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Abstract

An existing method for tuning a PI controller for an integrating plus time delay plant are extended to be
used for the design of a PD controller for a double integrating plus time delay plant. The PD controller
is extended with integral action and an ideal PID controller is suggested in order to achieve optimality
of the closed loop responses. Furthermore, some analytical results concerning the proposed PD and PID
controller algorithm regarding the relative time-delay margin are worked out and presented. The algorithm
and an existing method are successfully compared against each other on some examples, e.g. the planar
movement control of a mariner vessel.
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1. Introduction

This paper is concerned with PD and PID con-
troller tuning of Double Integrating Plus Time-Delay
(DIPTD) systems or processes. DIPTD processes
and close to such processes are common and impor-
tant processes in, e.g., dynamic positioning systems
of ships and other vessels (Schei (1996)). Examples
of DIPTD systems may be found in systems where
the position/orientation and (angular) velocity are the
main states e.g., single axis spacecraft rotation Hughes
(1986) and rotary crane motion Gustafsson (1996), in
order to mention a few.

In frequency analysis the frequency response h0(jω)
of the loop transfer function h0(s) is of central impor-
tance. The frequency response of the loop transfer
function is obtained by putting the Laplace operator
s = jω where ω ≥ 0 is the frequency and j =

√
−1 is

the complex number. In a standard feedback system,
the loop transfer function h0(s) contains at least the
product of the controller transfer function hc(s) and
the plant transfer function hp(s). The frequency re-

sponse h0(jω) is the argument for using the Nyquist
and the simplified Bode stability criterion, latter can
only be used for stable open loop processes. Notice,
that a system is marginally stable if possible poles on
the imaginary axis are distinct from one another. How-
ever, a DIPTD system is not marginally stable and
is defined as an unstable process due to two common
poles on the imaginary axis. Notice also that an im-
pulse response of a DIPTD system is unbounded and
hence defined unstable.

Different systems may have different controllers.
However, often the loop transfer function may be the
same or approximately the same. This is a useful ob-
servation which we will use to design the PD/PID con-
troller for the DIPTD plant studied in this work. We
will be focusing on a classical feedback system with a
disturbance v, as illustrated in Figure 1.

We will now illustrate that PI controller tuning rules
for Integrating Plus Time-Delay (IPTD) plants may be
used to design PD controller tuning rules for DIPTD
processes, at least when the loop transfer function is
the same. Most PI controller tuning rules for IPTD
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Figure 1: Feedback system. Plant model hp(s), distur-
bance model hv(s) and controller hc(s). Dis-
turbance v at the input when hv(s) = hp(s)
and at the output when hv(s) = 1.

processes with model

hp(s) = K
e−τs

s
, (1)

where K is the gain velocity or the slope of the inte-
grator and, τ , is the time-delay, may be formulated in
the following setting Di Ruscio (2010), e.g.

Kp =
α

Kτ
, Ti = βτ, (2)

where, Kp, is the PI controller proportional gain, Ti,
the integral time. Here, α, and, β, are dimensionless
parameters, which may be related to each other, e.g.
such that β is a function of α or vice versa. Hence a
PI controller is usually sufficient and of the form

hc(s) = Kp
1 + Tis

Tis
. (3)

The loop transfer function for a standard feedback sys-
tems as in Figure 1 with Eqs. (1) and (3) is

h0(s) = hc(s)hp(s)

= Kp
1 + Tis

Tis
K
e−τs

s

=
KpK

Ti
(1 + Tis)

e−τs

s2
. (4)

Now consider a DIPTD plant y = hp(s)u with model

hp(s) = K
e−τs

s2
, (5)

where K is the gain acceleration 1 and τ the time-delay.
Consider a PD controller of the form

hc(s) = Kp(1 + Tds) = K ′p
1 + Tds

Td
, (6)

where we for simplicity of comparison, and using the
results in Di Ruscio (2010) Alg. 6.1, have defined the

1In time domain K = ÿ
u(t−τ) , i.e. gain per square time units.

modified proportional gain K ′p = KpTd. It turns out
that the loop transfer function of a standard feedback
system with a PD controller and a DIPTD model will
be of the same form as in Eq. (4), i.e. given by

h0(s) = hc(s)hp(s)

= K ′p
1 + Tds

Td
K
e−τs

s2

=
K ′pK

Td
(1 + Tds)

e−τs

s2
. (7)

Hence, it turns out that the tuning rules presented in
Di Ruscio (2010) may be used to derive PD tuning
rules for a DIPTD system. This means that we may
deduce PD tuning rules for a DIPTD plant, by replac-
ing Kp and Ti in the PI tuning algorithm Eq. (2) for
the IPTD system with KpTd and Td, respectively, in
order to derive the PD controller parameters

Td = βτ,Kp =
α

KτTd
, (8)

for a DIPTD system with model as in Eq. (5).
The PD controller in Eq. (8) is illustrated in Figure

2 (unit reference step response with no disturbances)
and Figure 3 (input unit step disturbance with zero
reference) with the following parameters, Ziegler and
Nichols (1942) where α = 0.71, β = 3.33, Tyreus and
Luyben (1992) α = 0.42, β = 7.32, Skogestad (2003)
with Tc = 1.5τ and the method in Di Ruscio (2010)
with relative delay margin δ = 1.6.
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Figure 2: Unit reference step response, no disturbance.
PD controllers for a DIPTD plant with K =
1 and τ = 1.
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Figure 3: Input unit step disturbance, reference is zero.
PD controllers for a DIPTD plant with K =
1 and τ = 1.

Theoretically, for a DIPTD process, it is sufficient
with a pure Derivative (D) controller. However, due
to modeling uncertainties and in case of input dis-
turbances, proportional action is required in order to
stabilize the responses and at last a PD controller is
needed. In order to eliminate input disturbances, as
illustrated in Figure 3, integral action is included and
we use a PID controller, in order to ensure the output
y ≈ r as time goes to infinity.

The main contributions of this paper may be item-
ized as follows:

• We propose a new algorithm for tuning PD con-
trollers with fixed maximum time-delay error (rel-
ative delay margin) for a DIPTD plant in Sec. 2.
The algorithm has two tuning parameters, i.e. the
relative time-delay margin and a second method
constant as tuning parameters.

• We include integral action, and extend the PD
controller presented in Sec. 2 and propose an ideal
PID controller tuning algorithm with prescribed
fixed maximum time-delay error (prescribed time-
delay margin) in Sec. 3.

All numerical calculations and plotting facilities are
provided by using the MATLAB software, MATLAB
(2016). The rest of this paper is organized as follows.
In Sec. 2 we propose PD controller tuning rules in
terms of a prescribed time-delay margin for a DIPTD
plant, and in Sec. 3 we propose an ideal PID controller

tuning algorithm for the same plant. Some discussions
and definitions are provided in Sec. 4 and simulation
examples are presented in Sec. 5. Finally, concluding
remarks are given in Sec. 6.

2. Tuning PD controller with Fixed
Relative Time-Delay Margin for
DIPTD Plant

In order to get some insight into the Phase Margin
(PM) of the closed loop system and the maximum
time-delay error, dτmax, tolerated before the system
becomes unstable, we work out some analytic results
in the following, which lead to a new PD controller
tuning method for DIPTD processes.

We consider a DIPTD system with model as in Eq.
(5) and a PD controller as in Eq. (6). The loop transfer
function is given in Eq. (7). The frequency response is
given by, h0(jω) = |h0(jω)|ej∠h0(jω), where the mag-
nitude is given by

|h0(jω)| = KpK

ω2

√
1 + (Tdω)2, (9)

and the phase angle as

∠h0(jω) = −τω − π + arctan(Tdω). (10)

First, we find the gain crossover frequency, ωc, analyt-
ically such that |h0(jω)c| = 1. From this we find ana-
lytic results for the Phase Margin, PM = ∠h0(jωc)+π,
and the maximum time-delay error, dτmax, such that,
0 = PM − dτmaxωc, in the following. Define a factor,
f , as

f =
1 +

√
1 + 4

c̄2

2
, (11)

where the product, c̄ = αβ, is constant.
The gain crossover frequency is then given by

ωc =
√
f
α

τ
, (12)

and the PM, in radians,

PM = δ
√
fα, (13)

where δ is defined in the following. The maximum
time-delay error may be defined as

dτmax =
PM

ωc
= δτ, (14)

where we have used Eqs. (12) and (13) in order to
derive the last equality in Eq. (14). From this we
may define δ = dτmax

τ as the relative time-delay margin,
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and is the main tuning parameter in the algorithm to
be presented. This means that the closed loop system
may tolerate a Delay Margin (DM) equal to dτmax = δτ
where δ is prescribed by the user. We may express δ
as

δ =
arctan(

√
fαβ)√

fα
− 1. (15)

From Eq. (15) we have

δ = a
1

α
− 1, (16)

and with c̄ = αβ

δ =
a

c̄
β − 1, (17)

where the parameter, a, given by

a =
arctan(

√
f c̄)√

f
, (18)

is a function of c̄ = αβ and constant. Notice that
the parameter, f , is defined by Eq. (11). We propose
the following algorithm for tuning PD controllers for
DIPTD plants

Algorithm 2.1 (Max time-delay error tuning)
Tuning PD controllers for a DIPTD process. Define

the constant method product parameter

c̄ = αβ. (19)

From this, we may express, β, as a linear function of a
prescribed time-delay margin 0 < δ, in order to ensure
the stability of the feedback system. We have from Eq.
(17)

β =
c̄

a
(δ + 1), (20)

where parameter, a, is defined in Eq. (18). Notice that,
α, then is found as

α =
c̄

β
=

a

δ + 1
. (21)

Or equivalently in terms of the PD controller parame-
ters

Td = βτ, (22)

Kp =
α

KτTd
. (23)

The Alg. 2.1 may simply be derived from Alg. 6.1
in Di Ruscio (2010) by replacing Kp and Ti in that

algorithm with KpTd and Td, respectively. This is also
illustrated in the introduction Sec. 1

The tuning parameter c̄ in the PD controller tuning
Alg. 2.1 may be chosen relatively wide as

1.5 ≤ c̄ ≤ 4. (24)

Notice that the choice c̄ = 2.0 is optimal in the sense
that the sensitivity index Ms robustness measure is
minimized, as illustrated in Figure 4. Performance
measured in terms of minimizing Integral Absolute Er-
ror (IAE) in case of a reference step response only, is
favored by choosing the limit c̄ = 4. The tuning pa-
rameter c̄ is discussed further in connection with an
ideal PID controller tuning in Sec. 3. However, we no-
tice for the moment that the lower limit, c̄ = 1.5 in Eq.
(24) may give oscillations in the step and disturbance
input/output responses in case of tuning an ideal PID
controller.
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Figure 4: Illustration of sensitivity index Ms as a func-
tion of the tuning parameter c̄ = αβ. PD
controller tuning Alg. 2.1 with fixed relative
delay error δ = 1.6 for a DIPTD plant with
K = 1 and τ = 1.

It seems reasonable to choose the relative time-delay
error, 0 < δ, in order to ensure stability. We propose

1.1 ≤ δ ≤ 3.5, (25)

to archive sufficient robustness. We mention at the end
that we have two alternatives for choosing the tuning
parameter δ interpreted as follows.

1. Specify the relative time-delay tuning parameter
0 < δ = dτmax

τ in Alg. 2. This means that the
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resulting closed loop system may tolerate a de-
lay margin DM = dτmax = δτ . Here, in case
of a large/small time-delay the DM will be cor-
respondingly larger/smaller resulting in slow/fast
responses, and the tuning parameter δ should be
reduced/increased in order to obtain acceptable
responses. Margins, PM , GM and Ms etc. are
constant when varying gain K 6= 0 and/or time-
delay 0 < τ (prescribed δ and c̄).

2. If a fixed time-delay margin, independent of τ , is
wanted, it makes sense to instead specify δ := δ

τ
as the tuning parameter in Alg. 2.1. This ensures
a constant prescribed time-delay margin DM =
dτmax = δ. This is seen by substituting δ in Eq.
(14) with δ

τ . The margins PM , GM , Ms and ωc
etc. are varying when varying time-delay 0 < τ
(constant K 6= 0 and prescribed δ and c̄), but
the delay margin PM

ωc
= δ is constant. Margins

are constant when varying gain K 6= 0 (constant
0 < τ and prescribed δ and c̄).

A MATLAB m-file implementation of Alg. 2.1 is pro-
vided in App. A. A proof follows the same lines as in
Di Ruscio (2010), Sec. 6. The PD tuning Algorithm
2.1 in case of double integrating systems with no time-
delay (τ ≈ 0) is discussed in Sec. 4.2.

3. Tuning PID controller for
DIPTD plant

We propose an ideal PID controller

hc(s) = Kp(1 +
1

Tis
+ Tds), (26)

with integral time constant

Ti = γTd, (27)

where we define γ as the relative integral derivative
time ratio. Notice that a linear relationship Ti = γTd+
γ0 may be justified,as illustrated in Figure 12 and as
discussed in Sec. 5.

Here we use the proportional constant Kp and the
derivative time constant Td as developed in Sec. 2 Alg.
2.1, i.e. Eqs. (23) and (22), respectively. Note that
the SIMC, on serial (or cascade) form as described in
Skogestad (2004) p. 94, can be written on the ideal
form, which corresponds to putting γ = 4 in Eq. (27).
Based on numerical experiments we propose

γmin ≤ γ <∞. (28)

It seems reasonable to chose 1 ≤ γmin. An illustra-
tion of the sensitivity index Ms as a function of c̄ for

varying γ is illustrated in Figure 8. See also Figure
4 for the limiting case of a PD controller (γ → ∞)
where Ms is minimized for c̄ = 2. For decreasing in-
tegral derivative ratio 1.6 ≥ γ ≥ ∞ we find that the
minimizing parameter c̄ is approximately in the inter-
val 2.1 ≤ c̄ ≤ 2.5. It seems reasonable to prescribe
the method parameter c̄ in this interval for given ro-
bustness δ and/or Ms and optimize on performance
with respect to γ, e.g. using the IAE for input dis-
turbance as a performance index. As also claimed in
Grimholt and Skogestad (2016a) it would be sufficient
for DIPTD processes to only consider performance in
case of input disturbances. Hence, it makes sense to
consider the IAE for input disturbances as a perfor-
mance index. However, it also makes sense to take
output disturbances into consideration and we propose
to use as presented in Grimholt and Skogestad (2016a)
the Pareto Optimal (PO) criterion J (a function of
the IAE for both input and output disturbances) as a
function of the sensitivity index Ms as a measure for
choosing the default tuning parameters c̄ and γ. As
illustrated in Figure 5 in order to maximize robustness
we chose c̄ = 2.5 and γ = 2.1 as reasonable δ-tuning pa-
rameters. Figure 5 also illustrates that the PID tuning
algorithm in this paper, Alg. 2.1 and Eq. (27), gives
an edge over the SIMC PID tuning rule for a DIPTD
process. Remarkably, the margins of using this PID
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c̄ = 2.5 and γ = 2.1. SIMC algorithm also
illustrated. DIPTD plant with K = 1 and
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controller (Alg. 2.1 and Eq. (27)) on a DIPTD plant
have approximately the same margins as using the PD
controller with fixed time-delay margin δ as developed
in Sec. 2, e.g. the normal Gain Margin (GM) is ap-
proximately unchanged. See Figure 6 for illustration.

It can be proved that the frequency response of the
loop transfer function, in this case, can be expressed
as,

h0(jω) = |h0(jω)|ej∠h0(jω), (29)

where the magnitude |h0(jω)| and phase angle ∠h0(jω)
are given as,

|h0(jω)| =
KpK

ω2

√
1 +

(
Tdω −

1

γTdω

)2

, (30)

∠h0(jω) = arctan

(
Tdω −

1

γTdω

)
− τω − π.

(31)

Note that when γ is sufficiently large or ∞, we obtain
the same results as for the PD controller in Sec. 2, viz.
Eqs. (9) and (10). Notice that we may solve Eq. (30)
equal to one, for the gain crossover frequency, ωc, ana-
lytically but due to the complexity of formulating the
solution and that minor advantages of doing so, com-
pared to using Alg. 2.1 and since the margins (normal
GM illustrated in Figure 6.) are approximately un-
changed, as mentioned above we do not consider this
further. However, also notice that the relative time-
delay error tuning parameter δ in the PID tuning algo-
rithm is an approximate relative DM. The difference is
marginal and illustrated in Figure 9, where actually we
have 0 < δ ≤ DM . Notice that the frequency response
Eq. (29) may be used to sketch the Bode- and Nyquist
plot, e.g. Figures 6 and 7, respectively. Notice that
GMr is the loop gain reduction margin and that we
may tolerate a multiplicative loop gain uncertainty, ku
in the loop gain, bounded by GMr < ku < GM before
instability.

4. Discussion and Definitions

4.1. On the SIMC algorithm

The SIMC PI controller tuning rules, i.e. the settings
for Kp and Ti in Eq. (3), for an IPTD plant Eq. (1)
are given as

Kp =
1

K(Tc + τ)
, Ti = c̄(Tc + τ), (32)

where c̄ = 4 default in SIMC. However, working with
c̄ gives more degrees of freedom in the PD/PID algo-
rithm to come. Consider a DIPTD plant as in Eq. (5)
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with a PD controller as in Eq. (6). Using the same
argumentation as in Sec. 1, the loop transfer function
Eq. (4) is similar to Eq. (7) if a PD controller as in
Eq. (6) is used with setting

Td = c̄(Tc + τ), (33)

Kp =
1

K(Tc + τ)Td
=

1

c̄K(Tc + τ)2
, (34)

where we have used Td := Ti and Kp := KpTd in the PI
tuning rules Eq. (32) in order to derive the PD tuning
rules in Eqs. (33) and (34) for a DIPTD plant. This
PD controller tuning may be used on its own.

It is similar to the δ-tuning Alg. 2.1 and notice that
the relationship between the tuning parameter Tc and
the relative time-delay margin tuning parameter δ is
given as presented in Di Ruscio (2010) Eq. (116), i.e.

Tc =

(
δ + 1

a
− 1

)
τ. (35)

Eq. (35) is obtained by putting Kp from Eq. (34)
equal to Kp in Eq. (23) and using Eq. (21). This PD
controller is not considered further.

In SIMC (Grimholt and Skogestad (2016a)) integral
action is introduced similarly as a PID controller on
cascade/serial form

hc(s) = Kp
1 + Tis

Tis
(1 + Tds), (36)

is derived for a 2nd order process with two large time
constants greater than c̄(Tc + τ) with c̄ = 4. For the
DIPTD plant the SIMC PID tuning rules are Kp as
in (34) and with Ti = Td = c̄(Tc + τ) and the cas-
cade/series PID controller Eq. (36).

Converting the SIMC cascade/serial form Eq. (36),
to ideal form as in Eq. (26), we find the correspond-
ing ideal form PID SIMC settings used for comparison
purposes,

Kp =
2

c̄K(Tc + τ)2
, Ti = 2c̄(Tc + τ), Td =

c̄

2
(Tc + τ), (37)

and with default SIMC setting c̄ = 4.

4.2. Tuning PD controller. No time-delay

In case of double integrating systems with small or no
time-delay, i.e. systems with plant models hp(s) =
K 1
s2 , the PD tuning algorithm in Alg. 2.1 may still

be used. We find from an analysis in the limiting case
when τ ≈ 0 the PD controller parameters

Td =
c̄

a
dτmax, (38)
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Kp =
a

KTddτmax
, (39)

where the maximum delay error 0 ≤ dτmax is the tun-
ing parameter and parameter a is given in Eq. (18).
Furthermore, the gain crossover frequency is in this
case given by

ωc =

√
fa

dτmax
, (40)

and the PM

PM =
√
fa. (41)

If integral action is required we propose to include in-
tegral action as in Eq. (27) and discussed in Sec. 3,
i.e. Ti = γTd.

4.3. Performance measures

In order to quantify performance, we use the Integral
Absolute Error (IAEx) defined as

IAEx =

∫ ∞
0

|r − y|dt, (42)

where we are using x := r (reference change, only),
x := vu (input disturbance, only) and x := vy (output
disturbance, only). Furthermore, from Eq. (42) we
define:

• IAEr measures the performance in case of a unit
step response in the reference, no disturbance.

• IAEvu measures the performance in case of a unit
step input disturbance, with the reference equal to
zero.

• IAEvy measures the performance in case of a unit
step output disturbance, with the reference equal
to zero.

See also Figure 1 for more details regarding input and
output disturbances.

The amount of input used is evaluated by the Total
Value (TV) index formulated in discrete time as

TV =

∞∑
k=1

|∆uk|, (43)

where, ∆uk = uk − uk−1, is the control rate of change.
The PID controller can be defined optimal in many

ways, and in this paper, we mean optimal in the sense
that the cost function, as presented in Grimholt and
Skogestad (2013), is minimized, which becomes the
PO-PID controller.

We consider the following PO criterion

J = sr
IAEvy(p)

IAEovy
+ (1− sr)

IAEvu(p)

IAEovu
, (44)

where sr is the servo-regulator parameter such that
0 ≤ sr ≤ 1. Here sr = 0.5. IAEovy = 4.15 is the refer-
ence value based on a PID controller where Ms = 1.59,
IAEovu = 288.56 is the reference value based on a PID
controller where Ms = 1.59 and p is the controller set-
ting, p = (Kp, Ti, Td) for the cascade/serial PID con-
troller. Note the definition, Ms = max

0≤ω<∞
| 1
1+h0(s) |.

Notice further that the origin of this specific value,
i.e., Ms = 1.59, is the resulting Ms-value for a SIMC
tuned PI controller with Tc = τ on the process hp(s) =
e−τs

s+1 , see Grimholt and Skogestad (2013). The perfor-
mance index J with sr = 0.5 in Eq. (44) was originally
presented in Grimholt and Skogestad (2012), however
Di Ruscio (2012) introduced 0 ≤ sr ≤ 1.

4.4. Default δ-tuning PID parameters c̄
and γ

The default settings for the parameters c̄ and γ in the
PID δ-tuning Alg. 2.1 and Eq. (27) are justified in the
following. Se also Secs. 2 and 3 for background. From
the numerical simulation, which is illustrated in Table
1, c̄ = 1.8 and γ = 2.0 seems like reasonable choices.
In Table 1 the performance criterion IAEvu is calcu-
lated from an input step disturbance only. In order to
balance performance in terms of both input and out-
put disturbances, we may use the objective function
Eq. (44). Taking prescribed robustness 0 < δ into ac-
count and minimizing the performance index Eq. (44)
we obtain numerical results as presented in Tables 2
and 3. The solution to this problem is also illustrated
in Figures 5 and 10 and gives the PO δ-tuning c̄ and
γ parameters for specified robustness δ. The presented
variables in Tables 1, 3 and Figure 5, is the background
for the the setting c̄ = 2.5 and γ = 2.1. It also makes
sense to obtain settings for c̄ and γ by minimizing the
MSE given by Eq. (46). Results are shown below in
Table 3. See also Table 6 for MSE values from Eq. (46).
As also is seen from Table 3 the value of the objective
function Eq. (44) for the ”default” δ-tuning does not
differ very much from the optimal ideal PID controller
(optimal with respect to minimizing the performance
index Eq. (44) subject to prescribed robustness Ms).
This is also illustrated in Figure 5.

In order to obtain simple δ-tuning PID controller
settings for the parameters c̄ and γ we also minimize
the MSE over the robust region 1.3 ≤Ms ≤ 2 and over
the entire region from 1.3 ≤ Ms ≤ 2.7. These settings
as well as an ad hoc chosen choice are presented in
Table 4. These settings are further illustrated in the
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Table 1: PID controller, Eq. (26), with the pro-
posed δ-tuning rules in Alg. 2.1 and Eq.

(27) for a DIPTD process, hp(s) = K e−τs

s2 ,
with varying gain, K, and time-delay, τ .
Shows c̄min, γmin = arg minc̄,γ IAEvu, with
prescribed δ = 1.6 (columns 3 and 4) and
δ = 3.5 (columns 5 and 6).

K τ c̄min γmin c̄min γmin

1 0.1 1.6 2.1 1.8 1.8
1 0.3 2.0 1.6 1.8 1.8
1 0.5 1.7 2.3 1.8 1.8
1 1 1.8 2.2 1.8 1.8
1 2 1.9 2-0 1.8 2.0
1 4 1.9 2.0 1.8 2.0
0.1 1 1.8 2.2 1.8 1.8
0.1 2 2.0 2.0 1.8 2.0
0.1 4 1.9 2.0 1.8 2.0

Table 2: PID controller, Eq (26), with the proposed δ-
tuning rules in Alg. 2.1 and Eq. (27) for a

DIPTD process, hp(s) = K e−τs

s2 , with K = 1
and time-delay, τ = 1. Shows c̄min, γmin =
arg minc̄,γ J , with prescribed δ. Objective in
Eq. (44).

δ c̄min γmin J Ms

1.4 2.6 2.0817 0.9015 1.7448
1.5 2.5 2.0602 0.9496 1.6932
1.6 2.5 1.9973 0.9998 1.6505
1.7 2.5 1.9939 1.0561 1.6130
1.8 2.4 1.9441 1.1154 1.5769
1.9 2.3 1.8999 1.1760 1.5452
2.0 2.4 1.8701 1.2396 1.5199
2.1 2.5 1.8649 1.3073 1.4979

Table 3: PO-PID parameters. Comparing with opti-
mal δ-tuning and δ-tuning with c̄ = 2.5 and
γ = 2.1.

δ Kp Ti Td Ms J

PID - 0.0979 11.8081 5.0864 1.80 0.8497
δ-opt 1.3 0.0950 11.9674 5.3347 1.80 0.8631
δ-def 1.3 0.0975 10.1290 5.0645 1.80 0.8741
PID - 0.0787 12.5829 5.4128 1.65 0.9988
δ-opt 1.6 0.0763 12.9321 5.7275 1.65 1.0018
δ-def 1.6 0.0763 12.0227 5.725 1.65 1.0071
PID - 0.0305 18.3979 8.3188 1.32 2.2277
δ-opt 3.2 0.0305 18.7942 8.2765 1.32 2.2518
δ-def 3.2 0.0292 19.4213 9.2482 1.32 2.2984

Example Sec. 5. See also Figures 5, 10 and 14 for
illustrations.

Table 4: Settings for the δ-tuning PID parameters c̄
and γ in Alg. 2.1 and Eq. (27). Row 1)
optimized over the robust region and 3) over
the entire region. See Figures also 5, 10 and
14. Row 2) is an ad hoc chosen choice.

x c̄ γ Region

1 2.24 2.24 1.3 ≤Ms ≤ 2.0
2 2.5 2.1 Ad hoc choice
3 2.4 2.2 1.3 ≤Ms ≤ 2.7

5. Numerical Examples

The problem of generating the PO-PID curve renders
as an optimization problem, i.e.

min J(p), (45)

subject to Ms(p) ≤Mpre
s .

Here, J is defined as in Eq. (44) and Ms is the pre-
scribed value, e.g. chosen in the range 1.3 ≤Ms ≤ 2.0
(as suggested in Åström and Hägglund (1995)).

In the incoming examples we solve the optimization
problem in Eq. (45) by using the efficient exact gradi-
ent algorithm, as presented in Grimholt and Skoges-
tad (2016b). Note that this algorithm was used in
Grimholt and Skogestad (2016a).

In order to quantify how close to optimal a given tun-
ing rule is we introduce the Mean Square Error (MSE),
as

MSE =
1

M

M∑
i=1

(Jpo − Jrule)2, (46)

where Jrule is the curve generated from the given tun-
ing rule, Jpo is the PO-PID curve and M = length(1.3 :
0.01 : 2.0).

In the following examples we are using definitions as
POI-PID, POC-PID and POD-PID in order to denote
Pareto Optimal Ideal PID controller Eq. (26), Pareto
Optimal Cascade PID controller Eq. (36) and Pareto
Optimal δ-tuning Alg. 2.1 and Eq. 27, i.o.

Example 5.1 (Reference example)
In this example we consider the DIPTD process model,

hp(s) = e−s

s2 . We adopt the same reference con-
trollers as used in Grimholt and Skogestad (2016a),
viz. the optimal output disturbance controller having
IAEvy = 4.15 and optimal input disturbance controller
having IAEvu = 288.56, given prescribed Ms = 1.59,
see Table 6. Note that the optimal input disturbance
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controller does not necessary correspond to the opti-
mal ideal PID controller, since Grimholt and Skogestad
(2016a) used the cascade formulation. Notice, that a
pure D controller may be more optimal in the sense of
output disturbance.

We observe from the performance vs. robustness
trade-off curves in Figure 10 that the δ-tuning rule in
Algorithm 2.1 and Eq. (27), with setting, c = γ = 2.24
and alternative 1., produces a closer to optimal curve
(POI-PID), MSE = 0.0002, than the SIMC rule (c =
4 in Eq. (37)), giving MSE = 0.0584. Hence, in
this case, the δ-tuning rule is 0.0584

0.0002 = 292 times more
optimal than the SIMC rule (with respect to the corre-
sponding MSE values).

In Figure 11 we see that the optimal DM lies in be-
tween the prescribed and exact DM.

It may be beneficial to illustrate a couple of linear
approximations based on the POI-PID controllers on
the range 1.3 ≤ Ms ≤ 2.0. Firstly, in Figure 12,
we illustrate that the relationship Ti vs. Td, may be
approximated by a first order polynomial, i.e. Ti =
2.0437Td + 1.6216. Secondly, it turns out that the re-
lation c2 = KKpTiTd vs. Ms, may be approximated by
a first order polynomial, i.e. c2 = 2.6167Ms + 1.2078,
see Figure 13 for illustration.

Table 5: Shows the reference controllers which mini-
mizes the indices IAEvy and IAEvu, i.e. opti-
mal output and input disturbance (ideal) PID
controllers as in Eq. (36), i.o., given a pre-
scribed Ms = 1.59.

x Kp Ti Td IAEox Ms

vy 0.02 ∞ 24.13 4.15 1.59
vu 0.07 20.24 5.06 288.56 1.59

Table 6: Comparing the trade-off curves, generated
from different tuning rules, vs. the POI-PID
and POC-PID curves, in terms of MSE in Eq.
(46). i.e. the trade-off curves shown in Figure
10.

Tuning rule MSE

SIMC 0.0584
POC-PID 0.0562
δ-tuning (c = 2.5, γ = 2.1) 0.0015
δ-tuning (c = 2.4, γ = 2.2) 0.0007
δ-tuning (c = 2.24, γ = 2.24) 0.0002
PO δ-PID 9e-06

Example 5.2 (Critically damped process model)
Consider the following process model used in Sec. 6.3

Table 7: POI-PID controllers, with a prescribed Ms.

Ms Kp Ti Td J DM

1.30 0.0271 19.2724 8.7624 2.4996 3.5034
1.40 0.0416 16.3846 7.1736 1.6625 2.6330
1.59 0.0694 13.3862 5.7675 1.0868 1.7980
1.80 0.0974 11.9603 5.0837 0.8467 1.3380
2.00 0.1215 11.2708 4.6796 0.7305 1.0757
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Figure 10: Performance vs. robustness trade-off
curves. IAEovy = 4.15 IAEovu = 288.56
sr = 0.5. Comparing the proposed δ-tuning
and SIMC vs. the POI-PID controller on
the process model, hp(s) = e−s

s2 .
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Figure 11: Illustration of the tuning parameter δ, the
actual relative Delay Margin (DM) and the
POI-PID DM as a function of robustness
Ms. PID controller tuning Alg. 2.1 and Eq.
(27) with varying relative delay margin δ for
a DIPTD plant with K = 1 and τ = 1.
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Figure 12: Linear approximation for Ti vs. Td, for the
POI-PID, i.e. Ti = 2.0437Td + 1.6216.
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Figure 13: Linear approximation for c2 = KKpTiTd vs.
Ms, for the POI-PID, i.e. c2 = 2.6167Ms +
1.2078.

in Grimholt and Skogestad (2016a), viz.,

hp(s) = 40
e−s

(20s+ 1)2
. (47)

We may approximate the second order process in Eq.
(47) as the following DIPTD process,

hp(s) ≈ 0.1
e−s

s2
. (48)

We obtain the reference controllers in Table 8. The
PO-PID controllers, both ideal and cascade formula-
tion, are generated based on the exact process model
given in Eq. (47), while the tuning rules are based on
Eq. (48). The results in Figure 14 show poorer per-
formance of the tuning rules, compared to Figure 10
in Example 5.1. Note that, also, in this case, the δ-
tuning outperforms the SIMC. Same δ-tuning settings
as in Ex. 5.1 are used.

Table 8: Shows the reference controllers which mini-
mizes the indices IAEvy and IAEvu, i.e. opti-
mal output and input disturbance (ideal) PID
controllers, i.o., given a prescribed Ms = 1.59.

x Kp Ti Td IAEox Ms

vy 0.50 40.00 10.00 2.17 1.59
vu 1.08 7.65 3.67 9.06 1.59

Example 5.3 (Vessel example)
In this example we consider a continuous non-linear
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Figure 14: Trade-off curves for performance vs. robust-
ness. IAEovy = 2.17 IAEovu = 9.06 Compar-
ing the proposed δ-tuning and SIMC vs. the
POI-PID controller on the process model as
in Eq. (47).

hc(s)
r u y

v

−
+

Figure 15: Feedback system. Vessel model and con-
troller hc(s). The input u is the com-
manded rudder angle and the output y is
the perturbed yaw angle about zero. v is
disturbance.

state space model, implemented in the MSS GNC MAT-
LAB Toolbox (Fossen and Perez ((2004)), describing
the planar movement of a mariner class vessel of length
L = 160.93 m, viz.

ẋ = f(x, u), (49)

and the measurement equation, as

y = x6, (50)

where input, output, and states are defined, i.o., as

y ∈ R :=
{
y:perturbed yaw angle about zero

u ∈ R :=
{
u:Commanded rudder angle (rad)

x ∈ R7 :=



x1:perturbed surge velocity about Uo (m/s)

x2:perturbed sway velocity about zero (m/s)

x3:perturbed yaw velocity about zero (rad/s)

x4:position in x-direction (m)

x5:position in y-direction (m)

x6:perturbed yaw angle about zero (rad)

x7:actual rudder angle (rad)

See e.g. Skjetne et al. (2004) pp. 4-5 for a physical
interpretation of the variables defined above.

We linearize the non-linear model in Eq. (49), nu-
merically, around state x equal to zero-vector and input
u = 0, and obtain the following 7th order model,

hp(s) =
s3

s4

(
0.0037s+ 0.0002

s3 + 1.1480s2 + 0.1503s+ 0.0025

)
. (51)

We show in Figure 16 that the model in Eq. (51) may
be approximated by a DIPTD model,

hp(s) ≈ 0.0027
e−0.4231

s2
. (52)

Using the δ-tuning Alg. 2.1 with δ = 3.6 and tune
alternative 2., we obtain the following PD controller
settings Kp = 11.8 and Td = 8.9. Figure 17 shows the
PD controller implemented on the non-linear model,
where we demonstrate a reference step from 0 to 5 deg.
Note, that a steady state offset, e.g. as in Figure 17,
may be counteracted by having a captain in an outer
controller loop. But a better idea is to introduce integral
action. Note that steady state offsets may be generated
from varying disturbances like currents, wave drifting
and wind.

The simulation results of the PID controller imple-
mentations on the non-linear vessel model are shown
in Figures 18, 19 and 20. Here, the vessel is initially
headed north until a reference step, r = 5 deg, is intro-
duced at time = 20 s. Later on, at time = 150 s, we in-
troduce an input disturbance step, v = 1. The δ-tuning
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Figure 16: Comparing step responses of the numeri-
cally linearized 7th order model in Eq. (51)
vs. the DIPTD process with K = 0.0027
and τ = 0.4231. Shows the optimal DIPTD
model, i.e. optimal in the sense that the
MSE between the two step responses is
minimized.

and the SIMC settings, for prescribed Ms = 1.12, are
given in Table 9, where we have used the same settings
as for the PD controller above, and Ti = 18.6 from
using Eq. (27) with γ = 2.1. Notice, that the SIMC
rule gives only better performance in terms of refer-
ence step response, i.e. IAEr = 100.7, however the
δ-tuning outperforms the SIMC rule in terms of input
disturbance and sum performance, IAEvu = 108.2 and
IAE = 221.4, i.o., see Table 10. Notice, also that the
TV index in Eq. (43) is higher for SIMC, than for the
δ-tuning method, see Table 10.

Table 9: ShowsMs, the controller settings and the DM,
for the δ-tuning and the SIMC rule, calcu-
lated based on the approximated DIPTD pro-
cess with K = 0.0027 and τ = 0.4231. The
controller settings are used on the non-linear
vessel model in Eq. (49). δ-tuning (c = 2.5
and γ = 2.1) with δ = 3.6. SIMC tuning with
Tc = 7.9τ .

tun. alg. Ms Kp Ti Td DM

δ(c = 2.5, γ = 2.1) 1.13 11.80 18.60 8.86 3.68
δ(c = 2.4, γ = 2.2) 1.13 12.06 18.89 8.59 3.65
δ(c = γ = 2.24) 1.13 12.58 18.19 8.12 3.59
SIMC 1.13 13.06 30.12 7.53 3.52

Table 10: Shows the performance indices IAEr,
IAEvu, sum IAE and TV (Eq. (43)) for the
δ-tuning and the SIMC rule, corresponding
to the step responses in Figure 18.

tun. alg. IAEr IAEvu IAE TV

δ(c = 2.5, γ = 2.1) 113.26 108.17 221.43 186.20
δ(c = 2.4, γ = 2.2) 111.79 105.30 217.09 192.45
δ(c = γ = 2.24) 111.89 97.41 209.29 209.90
SIMC 100.70 132.00 232.70 198.13
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Figure 17: Shows PD control of the non-linear vessel
model in Eq. (49). The PD controller is
tuned using δ-tuning Alg. 2.1 with pre-
scribed robustness δ = 3.6 and tune alter-
native 2.

6. Concluding Remarks

A new method for tuning PD and PID controllers for
a Double Integrating Plus time-delay (DIPTD) pro-
cess is presented. The proposed PID controller is on
ideal form in order to maximize the freedom with re-
spect to optimize on both performance and robustness.
The algorithm has in principle only one tuning param-
eter 0 < δ ensuring that the closed loop system has a
prescribed delay margin DM = dτmax = δτ , or alter-
natively DM = dτmax = δ as an option. Hence, the
tuning parameter is the relative delay margin δ = DM

τ
or optionally the delay margin DM = δ.
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Figure 18: Shows PID control of the non-linear vessel
model in Eq. (49). The PID controller is
tuned using δ-tuning Alg. 2.1 and Eq. (27),
with prescribed robustness δ = 3.6 and tune
alternative 2. Reference step, r = 5 deg, at
time = 20 s. Input disturbance step, v = 1,
is introduced at time = 150 s.
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Figure 19: Shows PID control of the non-linear vessel
model in Eq. (49). The PID controller is
tuned using δ-tuning Alg. 2.1 and Eq. (27),
with prescribed robustness δ = 3.6 and tune
alternative 2. Reference step, r = 5 deg, at
time = 20 s. Input disturbance step, v = 1,
is introduced at time = 150 s.
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Figure 20: Shows PID control of the non-linear vessel
model in Eq. (49). The PID controller is
tuned using δ-tuning Alg. 2.1 and Eq. (27),
with prescribed robustness δ = 3.6 and tune
alternative 2. Reference step, r = 5 deg, at
time = 20 s. Input disturbance step, v = 1,
is introduced at time = 150 s.

A. MATLAB m-files

MATLAB m-files for the PD controller tuning Alg. 2.1
and the proposed PID tuning algorithm, for DIPTD
plants, are provided in the following. Notice that in
the following m-file function pd tun maxdelay.m an m-
file function pi tun maxdelay.m is called. This m-file
function is provided in Appendix C in Di Ruscio (2010),

function [Kp,Td,PM,wc,alfa,beta,a]=...

pd_tun_maxdelay(K,tau,delta,c,itun)

% PURPOSE. Tuning PD controller for double

% integrating plus time-delay plant.

% h_p(s)=K*exp(-tau*s)/s^2 where K=plant gain,

% tau=time-delay. Default c=2.5, itun=2

% [Kp,Td]=pd_tun_maxdelay(K,tau,delta)

% [Kp,Td,PM,wc,alfa,beta]=...

% pd_tun_maxdelay(K,tau,delta,c,itun)

% On Input

% K, tau- DIPTD param., K gain, tau time-delay.

% c - Constant, method product parameter.

% c = 2.5 default.

% delta - The max. relative time-delay error.

% itun = itun=1 (DM=dtau_max=delta*tau).

% Ms constant

% itun=2 (DM=dtau_max=delta. Varying Ms.

% On output
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% Kp - Proportional constant in PD controller

% Td - Derivative time constant in PD control.

% PM - The phase margin

% wc - The gain crossover frequency

% alfa - Kp=alfa/(k*tau)

% beta - Ti=beta*tau

%

% Alg. tuning PD controller for DIPTD process

if nargin == 4; itun=2; end

if nargin == 3; itun=2; c=2.5; end

if nargin == 2; itun=2; c=2.5; delta=1.6; end

if itun == 1

%delta % Alg. 2.1 Alt. 1 Alg. 2.1,

% DM=dtau_max=delta*tau. Ms constant.

else

delta=delta/tau; % Alt. 2 Alg. 2.1

%DM=dtau_max=delta, varying Ms

end

[alfa,beta,PM,a,f]=pi_tun_maxdelay(c,delta);

Td=beta*tau;

Kp=alfa/(K*tau*Td); % The PD controller param.

wc=sqrt(f)*Kp*K*Td;

% end pd_tun_maxdelay.m

function [Kp,Ti,Td,PM,wc,alfa,beta,a]=...

pid_tun_maxdelay(K,tau,delta,c,gamma,itun)

% PURPOSE. Tuning PID controller for double

% integrating plus time-delay plant. Where

% K=plant gain, tau=time-delay.

% [Kp,Ti,Td,PM,wc,alfa,beta,a]=...

% pid_tun_maxdelay(K,tau,delta)

% On Input

% K,Tau-Model param.

% delta-The prescribed maximum relative

% time-delay margin.

% itun -itun=1 (DM=dtau_max=delta*tau).

% Ms constant

% itun=2 (DM=dtau_max=delta.

% Varying Ms.

% On output

% Kp -The proportional constant

% Ti -The Integral time constant

% Td -The derivative time constant

% PM,wc-The phase margin, gain crossover freq.

% Calls:pd_tun_maxdelay, pi_tun_maxdelay.

% The algorithm for tuning PID controller for

% double int+delay process

if nargin == 5;itun=2;end

if nargin == 4;itun=2;gamma=2.1;end

if nargin == 3;itun=2;gamma=2.1;c=2.5;end

if nargin == 2;itun=2;gamma=2.1;c=2.5;...

delta=1.6;end

%c=2.5; gamma=2.1; % Default settings

[Kp,Td,PM,wc,alfa,beta,a]=...

pd_tun_maxdelay(K,tau,delta,c,itun);

Ti=gamma*Td;

% end pid_tun_maxdelay.m
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