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Abstract

This paper addresses a performance limiting phenomenon that may occur in the pressure control of
hydraulic actuators subjected to external velocity disturbances. It is demonstrated that under certain
conditions a severe peaking of the control error may be observed that significantly degrades the performance
of the system due to the presence of nonlinearities. The phenomenon is investigated numerically and
experimentally using a system that requires pressure control of two hydraulic cylinders. It is demonstrated
that the common solution of feed forwarding the velocity disturbance is not effective in reducing the peaking
that occurs as a result of this phenomenon. To improve the system performance, a combination of feedback
and iterative learning control (ILC) is proposed and evaluated. The operating conditions require that ILC
be applied in combination with a feedback controller, however the experimental system inherently suffers
from limit cycle oscillations under feedback due to the presence of valve hysteresis. For this reason the ILC
is applied in combination with a feedback controller designed to eliminate limit cycle oscillations based
on describing function analysis. Experimental results demonstrate the efficacy of the solution where the
feedback controller successfully eliminates limit cycle oscillations and the ILC greatly reduces the peaking
of the control error with reductions in the RMS and peak-to-peak amplitude of the error by factors of
more than 30 and 19, respectively. Stability of the proposed solution is demonstrated analytically in the
frequency domain and verified on the experimental system for long periods of continuous operation.

Keywords: Hydraulic pressure control, peaking phenomenon, iterative learning control, limit cycles.

1 Introduction

Hydraulic actuators are used in a wide range of applica-
tions, for example mobile machinery, offshore drilling
and material handling. In general, hydraulic actua-
tors are used whenever high power density is of major
importance. Both open-loop and closed-loop control
systems are common, depending on the system require-
ments. Closed-loop control may be further divided into
two categories: motion control and pressure control.
Motion control refers to position and velocity control,
whereas pressure control, in the context of this paper,
refers to controlling the pressure difference across the
actuator, which includes force control of linear actua-
tors and torque control of rotary actuators.

Hydraulic pressure control is a challenging and one
of the most studied problems within the field of hy-
draulic control (Ledezma et al., 2015), often requiring
system modifications or sophisticated control methods
even for simple control specifications (Baghestan et al.,
2014). Several challenges unique to hydraulic pressure
control arise from the effects of an inherent feedback
path in the system’s dynamics coupling the pressures
in the chambers of the actuator to its velocity, com-
monly known as the natural velocity feedback (Zhao
et al., 2004). When the controlled actuator force or
torque is applied to an environment whose natural fre-
quency is not significantly above that of the valve ac-
tuator combination, the system’s frequency response
suffers from an antiresonance at the natural frequency

doi:10.4173/mic.2018.1.1 c© 2018 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2018.1.1


Modeling, Identification and Control

of the environment followed by a resonant mode. This
phenomenon makes high bandwidth tracking of pres-
sure controlled actuators a difficult task that has been
studied extensively, see for example (Zhao et al., 2004)
and (Lamming et al., 2010).

Another consequence of the natural velocity feed-
back is the effect of external velocity disturbances in
pressure controlled hydraulic actuators. Due to the
near incompressibility of hydraulic oil and the coupling
between the pressures of the actuator and its velocity,
even minor velocity disturbances may correspond to
significant disturbances in the pressures of the actua-
tor and thus in the controlled output (Esfandiari and
Sepehri, 2014). A common method of improving the
performance in situations where velocity disturbances
are measurable involves feed forwarding from the dis-
turbance, see for example (Conrad and Jensen, 1987)
and (Jiao et al., 2004). As will be seen in Sections 4 and
5 however, a large abrupt peaking of the control error
may occur under certain operation conditions that is
not reduced by feed forwarding from the velocity dis-
turbance and appears to be a previously unaddressed
phenomenon.

This paper examines the conditions under which this
phenomenon occurs and several factors that may re-
duce or amplify the resulting peaking of the control
error are identified. The relevance of the phenomenon
from a system design perspective is discussed and the
use of iterative learning control (ILC) is proposed and
evaluated as a potential solution for achieving satisfac-
tory system performance. An additional contribution
of the paper is the application of ILC in a closed-loop
fashion to a system that inherently suffers from limit
cycle oscillations under feedback.

For systems performing repetitive tasks, ILC has
been shown to be capable of significantly improv-
ing the system’s performance (Blanken et al., 2017),
with several industrial applications having been re-
ported (Boeren et al., 2016). Originating from the
field of industrial robotics where industrial manipula-
tors are often used to perform the same tasks repeti-
tively (Wallén, 2011), ILC takes advantage of the repet-
itive nature of the system in order to improve the per-
formance iteratively. By recording the system perfor-
mance each iteration, a learning algorithm updates a
feed forward signal that is either sent to the plant in-
put or modifies the set point or reference trajectory of
a conventional feedback controller (Longman, 2000).
Figure 1 illustrates a simple example of an ILC algo-
rithm where the output of the ILC is denoted u. The
block G represents the dynamics of a plant and its feed-
back controller. The reference input is r(t) and the out-
put of the plant is denoted y(t), where the subscript k
denotes iteration. By recording the control error e(t)

in each iteration and feed forwarding it to the next it-
eration, the control error is reduced provided that the
behaviour of the system is deterministic. The ILC algo-
rithm in this example may be thought of as a feed for-
ward in the time domain, and a feedback P-controller
with unity gain in the iteration domain. This outlines
the basic mechanism of an ILC controller, where more
sophisticated algorithms are found in the literature, see
for example (Wallén, 2011).

𝐺 𝑦𝑘+1(𝑡)

-

+

-

+

𝑟(𝑡)
𝑒𝑘+1(𝑡)

+

𝑢𝑘+1 𝑡 = 𝑒𝑘(𝑡)

Figure 1: Basic mechanism of an ILC configuration.

The rest of the paper is organized as follows. Sec-
tion 2 describes the experimental system and its con-
trol requirements. Modelling of the system is presented
in Section 3 and an investigation into the aforemen-
tioned peaking phenomenon is conducted in Section
4. Sections 5 and 6 concern the control designs to be
evaluated with experimental results given in Section
7. Lastly, a discussion and conclusions are found in
Section 8.

2 System Description

The experimental system is a test rig designed for
studying friction phenomena and friction compensa-
tion methods in hydraulic cylinders, see Figure 2. The
primary component of the test rig is the main cylinder
with a piston diameter of 125 mm, which is controlled
by means of a servo valve and may translate freely in
the vertical direction. In addition, two hydraulic cylin-
ders connected in parallel, referred to as the rotation
cylinders, may be used to rotate the piston rod and pis-
ton of the main cylinder without affecting the extension
or retraction of the main cylinder. As the main cylin-
der is actuated in the vertical direction, the rotation
cylinders simply follow the main cylinder as they glide
freely on low-friction sliding tracks. This arrangement
constitutes a non-model based friction compensation
method that was studied in (Ottestad et al., 2012).

Further, two additional cylinders, referred to as the
load cylinders, connected in parallel hydraulically are
oriented opposite and attached to the main cylinder
mechanically. A second servo valve, connected to the
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load cylinder circuit may be used to control the pres-
sure differential across the load cylinders and thus the
force applied to the main cylinder. The purpose of the
load cylinders is to simulate the application of external
forces applied to the main cylinder. Due to their me-
chanical connection, any actuation of the main cylinder
forces the load cylinders to move as well and therefore
represents an external velocity disturbance to the load
cylinder circuit.

Main Cylinder

Load Cylinder
Sliding Track

Rotation Cylinder

SOLIDWORKS Student Edition.
 For Academic Use Only.

Figure 2: Overview of the experimental system.

The work presented in this paper concerns the de-
sign of a force controller for the load cylinder circuit,
where for the application under consideration the load
cylinders are required to maintain a constant force of
10 kN in the presence of external velocity disturbances
generated by the main cylinder. In particular, the load
cylinders should be capable of maintaining their force
set point with a reasonable accuracy as the main cylin-
der is actuated in a sinusoidal velocity profile with a
frequency of 0.1 Hz and amplitudes of up to 40 mm,
where the worst case situation, i.e. an amplitude of 40
mm is considered here. The remaining control hard-
ware consists of a CompactRIO from National Instru-
ments that is connected to the servo valves and the
instrumentation of the system, used for data acquisi-
tion and the implementation of control algorithms in
the LabVIEW programming environment.

The rest of the paper concerns the control design of
the load cylinder circuit for which the use of the rota-

tion cylinders is not relevant and therefore not consid-
ered here.

3 Modelling

In this section a linear transfer function is derived for
the load cylinder circuit for use in the control design.
First, the governing equations of the system are estab-
lished. Next, the nonlinear equations are linearized and
combined to describe the dynamics from servo valve in-
put to the output force FLC .

Due to the large size of the fluid volumes in the main
cylinder chambers, the flexibility of the main cylinder
has to be accounted for. The load cylinders are there-
fore modelled as applying their output force to a mass-
spring-damper system as shown in Figure 3. The mass
m refers to the lumped mass of all parts that may be
accelerated by the load cylinder circuit, the spring stiff-
ness k describes the stiffness of the main cylinder and
the damping coefficient d is due to the presence of vis-
cous damping.

+ +

Figure 3: Modelling of the load cylinder circuit.

The load cylinder circuit is equipped with hydraulic
pressure sensors in both the piston-side and rod-side
chambers, however no force transducer is available.
For this reason the friction of the load cylinder cir-
cuit, which is negligible in comparison to the required
output force, is not included in the estimation of the
force applied by the load cylinder circuit.

The fluid volumes whose pressures are denoted p1
and p2 are referred to as the first and second control
volumes, respectively. The volume flows of the servo
valve are described by the orifice equation (Merritt,
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1967). For extension (u ≥ 0):

Qv1 = Cd ·Ad0 · u ·
√

2

ρ
· (ps − p1) (1)

Qv2 = Cd ·Ad0 · u ·
√

2

ρ
· (p2 − pT ) (2)

For retraction (u < 0):

Qv1 = Cd ·Ad0 · u ·
√

2

ρ
· (p1 − pT ) (3)

Qv2 = Cd ·Ad0 · u ·
√

2

ρ
· (ps − p2) (4)

The volume in each control volume is described by:

V1 = VL1 +A1 · y (5)

V2 = VL2 +A2 · (h− y) (6)

Applying the continuity equation to each control vol-
ume:

Qv1 = A1 · ẏ +
V1
β
· ṗ1 (7)

Qv2 = A2 · ẏ −
V2
β
· ṗ2 (8)

From Pascal’s law, neglecting friction:

FLC = p1 ·A1 − p2 ·A2 (9)

Applying Newton’s second law to the mass m:

m · ÿ = p1 ·A1 − p2 ·A2 − d · ẏ − k · y (10)

Linearizing the orifice equation using a Taylor series
expansion and ignoring higher order terms:

Qv1 = Kqu1 · u−Kqp1 · p1 (11)

Qv2 = Kqu2 · u+Kqp2 · p2 (12)

The linearization coefficients for extension are given
by (u ≥ 0):

Kqu1,ext = Cd ·Ad0 ·
√

2

ρ
· (ps − p1ss) (13)

Kqu2,ext = Cd ·Ad0 ·
√

2

ρ
· (p2ss − pT ) (14)

Kqp1,ext =
Cd ·Ad0 · uss√
2 · ρ · (ps − p1ss)

(15)

Kqp2,ext =
Cd ·Ad0 · uss√

2 · ρ · (p2ss − pT )
(16)

The linearization coefficients for retraction are given
by (u < 0):

Kqu1,ret = Cd ·Ad0 ·
√

2

ρ
· (p1ss − pT ) (17)

Kqu2,ret = Cd ·Ad0 ·
√

2

ρ
· (ps − p2ss) (18)

Kqp1,ret = − Cd ·Ad0 · uss√
2 · ρ · (p1ss − pT )

(19)

Kqp2,ret = − Cd ·Ad0 · uss√
2 · ρ · (ps − p2ss)

(20)

Taking Laplace transforms and combining Eqs. (7)-
(12), the following transfer function is derived describ-
ing the dynamics from servo valve input to the force ap-
plied by the load cylinders using block diagram meth-
ods:

GLC(s) =
FLC(s)

u(s)
= Gv(s) ·Ghyd(s) (21)

where:

Ghyd(s) =
n3 · s3 + n2 · s2 + n1 · s+ n0

d4 · s4 + d3 · s3 + d2 · s2 + d1 · s+ d0
(22)

and:

n3 = A1Kqu1V2βm+A2Kqu2V1βm (23)

n2 = A1Kqu1V2βd+A2Kqu2V1βd

+A1Kqp2Kqu1β
2m+A2Kqp1Kqu2β

2m (24)

n1 = A1Kqu1V2βk +A2Kqu2V1βk

+A1Kqp2Kqu1β
2d+A2Kqp1Kqu2β

2d (25)

n0 = A1Kqp2Kqu1β
2k +A2Kqp1Kqu2β

2k (26)

and:

d4 = V1V2m (27)

d3 = V1V2d+Kqp1V2βm+Kqp2V1βm (28)

d2 = V1V2k +A2
1V2β +A2

2V1β +Kqp1Kqp2β
2m

+Kqp1V2βd+Kqp2V1βd (29)

d1 = A2
1Kqp2β

2 +A2
2Kqp1β

2 +Kqp1Kqp2β
2d

+Kqp1V2βk +Kqp2V1βk (30)

d0 = Kqp1Kqp2β
2k (31)

The servo valve dynamics are modelled as a second
order transfer function from valve input command to
output spool position u:

Gv(s) =
u(s)

uref (s)
=

1
1
ω2

v
s2 + 2ζv

ωv
s+ 1

(32)

The parameters of the operating point considered as
the worst case in terms of stability have been identified
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Table 1: Overview of system parameters.

Parameter Value Unit
Kqu1 1.0467 · 10−3 m3/s
Kqu2 1.1217 · 10−3 m3/s
Kqp1 2.05 · 10−12 m3/(s · Pa)
Kqp2 1.53 · 10−12 m3/(s · Pa)
β 109 Pa
k 2.4 · 107 N/m
m 98.4 kg
d 500 N · s/m
A1 0.025 m2

A2 0.013 m2

V1 2.359 · 10−4 m3

V2 2.361 · 10−4 m3

ζv 0.85 -
ωv 91.4 Hz

in (Gøytil, 2017) as given by Table 1 and are used in
the control design together with the linearized model.

Additionally, for the numerical investigations pre-
sented in the following section, a simulation model of
the experimental system is constructed using library
elements found in the commercially available software
package SimulationX as shown in Figure 4. In this
model the velocity control of the main cylinder is con-
sidered ideal and for this reason the motion of the main
cylinder is implemented as a preset that simply forces
the load cylinders to move with the sinusoidal velocity
profile of the main cylinder. As in the mathematical
model, the elasticity of the main cylinder fluid column
is represented by a mass-spring-damper system. In ad-
dition, five orifices, not shown in Figure 4 are used to
model the leakage flows of the servo valve which are
assumed to be laminar and modelled based on the null
leakage of the servo valve that was measured in (Gøytil,
2017).

4 Nonlinear Peaking Phenomenon

This section investigates a performance limiting phe-
nomenon that may be observed in pressure controlled
hydraulic actuators subjected to external velocity dis-
turbances. As will be seen in Section 5, the load cylin-
der circuit suffers from a severe peaking of the con-
trol error at the instances where the velocity distur-
bance from the main cylinder forces the load cylinders
to change direction. In this paper this is referred to as
the nonlinear peaking phenomenon and is reported and
investigated here using an asymmetrical actuator. This
appears to be a previously unaddressed phenomenon,

Figure 4: Numerical simulation model constructed us-
ing SimulationX.

although it may be observed in the experimental work
of (Klausen and Tørdal, 2015) for a symmetrical ac-
tuator. In (Jiao et al., 2004) on the other hand, the
absence of this phenomenon may be observed both nu-
merically and experimentally also using a symmetri-
cal actuator, despite the presence of external veloc-
ity disturbances that periodically force the actuator
to change direction, indicating that the appearance of
the nonlinear peaking phenomenon is dependent upon
the system configuration. This section presents nu-
merical results demonstrating some of the factors that
determine whether or not this phenomenon occurs for
a given system configuration as well as several factors
that may amplify the magnitude of this peaking.

Using the numerical simulation model developed in
the previous section, Figure 5 shows the control error
of the load cylinder circuit using the PI controller of
Section 5 in the presence of a sinusoidal velocity dis-
turbance with an amplitude of 10 mm and a frequency
of 0.1 Hz for a force set point of 0 kN. The solid line in
Figure 5 indicates the control error for feedback control
alone and the dashed line indicates the control error
for feedback combined with a fixed-gain feed forward
(ff) from the velocity disturbance. Observe in Figure 5
that for this sinusoidal velocity disturbance, the con-
trol error appears sinusoidal, as may also seen in the
numerical and experimental work of (Jiao et al., 2004).
Furthermore, a significant reduction in the control er-
ror is achieved by feed forwarding the velocity distur-
bance, where the peak-to-peak amplitude of the control
error is reduced from 521 N to 25 N after adding the
feed forward term to the controller.

Next, the force set point is changed from 0 kN to 10
kN, while all other parameters of the simulation model
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and the velocity disturbance are kept the same. Fig-
ure 6 shows the control error for this situation. Observe
the change in the overall shape of the control error both
with and without the use of feed forward. In Figure 6
an abrupt peaking of low magnitude is observed when
the external velocity disturbance forces the load cylin-
ders to change direction. Under these conditions, the
control error reaches a peak-to-peak amplitude of 797
N using feedback and 226 N using feedback combined
with feed forward, where the feed forward gain was ad-
justed slightly for optimal performance after changing
the force set point.
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Figure 5: Force set point of 0 kN.

0 10 20 30 40

Time [s]

-500

-400

-300

-200

-100

0

100

200

300

400

500

C
on

tr
ol

 E
rr

or
 [N

]

Feedback
Feedback+ff

Figure 6: Force set point of 10 kN.
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Figure 7: Force set point of 10 kN and a valve dead-
band of 0.5%.

Observe that although the feed forward is able to
improve the overall accuracy, the peaking that occurs
as the load cylinders change directions appear to be of
the same magnitude. This is the phenomenon referred
to in this paper as the nonlinear peaking phenomenon.
The reason for the appearance of the nonlinear peaking
phenomenon in Figure 6 after increasing the force set
point becomes clear upon inspecting how the change in
the force set point affects the states of the system: in
Figure 5, the velocity disturbance and force set point
for the current system configuration results in the servo
valve operating only about one side of valve null, in this
case u < 0. This is determined by a number of factors
such as the magnitude of the velocity disturbance, the
required pressure differential resulting from the force
set point, the type of actuator (symmetrical or asym-
metrical), leakages, the size of the servo valve and the
supply pressure. In Figure 6 on the other hand, the
operating conditions force the servo valve to operate
about valve null when the load cylinders are chang-
ing directions. As is clear from Eqs. (13)-(20), this
results in abrupt changes in the parameters of the sys-
tem as the valve goes from positive to negative spool
stroke and vice versa. When the controlled output is
pressure, the effect of any abrupt changes in the flow
gain of the system is intuitively expected to be much
more severe than in position or velocity servos due to
the continuity equation and the near incompressibility
of hydraulic oil, in other words only a minute increase
in the flow through the valve may lead to a drastic
change in the pressure differential across the actuator
in a small amount of time. The effect of abrupt changes
in the parameters of a system under linear feedback is
equivalent to that of an additional external disturbance
that must be attenuated by the feedback (Horowitz,
1963), which makes it clear why a feed forward from
the velocity disturbance is not capable of reducing the
magnitude of this peaking of the control error.

Using the numerical simulation model it is found
that the magnitude of the peaking may be amplified or
reduced by adjusting the parameters of Eqs. (13)-(20),
as well as the parameters of Eqs. (7)-(8). Further-
more, the magnitude and shape of the peaking may be
affected in varying degrees by nonlinearities commonly
found in hydraulic servo systems such as hysteresis,
backlash, variable gain in the flow characteristics of
the servo valve and valve deadband. Figure 7 shows
the control error under conditions identical to that of
Figure 6 with the exception of the introduction of a
minute valve deadband of 0.5%, which may occur in
practice even for critically lapped servo valves (Mer-
ritt, 1967). In Figure 7 the control error has increased
to 2816 N and 2185 N without and with the use of
feed forward, respectively. Again, as in Figure 6, the
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use of feed forward from the velocity disturbance ap-
pears effective in reducing the control error, except at
the instances where the actuator is forced to change
directions. Although valve deadband may be easily be
compensated for, compensation of the other aforemen-
tioned nonlinearities is more difficult to achieve and
typically constitute uncertain parameters that may be
problematic to identify or measure in practice.
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Figure 8: Initial comparison.
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Figure 9: Variable gain characteristics introduced.
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Figure 10: Variable gain characteristics adjusted
further.

At this point it is clear that depending upon a num-
ber of parameters which may be difficult to predict
beforehand, the nonlinear peaking phenomenon may

or may not occur in a hydraulic pressure servo sub-
jected to external velocity disturbances and could po-
tentially be amplified by the presence of nonlinearities
commonly found in hydraulic systems. Care should
be taken to investigate the effects of such nonlineari-
ties when attempting to predict the performance of a
system to be designed based on numerical simulations.
Figure 8 shows a comparison between the initially ex-
pected performance of the experimental system based
on numerical simulations and the actual performance
in the presence of a sinusoidal velocity disturbance with
an amplitude of 40 mm and a frequency of 0.1 Hz with-
out the use of velocity feed forward for a force set point
of 10 kN using the PI controller of Section 5. Based on
the simulations in Figure 8, a minor peak is expected as
the load cylinders are forced to change directions. On
the experimental system on the other hand, a much
larger peak along with two minor peaks are observed
that significantly degrade the performance of the sys-
tem.
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Figure 11: Variable gain characteristics utilized in Fig-
ure 9.

Numerical investigations indicated that out of the
aforementioned factors and nonlinearities, the in-
creased magnitude of the peak observed experimentally
combined with the overall shape of the control error
could only be explained for the system under consid-
eration by imperfections in the curve describing the
relation between the spool stroke of the valve and its
output flow for a fixed pressure differential across the
valve. Modifying this curve in the numerical simulation
model as shown in Figure 11, where minor fluctuations
in the linearity of the curve have been introduced, a
closer match between numerical and experimental data
is achieved as seen in Figure 9, where the qualitative
shape is matched quite well with a slight mismatch in
the amplitudes. Adjusting the curve slightly and mod-
ifying each metering edge of the valve individually, the
results shown in Figure 10 were obtained, where the
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amplitudes are now closer matched, however with the
largest peaks slightly out of phase. Possibly a bet-
ter match could be achieved by further adjustments,
however even minor modifications of the curve in Fig-
ure 11 can result in large changes in the control error,
which makes obtaining a perfect match rather difficult.
The results of Figures 9 and 10 are however sufficient
to demonstrate the likelihood that the amplification of
the control error on the experimental system is largely
due to imperfections in the flow-spool stroke curve of
the valve, particularly near valve null. Although there
is a slight null shift present in the curve of Figure 11,
this is not the cause of the amplification of the con-
trol error and similar results may be obtained with a
curve that does not have such a null shift. Attempt-
ing to compensate for the null shift does not affect the
magnitude nor the shape of the control error.

In addition to ensuring valve operation only on one
side about valve null, i.e. u > 0 or u < 0, which
depends upon a number of factors that typically do
not constitute a part of the design freedom, numerical
investigations based on the model used here revealed
that for certain system configurations a sinusoidal con-
trol error with the absence of the nonlinear peaking
phenomenon may be achieved by sufficient crossport
leakage, i.e. from p1 to p2, even for operating condi-
tions where the valve is operating about null. From
a design perspective, including an adjustable crossport
orifice between the lines of the actuator could therefore
be advantageous in the design of pressure controlled
hydraulic actuators subject to external velocity distur-
bances. Such an orifice could possibly also be used for
some system configurations to shift the operating point
of the valve away from null.

In the following sections, the capability of ILC to
reduce or eliminate the peaking of the control error that
occurs as a result of the nonlinear peaking phenomenon
is evaluated.

5 Control Design I: Initial
Evaluation

As mentioned previously, the control specifications are
for the load cylinders to apply a constant force in the
presence of velocity disturbances caused by the main
cylinder. In particular, the load cylinders should be
capable of maintaining a force of 10 kN when the main
cylinder is actuated with a sinusoidal velocity profile
of frequency of 0.1 Hz with an amplitude of 40 mm.
The minimum acceptable accuracy for this application
is an accuracy of ±500 N, where greater accuracies are
preferred. Initially a PI controller optimized for dis-
turbance rejection using MATLAB’s pidtune was eval-

uated on the experimental system. Due to the resonant
mode resulting from the presence of a flexible environ-
ment it was found favourable to include a first order
filter in the design, which increased the achievable gain
and bandwidth of the controller.
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Figure 12: Limit cycle oscillations in the absence of ex-
ternal velocity disturbances.
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Figure 13: Performance in the presence of velocity dis-
turbance using feedback.
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Figure 14: Performance in the presence of velocity dis-
turbance using feedback and feed forward.

Figure 13 shows the performance of the PI controller
in the presence of the velocity disturbances generated
by the sinusoidal motion of the main cylinder. As
pointed out previously, the effects of even minor ve-
locity disturbances can be quite severe due to the near
incompressibility of hydraulic oil and the natural ve-
locity feedback as is observed in Figure 13. The pres-
ence of the nonlinear peaking phenomenon discussed
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in Section 4 is also evident, where a severe peaking of
the control error is observed as the load cylinders are
forced to change directions, resulting in a peak-to-peak
amplitude of the control error of 7238 N.

The velocity disturbance caused by the main cylinder
is measurable, for this reason a fixed gain feed forward
from the velocity disturbance was evaluated in com-
bination with the PI controller. Figure 14 shows the
resulting control error where it is seen that although
the feed forward significantly improves the overall ac-
curacy, the peaking that occurs as a result of the non-
linear peaking phenomenon appears unaffected, result-
ing in a peak-to-peak amplitude of the error of 4501N.
An explanation for the large magnitude of this peaking
was presented in Section 4.

Additionally it was found that the load cylinder cir-
cuit inherently suffers from limit cycle oscillations un-
der feedback control, as seen in Figure 12 where a limit
cycle with a peak-to-peak amplitude of approximately
400 N is observed for a constant set point in the ab-
sence of external velocity disturbances. The system
was also found to limit cycle with a similar amplitude
using PID controllers, lag compensators, lead compen-
sators and lag-lead networks. A simple P controller did
not result in limit cycle oscillations, however failed to
provide any control over the system with the controlled
output simply drifting to an arbitrary value in the ab-
sence of velocity disturbances. In the presence of veloc-
ity disturbances, the error under P control reaches its
maximum attainable value dictated by pressure relief
valves placed in the load cylinder circuit that for safety
reasons limit the maximum line pressures. These valves
are to be closed under normal operating conditions and
were therefore not included in the mathematical model
of the system.

6 Control Design II: Iterative
Learning Control

In general, ILC may be applied alone in an open-loop
fashion, or in a closed-loop fashion where the ILC al-
gorithm adjusts the set point or reference trajectory of
a feedback controller (Longman, 2000). For the sys-
tem under consideration, in the absence of a feedback
controller, the velocity disturbance generated by the
main cylinder is sufficient for the control error to grow
until the pressures of the load cylinder circuit reach
levels that cause the safety relief valves to activate.
The control error then reaches values above 50 kN and
the relief valves of the load cylinder circuit are contin-
uously activated. Based on this it was concluded that
the application of ILC to the system in an open-loop
fashion is not feasible and that ILC must be applied

in combination with a feedback controller capable of
maintaining a reasonable initial accuracy and prevent-
ing the activation of the safety relief valves of the load
cylinder circuit. As demonstrated in Section 5 however,
the experimental system inherently suffers from limit
cycle oscillations under feedback control. This could
potentially lead to instability issues due to interactions
between the ILC learning algorithm and the limit cy-
cles. Furthermore, even if a stable solution could be
achieved in the presence of limit cycles, with the pres-
ence of limit cycle oscillations having a peak-to-peak
amplitude of 400 N, achievement of a satisfactory ac-
curacy is not a reasonable expectation. For these rea-
sons, a feedback controller is first designed specifically
to eliminate limit cycle oscillations, and then applied
in combination with ILC.

6.1 Describing Function Based Feedback
Controller

Numerical investigations traced the cause of the limit
cycle oscillations back to the electromagnetic hysteresis
of the servo valve. In this section a feedback controller
is designed to eliminate limit cycle oscillations due to
valve hysteresis based on the describing function of hys-
teresis. In (Mougenet and Hayward, 1995), the authors
proposed based on the general shape of the describing
function of hysteresis that its effect may be viewed as
a pure phase delay at the crossover frequency and used
this to design a feedback controller that successfully
eliminated limit cycle oscillations due to valve hystere-
sis. A similar approach is taken here, where empha-
sis is also placed on the magnitude increase resulting
from the hysteresis nonlinearity. The design approach
is therefore to maximize the distance to the critical
point for all frequencies near and after crossover in or-
der to prevent intersections with the critical point due
to the hysteresis nonlinearity. For a review on limit
cycle prediction using describing functions and the de-
scribing function of hysteresis, see (Merritt, 1967) and
(Franklin et al., 2015).

The controller is designed using the Nichols plot,
where the distance to the critical point at any given
frequency is easily observed. Figure 15 shows the re-
sulting feedback controller design, where a higher order
integrating controller has been designed using a PI con-
troller as a starting point. By cascading multiple lead
terms a large radial distance from the critical point is
achieved at all frequencies after crossover. The intro-
duction of lead terms brings the resonant mode closer
to the critical point, to counteract this effect a com-
plex pole and a complex zero were also placed in the
controller to keep the resonant mode at an appropriate
distance from the critical point. In this case, the design
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process led to a ninth order controller. Possibly the
controller order could be reduced using reduction algo-
rithms, however this was not found to be necessary for
implementation on the CompactRIO. This controller
is referred to as the describing function based (DFB)
feedback controller and its capability to eliminate limit
cycle oscillations is evaluated experimentally in Section
7.
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Figure 15: Nichols plot of the DFB feedback controller.

6.2 Iterative Learning Feed Forward

The ILC update law considered here is given by
(Norrlöf, 2000):

uk+1(t) = uk(t) + L(q) · ek(t) (33)

where q is the discrete time-shift operator and L(q) is
a learning filter. The learning filter used in this paper
is given by (Wallén, 2011):

L(q) = k · qδ (34)

where k and δ are tunable parameters. The parame-
ter k is referred to as the learning gain and is typically
chosen to be less than unity (Longman, 2000). For
δ = 0 the physical interpretation of equation (34) is as
follows: at any given discrete point in time, the ILC
feed forward is updated by a term that is proportional
to the control error observed at the corresponding time
step in the previous iteration. For δ > 0 the interpre-
tation is similar, except that the ILC feed forward is
updated by a term proportional to the control error
at δ time steps ahead of the corresponding time step
in the previous iteration. In this manner, the control
algorithm may be interpreted as a PD-controller with
respect to iteration.

A sufficient condition for monotonic convergence of
the ILC is given by (Wallén, 2011):

|1−G(eiωτ )L(eiωτ )| < 1 (35)

for all ωτ ∈ [−π, π], where τ refers to the sample rate
and G describes the dynamics of the plant. Equation
(35) is referred to here as the stability criterion and
may be evaluated graphically on the Nyquist plot by
imposing that the Nyquist contour of G(eiωτ )L(eiωτ )
must be contained inside a unit circle centered at unity
in the complex plane (Longman, 2000).

In order to provide robustness towards unmodelled
effects such as sensor noise and model uncertainty in
the high frequency range, the control error is filtered by
a second-order butterworth lowpass filter before sent to
the learning filter. This stops the learning process for
frequencies above the cutoff frequency of the filter and
as a result the convergence criterion has to be fulfilled
only for frequencies up to the cutoff frequency (Long-
man, 2000). For the system at hand it was found by
trial and error that a cutoff frequency of 10 Hz was
sufficient to provide long term stability without reduc-
ing the convergence rate of the ILC noticeably. The
learning gain k was selected as k = 0.8, keeping in
mind that k is typically selected as less than unity and
that larger values of k represent a more aggressive con-
troller (Longman, 2000). The tunable parameter δ was
then adjusted to fulfill the convergence criterion. It was
found that δ = 5 is sufficient to satisfy the convergence
criterion up to and beyond the cutoff frequency and
thus provide a stable ILC configuration. For details
on selecting the parameters of the ILC learning filter
see (Wallén, 2011) and (Norrlöf, 2000). The feedback
controller and ILC update law are both implemented
using a sample rate of 10 ms.
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Figure 16: Graphical evaluation of the stability crite-
rion for ILC applied to the DFB feedback
controller.

Figure 16 shows the graphical evaluation of the con-
vergence criterion using the Nyquist plot, where the
grey circle indicates a unit circle centered at unity. The
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Nyquist contour is contained within the unit circle for
frequencies up to about 14 Hz, meaning that the se-
lected cutoff frequency of 10 Hz is sufficient to achieve
a stable ILC configuration. From equation (33) it is
seen that the ILC requires storing of the arrays ek and
uk in between sampling periods. For the selected sam-
ple rate and the system specifications being periodic
with a period of 10 seconds this requires the storing of
two arrays each containing 1000 elements in between
sampling, which is well within the memory capabilities
of the CompactRIO. The ILC algorithm is then imple-
mented on the CPU of the CompactRIO together with
the DFB feedback controller.

7 Experimental Results

Figure 17 shows the control error for a constant set
point using the DFB feedback controller in the absence
of velocity disturbances, compare with Figure 12.

It is seen that the DFB feedback controller effectively
eliminates limit cycle oscillations in a steady-state situ-
ation and the only fluctuations of the control error are
due to sensor noise. In Figure 18 the step response of
the DFB feedback controller is shown where a reference
step change from 9 kN to 10 kN occurs at the 10 second
mark. With the exception of minor remnants that may
be observed in the transient response for the first two
seconds after the step change, limit cycle oscillations
have been eliminated in the transient response as well.
These minor remnants indicate that the distance to the
critical point should not be decreased any further and
thus prevents more aggressive tuning of the feedback
controller. In addition to the feedback controller, a
fixed-gain feed forward from the velocity disturbance
is also implemented. Figure 19 shows the control error
of this configuration in the presence of the velocity dis-
turbance generated by the main cylinder without the
application of ILC. The peak-to-peak amplitude and
RMS of the control error are 9197 N and 1842 N, re-
spectively. The PI controller discussed in Section 5
achieved a peak-to-peak control error of 4501 N when
combined with fixed-gain feedforward, which indicates
that the performance of the DFB feedback controller is
somewhat conservative. This is however a natural re-
sult of the design approach that was taken in order to
eliminate limit cycle oscillations, as increasing the dis-
tance to the critical point reduces the achievable per-
formance as described by Bode’s integral of feedback
(Lurie and Enright, 2012).

Next, the ILC algorithm is activated. The initial
convergence after activation of the ILC is shown in
Figure 20 over two minutes, where the ILC is activated
shortly before the 20 second mark. In Figure 20 both
the RMS and the peak-to-peak amplitude of the control

error are seen to decrease monotonically each iteration.
After six minutes and forty seconds, the control error
appears to have converged to its final accuracy.
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Figure 17: Elimination of limit cycle oscillations,
steady-state.
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Figure 18: Elimination of limit cycle oscillations, tran-
sient response.
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Figure 19: Performance in the presence of velocity
disturbance.

Figure 21 shows the control error over eight itera-
tions after convergence where k0 indicates the iteration
where zero minutes have passed since convergence. The
accuracy is maintained within a ± 250 N band for the
majority of the time, with a reduction in the peak-to-
peak amplitude of the control error by a factor of more
than 19 and a reduction in the RMS of the error by a
factor of more than 30.

The DFB-ILC combination achieves long term sta-
bility and maintains the converged accuracy as time
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grows large. Figure 22 shows the control error two
hours after convergence of the ILC where the the con-
verged accuracy is still maintained. This corresponds
to the ILC having been active for more than 750 it-
erations, demonstrating the long term stability of the
DFB-ILC combination. Inspecting the control error at
other points in time, errors similar to that of Figures
21 and 22 are observed.
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Figure 20: Initial convergence of the ILC.

Iteration [-]

k0 k0+1 k0+2 k0+3 k0+4 k0+5 k0+6 k0+7 k0+8

C
on

tr
ol

 E
rr

or
 [N

]

-400

-300

-200

-100

0

100

200

300

400

Figure 21: Control error after convergence of the ILC.
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Figure 22: Control error two hours after convergence of
the ILC.

It should be noted that the peaking of the control er-
ror resulting from the nonlinear peaking phenomenon
that is observed in Figure 20 appears to completely dis-
appear as the ILC converges. The maximum amplitude
of the converged control error seen in Figures 21 occurs
when the cylinders are moving with their maximum ve-
locity, whereas the nonlinear peaking phenomenon oc-
curs when the cylinders are close to zero velocity. In

other words, the nonlinear peaking phenomenon is no
longer the limiting factor in terms of performance, and
it may be concluded that its effects have been elimi-
nated by the application of ILC.

8 Discussion and Conclusions

In this paper a performance limiting phenomenon that
may occur in the pressure control of hydraulic actu-
ators was presented and investigated. It was shown
that depending upon the system configuration and op-
erating conditions, a severe peaking of the control er-
ror may be observed in the presence of external veloc-
ity disturbances. Numerical investigations showed that
the occurrence of such a phenomenon depends upon a
number of factors that may be difficult to predict for a
given system without access to experimental data. The
significance of the phenomenon from a design perspec-
tive and possible ways of avoiding it were discussed.
For situations where the peaking of the control error
cannot be avoided, ILC was proposed and evaluated as
a solution for improving the system’s performance. For
the system under consideration, application of ILC in
an open-loop fashion was not feasible due to the pres-
ence of external velocity disturbances, necessitating the
application of ILC in combination with a feedback con-
troller. The experimental system was found to inher-
ently suffer from limit cycle oscillations under feedback
control due to the presence of valve hysteresis. For this
reason a feedback controller was designed for the elimi-
nation of limit cycle oscillations based on the describing
function of hysteresis and applied in combination with
the ILC.

Experimental results demonstrate the elimination of
limit cycle oscillations and long term stability of the
proposed solution, evaluated here for more than 750 it-
erations of continuous operation throughout which the
ILC learning algorithm remained active. Upon con-
vergence of the ILC the maximum amplitude of the
control error remains less than 0.3 kN, with the RMS
and peak-to-peak of the error having been reduced by
factors of 30 and 19, respectively. Complete conver-
gence was achieved in 40 iterations, however an accu-
racy greater than 0.5 kN was achieved already after 23
iterations.

Several accounts of ILC applied to hydraulic motion
control problems have appeared in the literature, see
for example (Lingjun et al., 2014), (Chen and Zeng,
2003), (Daley et al., 2004) and (Zhao et al., 2005),
where the achieved reduction in the control error vary
significantly from one application to another, even for
similar or identical ILC algorithms. The reported con-
vergence rates in these applications range from any-
where between 15 and 100 iterations, also for similar
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algorithms. Presumably the achievable improvement
using a given ILC algorithm depends upon a number
of factors such as the system configuration, tuning of
the ILC algorithm, whether applied in an open-loop
fashion or a closed-loop fashion as well as the feedback
controller when applied in a closed-loop fashion.

Previous investigations of ILC applied to hydraulic
pressure control problems on the other hand appear to
be limited, where a previous application suitable for
comparison has been located in (Wang et al., 2015),
where ILC was applied to improve the tracking accu-
racy of a pressure controlled hydraulic actuator in the
absence of external velocity disturbances. Limit cycle
oscillations were not present and the absence of veloc-
ity disturbances allowed the application of ILC both
in an open-loop and closed-loop fashion, the latter re-
sulting in the better performance. Improved tracking
accuracy was achieved for both low and high frequency
tracking, where the high frequency tracking achieved
an accuracy of 0.5 kN, improving the accuracy by a
factor of four over a conventional PID controller after
25 iterations. This is comparable to the results pre-
sented in this paper, with the exception of the factor
by which ILC improved the accuracy. This difference
is likely due to a larger initial error resulting from the
presence of the nonlinear peaking phenomenon as well
as limit cycle oscillations which necessitated the use of
a rather conservative feedback controller.

In summary the results presented here compare well
to that of previous applications both in terms of accu-
racy and convergence rate, the novelty of the results
presented here being the application of ILC to elimi-
nate the effects of the nonlinear peaking phenomenon
and the application of ILC in a closed-loop fashion to a
system that inherently suffers from limit cycle oscilla-
tions under feedback. By applying ILC in combination
with the DFB feedback controller both the effects of
the nonlinear peaking phenomenon and limit cycle os-
cillations were eliminated and stability was achieved
with a satisfactory accuracy for long periods of con-
tinuous operation. For the system under consideration
the convergence rate is also satisfactory. Faster con-
vergence may possibly be achieved using a stronger
feedback controller, however preliminary attempts to
accomplish this were not successful due to the appear-
ance of limit cycles when increasing the gain of the con-
troller or decreasing the distance to the critical point.
Further investigations into feedback controller design
for the elimination of limit cycle oscillations in valve
controlled hydraulic actuators will be the topic of fu-
ture research.
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