not in-
cluded in the default modules.

The output URDF robot description also includes
mass and inertia properties for each module on the
robot. This means that the robot can be simulated
in various robot simulation frameworks. Here we will
focus on simulation in Gazebo.

Figure 10 shows a handful robots created by the
script. These are just some of the endless configura-
tions that are fully supported in Gazebo simulation
and in the real world. The robots vary in size and drive
type, but they are all created using the same modules.
Most of the depicted robots have also been assembled
and tested in the real world.

4.2 Gazebo Simulation

The package thorvald gazebo plugin provides a Gazebo
plugin for use with ROS. This plugin reads the robot
description from the robot’s namespace on the ROS
parameter server at startup, and moves the robot’s
joint according to the joint states simulated by the
base driver.

The robots in Figure 10b and 10e are fitted with
custom frames, and therefore make use of the optional
additional Xacro for adding custom frame meshes to
the model. The script also supports TF prefixes and
namespaces for individual robots, thus enabling simu-
lation of multiple robots at the same time, as seen in
Figure 11.

Figure 11: Four different robot configurations in the same
Gazebo simulation

5 Conclusion

In this paper we have described the workings of ROS
packages for running and simulating arbitrary robots
assembled from Thorvald II modules. These packages
have been made available for the community in the
hope that they may be of use.

We have discussed key elements of the software
framework, and described how several robot configu-
rations can be achieved without making alterations to
the robot’s code. We have discussed how the robot
calculates commands and odometry, and we revisited
results from earlier experiments quantifying the robot’s
performance.

The provided software packages are designed to be
used with robots created from Thorvald II modules,
both real and simulated. The high level of customabil-
ity means that they can also be used for emulating a

164



Grimstad and From, “Software Components of the Thorvald II Modular Robot”

wide range of robots that are not created from Thor-
vald modules, and run these in simulation. As many
ROS-based mobile robots adhere to the same conven-
tions, e.g. which message types to use for commands
or odometry, integrating the provided packages into a
users own system will in many cases require little or no
alterations to the users setup.

The presented packages enable simulation of a wide
array of robots. Tweaking, or completely redesigning
a robot is done by modifying only one single configura-
tion file, and several different robot configurations may
run in the same simulation. The presented packages
thus provide the user with a powerful tool for testing
various robot designs for swarm applications in simula-
tion. People who are looking to buy or make their own
robot may benefit greatly from the presented packages,
as experimenting with dimensions, drive types, motor
parameters and so on, helps them to identify and spec-
ify their requirements.

The reader should note that the presented software
is subject to continuous development. Certain aspects
of the packages may therefore change without warn-
ing. Updated information on the packages and how
to install and use them is available on the NMBU
Robotics web pages:
www.nmbu.no/en/faculty/realtek/research/

groups/roboticsandcontrol/thorvaldinstall

References

Bak, T. and Jakobsen, H. Agricultural robotic plat-
form with four wheel steering for weed detection.
Biosystems Engineering, 2004. 87(2):125 – 136.
doi:10.1016/j.biosystemseng.2003.10.009.

Bawden, O., Ball, D., Kulk, J., Perez, T., and Russell,
R. A lightweight, modular robotic vehicle for the
sustainable intensification of agriculture. In Aus-
tralian Conf. on Robotics and Automation. Univ.
Melbourne, 2014. URL http://eprints.qut.edu.

au/82219/.

Botterill, T., Paulin, S., Green, R., Williams, S., Lin,
J., Saxton, V., Mills, S., Chen, X., and Corbett-
Davies, S. A robot system for pruning grape vines.
Journal of Field Robotics, 2016. 34(6):1100–1122.
URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/rob.21680, doi:10.1002/rob.21680.

Feng, Q., Zou, W., Fan, P., Zhang, C., and Wang,
X. Design and test of robotic harvesting system
for cherry tomato. International Journal of Agricul-
tural and Biological Engineering, 2018. 11(1):96–100.
doi:10.25165/j.ijabe.20181101.2853.

Grimstad, L. and From, P. J. Thorvald II
- a Modular and Re-configurable Agricultural

Robot. In IFAC 2017 World Congress. 2017a.
doi:10.1016/j.ifacol.2017.08.1005.

Grimstad, L. and From, P. J. The thorvald
ii agricultural robotic system. Robotics, 2017b.
6(4). URL http://www.mdpi.com/2218-6581/6/4/

24, doi:10.3390/robotics6040024.

Grimstad, L. and From, P. J. A configuration-
independent software architecture for modular
robots. In 4th IEEE/IFToMM Intl. Conf. on Re-
configurable Mechanisms and Robots. 2018.

Grimstad, L., Zakaria, R., Le, T. D., and From, P. J. A
novel autonomous robot for greenhouse applications.
In 2018 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS). IEEE, 2018.

van Henten, E., Hemming, J., van Tuijl, B., Kornet, J.,
Meuleman, J., Bontsema, J., and van Os, E. An au-
tonomous robot for harvesting cucumbers in green-
houses. Autonomous Robots, 2002. 13(3):241–258.
doi:10.1023/A:1020568125418.

Koenig, N. and Howard, A. Design and use paradigms
for gazebo, an open-source multi-robot simulator.
In IEEE/RSJ Intl. Conf. Intelligent Robots and
Systems, volume 3. pages 2149–2154 vol.3, 2004.
doi:10.1109/IROS.2004.1389727.

Lehnert, C., English, A., McCool, C., Tow, A. W.,
and Perez, T. Autonomous sweet pepper har-
vesting for protected cropping systems. IEEE
Robotics and Automation Letters, 2017. 2(2):872–
879. doi:10.1109/LRA.2017.2655622.

Mueller-Sim, T., Jenkins, M., Abel, J., and Kan-
tor, G. The robotanist: A ground-based agri-
cultural robot for high-throughput crop phenotyp-
ing. 2017 IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2017. pages 3634–3639.
doi:10.1109/ICRA.2017.7989418.

Quigley, M. and et.al. Ros: an open-source robot op-
erating system. In Proc. of the IEEE Intl. Conf.
on Robotics and Automation (ICRA) Workshop on
Open Source Robotics. Kobe, Japan, 2009.

Ruckelshausen, A. and et.al. Boniroban autonomous
field robot platform for individual plant phenotyp-
ing. In European Conf. Precision Agriculture. pages
841–847, 2009.

Ye, Y., Wang, Z., Jones, D., He, L., Taylor, M. E.,
Hollinger, G. A., and Zhang, Q. Bin-dog: A robotic
platform for bin management in orchards. Robotics,
2017. 6(2). doi:10.3390/robotics6020012.

165

www.nmbu.no/en/faculty/realtek/research/groups/roboticsandcontrol/thorvaldinstall
www.nmbu.no/en/faculty/realtek/research/groups/roboticsandcontrol/thorvaldinstall
http://dx.doi.org/10.1016/j.biosystemseng.2003.10.009
http://eprints.qut.edu.au/82219/
http://eprints.qut.edu.au/82219/
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21680
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21680
http://dx.doi.org/10.1002/rob.21680
http://dx.doi.org/10.25165/j.ijabe.20181101.2853
http://dx.doi.org/10.1016/j.ifacol.2017.08.1005
http://www.mdpi.com/2218-6581/6/4/24
http://www.mdpi.com/2218-6581/6/4/24
http://dx.doi.org/10.3390/robotics6040024
http://dx.doi.org/10.1023/A:1020568125418
http://dx.doi.org/10.1109/IROS.2004.1389727
http://dx.doi.org/10.1109/LRA.2017.2655622
http://dx.doi.org/10.1109/ICRA.2017.7989418
http://dx.doi.org/10.3390/robotics6020012
http://creativecommons.org/licenses/by/3.0

	Introduction
	The Thorvald II Modular Robot
	Robot Hardware
	Battery Enclosure
	Drive Module
	Steering Module
	Suspension Module
	Passive Wheel Modules

	ROS Packages
	Robot Configuration

	Driving the Robot Base
	Base Driver Node
	Joint Commands
	Odometry
	Estimating Robot Velocity
	Verification of Estimated Robot Velocity


	Simulation
	Robot Description
	Gazebo Simulation

	Conclusion

