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Abstract

In this paper, we look at the problem of tracking icebergs using multiple Unmanned Aerial Vehicles (UAVs).
Our solutions use combinatorial optimization for UAV path planning by formulating a mixed integer linear
programing (MILP) optimization problem. To demonstrate the approach, we present both a simulation
and a practical experiment. The simulation demonstrates the possibilities of the MILP algorithm by
constructing a case where three UAVs help a boat make a safe passage through an area with icebergs.
Furthermore, we compare the performance of three against a single UAV. In the practical experiment, we
take the first step towards full-scale experiments. We run the algorithm on a ground station and use it to
set the path for a UAV tracking five simulated icebergs.
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1 Introduction

Offshore operations in ice-infested arctic areas demand
ice management. Ice management is all activities that
aim to reduce or avoid the impact of any kind of ice
features. Several authors have argued that Unmanned
Aerial Vehicles (UAVs) are an efficient platform to per-
form detection and surveillance of ice features for ice
management purposes, e.g. Eik (2008), Lesinskis and
Pavlovics (2011).

Using mobile sensors, like a UAV, for information
gathering is a popular research topic. One of the rea-
sons for its popularity is the many applications ranging
from inspections of power lines, ships, pipelines etc.,
monitoring of traffic and environment, to border pa-
trol, police support, surveillance and reconnaissance
and filming for the entertainment industry (Valavanis
and Vachtsevanos, 2015).

In this paper, we propose to use UAVs for ice-
berg tracking, specifically our contribution is an
optimization-based path-planning framework for this
purpose. There are several different ways to approach
UAV path planning using mathematical optimization.
For example, the problem can be formulated as a con-

tinuous time optimal control problem. Then, by ex-
ploiting well-known techniques like single or multiple
shooting the problem can be transformed into a large
scale nonlinear programming problem, for which there
exist many commercially available solvers. Two exam-
ples of this approach are Haugen and Imsland (2013)
and Walton et al. (2014).

The framework we propose in this paper is based on
combinatorial optimization. It is similar to the Trav-
eling Salesperson Problem (TSP), which is to find the
shortest path visiting each city in a given list of cities
exactly once. A generalization of TSP is mixed inte-
ger linear programming (MILP). For information about
modern MILP solvers and problems in general see e.g.
Jünger (2009), Bixby (2002), and Chen et al. (2010). In
this paper, we use the CPLEX solver from IBM (ibm,
2015).

There are multiple applications similar to iceberg
tracking with UAVs where TSP formulations have been
applied. We have the problem of doing surveillance
with unmanned ground vehicles (UGSes) in combi-
nation with a UAV. The UGSes have good sensing,
but poor communication capabilities compared to the
UAV. The UAV collects information by visiting UGSes.
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In Barton and Kingston (2013), the authors compare
a TSP solution to an adaptive feedforward iterative
learning control algorithm, based on the region of at-
traction for each UGS. Another similar problem is
the heterogeneous, multiple depot, multiple UAV rout-
ing problem (HMDMURP). This is a generalization of
TSP, where the salesmen are UAVs with different min-
imum turning radius and starting locations. The au-
thors of Oberlin et al. (2010) come up with a approxi-
mate algorithm based on the transformation by Noon
and Bean (1993). A related problem to HMDMURP
is studied by Oh et al. (2015), which come up with a
solution based on a modified algorithm for the Chinese
Postman Problem to make it suitable for a group of
Dubins Vehicles. The article Enright et al. (2005) fo-
cuses on the repairman problem, which is TSP with
targets appearing according to a Poisson process. The
authors calculate lower and upper bounds for a Dubins
path and use these to construct a centralized planner
to assign areas for a set of UAVs.

Furthermore, there are a number of approaches us-
ing MILP that does not use TSP as a basis for prob-
lem formulation, which are similar to iceberg tracking
with UAVs. The problem of searching and tracking tar-
gets in an urban environment using fixed wing UAVs is
tackled by Hirsch and Schroeder (2015). The authors
formulate the problem mathematically as a MILP, and
solve it using an approximate method consisting of a
greedy randomized adaptive search procedure and a
simulated annealing. The military application of as-
signing targets of different priority and path planning
to combat UAVs is studied by Shetty et al. (2008).
They also formulate the problem as a MILP and com-
pare the CPLEX-algorithm (ibm, 2015) to an approx-
imate approach consisting of a tabu search algorithm
with regard to optimally and computational efficiency.
Schouwenaars et al. (2001) and Ma and Miller (2005)
use the CPLEX-algorithm to solve a path planning
problem formulated as a MILP for a single or multiple
UAVs.

Finally, there are many formulations similar to ice-
berg tracking that are not solved using a TSP frame-
work. In Sinha et al. (2005) the authors consider
tracking hostile targets moving in group using multi-
ple UAVs. Their solution is an adaptive decentralized
algorithm. This is similar to the radar resources dis-
tribution and combat management problem, which are
solved with a multi-level tree algorithm in Asnis and
Blackman (2011). The authors of Farmani et al. (2015)
track moving targets in an urban environment, where
they take into account UAV and gimbal poses. They
also solve the problem decentralized by using an auc-
tion method. The path planning for each UAV is done
with MPC (Model Predictive Control).

We choose to not consider gimbal pose, nonholo-
nomic constraints (like the Dubins vehicle), decentral-
ization, etc. for the benefit of a simpler formulation,
similar to TSP, called the target visitation problem
(Grundel and Jeffcoat, 2004) (each iceberg has a value
and high values get prioritized for an earlier visit). The
reason is that we expect to have communication link
with all UAVs and to be covering a vast area, where
dynamics like gimbal pose and non-holistic constraints
will be small compared to the Euclidean distance be-
tween the icebergs. This enables us to solve the prob-
lem fast for a limited number of UAVs and icebergs,
which then enables real-time implementation. We take
into account the dynamics of the problem by imple-
menting the solution similar to an MPC, meaning that
we solve a static optimization problem often and up-
date the dynamics of the UAVs and iceberg between
each time we run the optimization.

1.1 Contribution

The contribution of this paper is a framework for moni-
toring moving targets. The planning is centralized and
the optimization formulation allows for the use of mul-
tiple UAVs. The framework extends earlier work (Al-
bert and Imsland, 2015). We compare the improved
approach using three UAVs to one UAV. In addition,
we demonstrate the first step towards practical exper-
iments with a test performed in Ny-Ålesund at Sval-
bard.

1.2 Organization

This paper is arranged as follows. In Section 2, we in-
troduce the problem formulation through a scenario.
In Section 3 we explain the setup, the modeling of the
icebergs and UAVs, and the observer we use. Then,
we introduce some assumptions in order to use the tar-
get visitation formulation on our problem, and describe
how we formulate the problem using mixed integer lin-
ear programming in Section 4.

To demonstrate the use of multiple UAVs and the
possibilities of the algorithm, we introduce a scenario
with a boat moving through an iceberg infested area.
We perform a simulation of the scenario, compare it to
a single UAV, and illustrate the results in Section 5.
In Section 6, we present the experimental results from
Ny-Ålesund at Svalbard. Finally, in Section 7 and 8
we discuss the results and conclude the work of this
paper.
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2 Problem Formulation

To motivate the problem formulation we consider a
concrete case: A boat traveling in an arctic area, where
there are drifting icebergs. The boat must avoid col-
lisions with icebergs. Monitoring the surrounding ice-
bergs is necessary for safe operation. One might con-
sider using satellite images for this task. However, in
arctic areas the update frequency is often too slow and
image resolution is too low to provide sufficient warn-
ing for the operations (Eik, 2008). Another solution
might be to use marine radar, but we assume that the
range of a marine radar is insufficient for detecting ice-
bergs early enough for this boat to be able to maneu-
ver safely and efficiently. An iceberg on collision course
requires time to take appropriate action. In addition,
marine radars suffer from performance degradation due
to poor weather conditions such as rain and high waves
(Eik, 2008). An unmanned aerial vehicle (UAV) with
a sensor capable of automatic (or manual) detection of
icebergs can be flexible, cheap (compared to manned
flights), efficient, and with better coverage than marine
radar and has increased spatial and temporal resolution
compared to satellites.

The UAV can, for example, be equipped with an
optical camera to detect icebergs. This camera will
have a limited field of view (FOV), which only makes
it possible to observe icebergs in a limited area, at the
same time. To monitor a larger area the UAV must
move around. A fixed wing UAV is best suited for this
purpose, since it can cover relatively large distances.

We want to use multiple UAVs, so we can increase
the area coverage. Our task is to make a path planner
for each UAV to do continuous tracking of all icebergs
in a surrounding area.

The scenario is illustrated in Figure 1. In the sce-
nario, the boat (the yellow polygon) needs to move
through an area with icebergs (blue squares). It has
three UAV available with a limited field of view, which
is illustrated by a light yellow circle. In the drawing,
two of the UAVs are currently observing an iceberg
each.

3 System Overview and Modeling

The system will consist of three components. The
setup is illustrated in Figure 2. First, a set of phys-
ical UAVs, each with an autopilot capable of following
waypoints. In addition, each UAV has a sensor able to
detect icebergs. Second, the sensor data is sent to an
observer to estimate iceberg position and velocity. Fi-
nally, the path planner uses the iceberg positions and
velocities to find a path to track icebergs. The path
planner then sends waypoints to each UAV. The focus
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Figure 1: Illustrated scenario

Figure 2: System components.

of this paper is the path planner.
We model the UAVs as Dubins vehicles,

żi =

ẋiẏi
ψ̇i

 =

U cos(ψi)
U sin(ψi)

ui

 ∀i ∈ [1, . . . , nUAVs] (1)

where ψi is the heading, ui is the bank angle, xi and yi
are the Cartesian position, and U is the velocity of each
vehicle (all the vehicles are assumed to move with the
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same velocity). Note that we assume constant altitude
with this model.

We assume that the real position and velocity of each
iceberg is governed by:

ξ̇i =

[
ṡi
v̇i

]
=

[
0 I
0 0

]
ξi +

[
0
1

]
wi(t) ∀i ∈ [1, . . . , nicebergs]

(2)

where ξi is the four dimensional iceberg state consisting
of position si and velocity vi, both of dimension R2.
The process noise is wi(t) ∼ (0, qi), which we assume
has a Gaussian distribution with a mean of zero and
variance of qi.

To estimate the positions of the icebergs for the path
planner we use a discrete Kalman filter. The discrete
equation and measurement model for each iceberg us-
ing Euler integration, is (for clarity we lose the sub-
script i for each iceberg)

ξ̂k+1 =

[
I ∆T
0 I

]
ξ̂k +

[
0

∆T

]
wk = Aξ̂k +

[
0

∆T

]
wk

(3)

yk =
[
I 0

]
ξ̂k + vk = Cξ̂k + vk (4)

here ξ̂k and ξ̂k+1 are the estimated state for the current
and the next time step, yk is the measured position of
the iceberg and ∆T is the time step. The measurement
noise, vk, is also assumed to have a Gaussian distribu-
tion with a mean of zero and variance of R.

A Kalman filter tracks the estimated state of the
system and updates an associated error covariance ma-
trix. The update process of the filter consists of two
steps. The first step is known as the a priori step,
where the state is estimated based on the model and
the error covariance matrix is updated with the model
and process uncertainty. In the second step, known as
the posteriori step, the measurement is incorporated to
the estimated state and the error covariance matrix is
reduced. For our case, the posteriori step will only be
included when a UAV is observing the relevant iceberg,
while the priori step will be updated each time step.

The Kalman equation for the a priori step will be

ξ̂priorik+1 = Aξ̂postk ξ̂0 = ξ̂0 (5)

P priori
k+1 = AP postk AT +Q P0 = Q (6)

here P is the error covariance matrix.
When a measurement is available, the Kalman filter

performs the posteriori step

K = P priori
k+1 CT /(CP priori

k+1 CT +R) (7)

ξpostk+1 = ξ̂priorik+1 +K(yk − Cξ̂priorik+1 ) (8)

P post
k+1 = P priori

k+1 −KCP
priori
k+1 (9)

here K is known as the Kalman gain. If no measure-
ment is available K = 0 (the posteriori value equals
the priori value)

We can now define the position uncertainty using the
error covariance matrix

σ = tr(p11) (10)

where

P =

[
p11 p12
p21 p22

]
(11)

Remark: If we select qi in equation (2) different
from the process noise, it will function as a heuristic
to assign/manipulate priorities to the icebergs. Then,
σ(t) will represent priority instead of uncertainty. This
heuristic can be set different for each iceberg, and can
vary with time, q(t). For example, the path planner
can set the initial priority, σ0, from satellite imagery
and the rate of change, q(t), based on distance from a
moving boat.

4 Problem Setup and MILP
Formulation

We assume we have multiple UAVs to track icebergs
in an area. Each UAV is capable of following a given
sequence of waypoints. This motivates us to exploit
mixed integer linear programming (MILP) to find an
optimal sequence of icebergs to visit for each UAV.
MILP problems are optimization problems that can
contain integer variables in objective function and/or
constraints.

4.1 Assumptions

We want a path planner capable of real-time implemen-
tation and thus want to use a mixed-integer framework
where the constraints and objective function are linear.
To avoid nonlinearities, we make the following two as-
sumptions:

1. The UAVs can follow any path.

2. Icebergs are stationary within the horizon consid-
ered in the optimization.

Assumption 1 means that we do not take the UAV
equation (1) into consideration in the path planning,
except for the distance from the initial position of the
UAV to the first iceberg. This will inevitably lead to
a suboptimal solution, since if we also consider the
movement constraints of the UAV another visitation
sequence might be better. However, the difference be-
tween the two visitation sequences will be small if the
area is large compared to the turning radius of the
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UAV. In addition, the autopilot will manage to pi-
lot the UAV to any waypoint even though it is not
selected according to its dynamics. The second as-
sumption enables us to solve the problem more effi-
ciently. We can make this assumption since UAVs
in general move much faster than icebergs (typically
0.1 m/s for icebergs against 22-25 m/s for UAVs). To
take into account the slow movement of the icebergs we
plan to rerun the optimization either at fixed intervals
(sample-based), or every time a UAV observes an ice-
berg (event-based). Before we rerun the optimization,
we update the iceberg positions and position uncertain-
ties with the model from equation (5) and (10), and if
available UAV observations and satellite imagery.

We also make some additional assumptions. First,
we assume a constant number of icebergs that are
known a priori. Icebergs can easily be added or sub-
tracted in between optimization runs. Second, we as-
sume perfect communication between the UAVs and a
ground station. The ground station can perform the
optimization and instantly communicate the result to
each UAV. Finally, we do not consider the size of the
icebergs, as we are only concerned with their location.

We consider anti-collision or fuel constraints for the
optimization to be out of scope for this article. Anti-
collision can be solved by a lower level controller like
the waypoint following controller on each UAV or the
UAVs can just fly at different altitude. If we have fuel
constraints this can be implemented through keeping
track of the distance from base and compare it to re-
maining fuel. When the fuel gets low the UAV can be
set to return to base and removed from the optimiza-
tion problem.

4.2 Optimization variables

Now, we can formulate our problem using MILP. Our
approach to formulating the optimization problem in
a MILP framework uses the formulation for TSP in
Miller et al. (1960) as a basis. Furthermore, we only
use the subclass ILP (integer linear programming) of
MILP, since we will only use integer and binary vari-
ables. The problem will have N nodes, which is the
sum of UAVs (nUAV) and icebergs (niceberg), N =
nUAV + niceberg. The optimization variables are or-
ganized in a matrix and a vector. First, we have a
matrix of binary variables ypath ∈ ZN×N{0,1} . The entry

ypath(i, j) represents the path from node i to j. A
node is an iceberg or a UAV. It is one if a UAV moves
between the nodes and zero otherwise. Second, each
UAV has an appurtenant sequence. In each sequence,
the UAV is the first entry with the remaining part of
the sequence consisting of icebergs. An integer vector,
t ∈ ZN×1, represents the number each node has in its

sequence. For example, if we have two UAVs, named
UAV1 and UAV2, and five icebergs, named ice1 to ice5,
then t = [UAV1,UAV2, ice1, ice2, ice3, ice4, ice5]T . Sup-
pose the optimal solution is that the first UAV, UAV1,
visits iceberg ice2, ice5 and then ice1, while the second
UAV, UAV2, visits ice3 before ice4. Then we will get
the following t = [1, 1, 4, 2, 2, 3, 3]T . Notice that the se-
quences for each UAV are mixed together in the vector
t. We use the binary matrix ypath to assign icebergs to
each UAV. The t-vector is used to avoid Hamiltonian
subpaths, and to include position uncertainty in the
objective function.

4.3 Constraints

Here, we will find a set of constraints that describe
the set of feasible paths in terms of the optimization
variables. First, each node cannot be visited and left
more than once

N∑
i

ypath(i, j) ≤ 1 ∀j and (12a)

N∑
j

ypath(i, j) ≤ 1 ∀i. (12b)

Next, the number of total paths between the nodes
is equal to the number of nodes minus the number of
UAVs,

N − nUAV =

N∑
i=1

N∑
j=1

ypath(i, j). (13)

The t-variable is an integer vector that decides the
sequence each UAV will visit icebergs, as explained
above. The values of the vector must be within the
number of nodes,

1 ≤ t(i) ≤ N ∀i ∈ [1, 2, . . . , nUAV]. (14)

The same integer vector t is used to represent the visi-
tation sequence for each UAV. For example, if we have
two UAVs in our problem, their sequence will be mixed
together in the same vector. This is unproblematic
since we use the binary matrix ypath to set the paths
between UAVs and icebergs. We use the t-vector to pri-
oritize high uncertainty icebergs in the objective func-
tion and to avoid subcycles. To make sure each UAV
is the first of its sequence the first nUAV elements in
the t-vector representing the UAVs must be one,

t(i) = 1 ∀i ∈ [1, 2, . . . , nUAV]. (15)

Finally, each path must be connected. To avoid sub-
cycles we need an additional constraint. The following
constraint, called the Miller-Tucker-Zemlin constraint
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(Chen et al., 2010), makes sure that all the paths start
with a UAV and are connected:

t(j)− (t(i) + 1) ≥ −N(1− ypath(i, j)) ∀i 6= j. (16)

4.4 Optimization Problem

We can now formulate the following optimization prob-
lem:

minF (ypath, t) = −(1− τ)F1 + τF2 (17a)

s.t. (12), (13), (14), (15), and (16)

where

F1 =

N∑
i=1

σ(i)(N − t(i)) (17b)

F2 = µ

N∑
i

N∑
j

ypath(i, j)d(i, j). (17c)

Here, µ is a scaling variable to make F1 and F2 of com-
parable size, see Section 4.5, and τ is a tuning constant
used to weight between the two objectives. Setting
τ = 1 puts all weight on shortest distance and τ = 0
puts all weight on position uncertainty. In the simula-
tion and practical experiments of this paper we found
through experience the value τ = 0.5 to be appropri-
ate. In the objective function, we have two competing
objectives. First, minimizing −F1 equals sorting the
icebergs in sequences based on their position uncer-
tainty. Here, σ(i) is the position uncertainty of each
iceberg and UAV. The UAVs will have a position un-
certainty of zero. The position uncertainty is constant
when running the optimization. In between optimiza-
tion runs it is updated with equation (10), which means
it increases linearly with time for unobserved icebergs
and decreased towards zero for observed icebergs. Sec-
ond, F2 contains the distance traveled by the UAVs.
The matrix d contains the distances between all the
nodes, which is recalculated for each iteration of the
optimization problem. The distances are Euclidean
distances except the distance from the UAVs to the
icebergs. To calculate the distance from a UAV with
a given heading to each iceberg we use Dubins paths
without fixed final heading. A Dubins path is a curve
with a minimum turning radius and a fixed initial and
final heading. This way we take the nonholonomic dy-
namics from equation (1) of the UAVs into considera-
tion for the path from each UAV to the first iceberg in
each sequence.

4.5 Scaling

To get a proper trade-off of the objectives F1 and F2

in equation (17a) we need to scale them by choosing

an appropriate value for µ. If we knew the optimal
values of F1 and F2 in advance of the optimization, a
natural choice for µ would be the ratio between them.
Instead we approximate this ratio by calculating the
maximum value for F1 and an estimated average value
for F2. The maximum value for F1 is found by op-
timizing without constraints, which is easy and effi-
cient to do. We cannot do the same for F2, since the
minimal F2 will always be zero. Instead we take the
d-matrix and calculate the average distance and multi-
ply it by the number of paths we need in our solution,
F2,avg = davg(N − nUAV). We can now choose:

µ =
F1,max

F2,avg
. (18)

If we compare the µ from equation (18) with the ratio
of F1 and F2 after we run the optimization in 1000
simulations, the guessed ratio from equation (18) has
a mean of 89% and a standard deviation of 13%.

4.6 Implementation aspects

In the implementation of the optimization algorithm
there are two adjustments. First, to avoid revisiting
newly visited icebergs, the average position uncertainty
of all the icebergs is calculated before the optimization.
Then, only icebergs with a position uncertainty above
10 % of the average are included in the optimization.
Second, the optimization can lead to a UAV not being
assigned to track any iceberg. In this case, the UAV
is set to track the closest iceberg (calculated in Dubins
distance without the final heading).

5 Simulation

To implement the optimization algorithm from the pre-
vious section we use MATLAB R2014b with the tool-
box YALMIP (Löfberg, 2004). YALMIP enables easy
implementation of optimization problems. Further-
more, we use the CPLEX solver from IBM (ibm, 2015).

To illustrate the possibilities of the optimization al-
gorithm we construct a simulation case with a boat
moving through an area with icebergs. We compare
using three UAVs to a single UAV for monitoring ice-
bergs. When the boat enters the area we know the
position and velocity of the 10 icebergs. This is an
unrealistic assumption. However, it is necessary since
we have chosen to set the iceberg velocities higher than
normal (see next paragraph). The UAV(s) launch from
the boat. In our case, the boat is only included for il-
lustrative purposes, so its path is hard-coded.

In Table 1, the simulation parameters are given. The
optimization of the UAV-paths is implemented sample-
based, meaning that the optimizations are run using
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fixed time intervals. As mentioned in section 4.1, ice-
bergs typically move at a velocity of 0.1 m/s. In the
simulation, we have chosen to set the iceberg velocity
up till about 3 m/s. The reason is that we want to bet-
ter illustrate the tracking capabilities of the algorithm,
since it is also suitable to other tracking applications
than icebergs.

Two snapshots from each simulation are shown in
Figure 3. Here the boat is illustrated by a yellow poly-
gon. The UAVs have a solid line for their recent move-
ment and a dotted line for the sequence they plan to
visit the icebergs. Each iceberg has a solid blue line for
their recent movement and a blue ”x” for their current
position. The icebergs are also enumerated. A red cir-
cle indicates the observers estimated position of each
iceberg.

In Figure 4, we see the average position uncertainty
during the simulations compared for one and three
UAVs. The reason the average position uncertainty
falls somewhat at the end of the simulation for the sin-
gle UAV, is that it stops tracking some of the icebergs
it cannot find.

Table 1: Simulation Parameters

Parameter Value Unit

Boat 1 unit
(x0,y0,heading) (1500,0,2.0246) (m,m,rad)
Velocity 10 m/s
Min turning radius 587 m

UAVs 3 units
(x0,y0,heading) (1500,0,0) (m,m,rad)

(1500,0,π2 )
(1500,0,π)

Velocity 22 m/s
Minimum turning radius 105 m
FOV 150 m

Icebergs 10 units
x0 ∈[0,1500 ] m
y0 ∈[0,1500] m
vx ∈[-3,3] m/s
vy ∈[-3,3] m/s

Observer
Time step, ∆T 0.1 s

Process noise, Q

[
02×2 02×2
02×2 0.01I2×2

] [
m2

m
s
2

]
Measurement noise, R

[
5 0
0 5

]
m2

Measurement frequency 2 s−1

Simulation
Simulation length, T 200 s
Optimization sample time 5 s
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Figure 4: The average position uncertainty for the ice-
berg for the two simulations with 3 and 1
UAV(s).

UAV
Skywalker X8

Software: Dune

Computer I
Neptus

Computer II
Matlab
R2014b

Ground Station

Communication: IMC

Figure 5: Practical Experiment Setup.

6 Towards practical experiments

To conduct the practical experiment in Ny-Ålesund at
Svalbard there were multiple components involved. In
this section, we first describe the components, includ-
ing software involved in the experiments. Then, we give
a description of the practical experiments conducted.

6.1 Setup

Figure 5 illustrates an overview of the components used
in the experiment.

The UAV platform used for the practical experi-
ments was an X8 from Sky Walker Technology (x8,
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Figure 3: Simulations of a boat moving through an area with three or a single UAV(s) to track icebergs. The
dotted lines illustrate the planned path for the UAVs (green, black and pink), and the solid lines show
their recent movement. In addition, the FOV is marked with a solid circle around each UAV. The
iceberg positions are plotted with a blue ”x”, and have their recent movement in a solid blue line.
The observer indicates the current estimate of iceberg positions with a red circles. The boat is drawn
as a yellow polygon.
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Figure 6: Launch of X8 using a catapult.

2016). This is a small light-weight off-the-shelf plat-
form with an electric motor. It can carry a light pay-
load of 1-2 kg and is able to stay in the air for about
60 minutes. We used a catapult to launch it into the
air, as illustrated in Figure 6.

The components onboard the X8 are a single board
computer (odr, 2016) for processing, an autopilot (ard,
2016), a communication link (roc, 2016) and a switch
which enables communication between all of the com-
ponents.

The single board computer runs DUNE (Pinto et al.,
2012). DUNE, short for DUNE Unified Navigational
Environment, is an open-source “runtime environment
for unmanned systems onboard software”. This en-
ables simple implementation of different tasks, such as
reading sensor values or control of actuators, onboard
the X8. In this experiment, we specifically use DUNE
to receive waypoints from the ground station (i.e, the
results from solving the MILP algorithm presented in
Section 4), and translating and forwarding them to
the onboard autopilot. The autpilot is then respon-
sible for guiding the UAV using low level controllers to
the given waypoints. Furthermore, DUNE is pulling
telemetry data from the autopilot and forwarding it to
the ground station, giving it the necessary information
about the UAV to initialize the MILP algorithm and
find the optimal visitation sequence for the simulated
icebergs.

The ground station consists of two computers, each
running a different software. One of the computers is
running MATLAB R2014b, which is where the MILP
algorithm is implemented and run. The second com-
puter is running Neptus (Pinto et al., 2006). Neptus
is an open-source Command & Control Center which
can be used for a variety of tasks. Examples are world
representation and modeling, mission planning, sim-
ulation, execution control and supervision, and post-
mission analysis. For the work presented in this paper,
Neptus is used to illustrate the location of the (simu-
lated) icebergs, as well as the X8’s position, telemetry

data and current waypoint to the operator.
The communication between the UAV and the

ground station is done using a protocol named Inter-
Module-Communication (IMC), which is a set of pre-
defined messages made for operations of (multiple) un-
manned vehicles and real-time efficiency. The reader is
referred to Martins et al. (2009) for a detailed descrip-
tion of the IMC protocol.

6.2 Experiment

On the way to full-scale practical experiments we did
what can be considered a pilot experiment as a proof
of concept. The experiment was conducted as follows:

1. Pilot launches the UAV in the air and stabilizes it
at an altitude of about 120 meters.

2. The MILP-algorithm is initiated with four simu-
lated icebergs and returns the optimal sequence
for visiting them.

3. The UAV is sent a waypoint to the first iceberg
from the resulting visiting sequence of the MILP-
algorithm.

4. When the UAV reach the simulated iceberg it loi-
ters around it for 30 seconds, while the ground
station is running a new optimization.

5. The UAV is sent a waypoint to the first iceberg in
the visiting sequence of the new optimization.

6. 100 seconds after the iceberg tracking mission is
started, an additional simulated iceberg is added
to the list, iceberg number 5.

7. The UAV continues to track the simulated icebergs
by repeating step 3-5 for about 800 seconds of total
loiter time.

The MILP-algorithm chooses a visiting sequence for
the simulated icebergs based on position and an uncer-
tainty value of each iceberg. The initial four icebergs
where set with a random initial uncertainty value. Af-
ter initialization, the position uncertainty increased
constantly with a value of 1 for each second. In other
words, tr(p11) in equation (10) is 1. The fifth simu-
lated iceberg was added with an uncertainty value of
zero.

In Table 2 we see the coordinates of the simulated
icebergs and their initial uncertainty value. Figure 7 il-
lustrates the UAV’s first visit of the five icebergs, with
Figure 8 plots the position uncertainty of each simu-
lated iceberg.

Unlike in Section 5, in the practical experiment we
use an event-based approach for when to rerun the
MILP algorithm. The image processing algorithm used
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trated in Figure 7.

to obtain position and velocity estimate from an ice-
berg might require the UAV to circle around the ice-
berg to get more measurements than just a flyby. In
our experiment, an event was the 30 seconds loitering
around a simulated iceberg, which makes it natural to
exploit this time to rerun the MILP-algorithm.

Table 2: Table with simulated iceberg coordinates and
initial uncertainty

Nr. Iceberg Initial Value

1 (730 31) 1
2 (628 -16) 5
3 (3104 69) 8
4 (2284 89) 2
5 (2138 59) 1

7 Discussion

From the simulation in Section 5, a single UAV is not
sufficient to track the ten icebergs. In the snapshot
after 140 seconds the distance between iceberg number
8 and its estimated is larger than the FOV. In addition,
we see that iceberg 2, 3, 5, 6 and 9 also are about
to get outside FOV. This is not the case when in the
simulation with three UAVs, which manage to keep
track of the icebergs. When we look at Figure 4 the
single UAV is unable to keep the position uncertainty
within a limit, while three UAVs are sufficient.

The calculation of Dubins path reduces the sub-
optimality originating from not taking UAV dynamics
into account (cf. assumptions in Section 4.1). Espe-
cially, since we only use the first point of each sequence
before we rerun the optimization. The way we reduce
sub-optimality can best be explained by a simple exam-
ple. Consider the case with one UAV and two icebergs,
where the first iceberg is closer to the UAV in a metric
distance. However, the UAV heading is turned towards
the second iceberg, which makes the optimal sequence
to visit the second before the first iceberg. When we
use the Dubins instead of the metric distance, the al-
gorithm manages to take the heading of the UAV into
consideration. Notice that we are only able to use Du-
bins distance from the initial position of the UAV, since
we do not know what heading the UAV will have at
subsequent points.

The practical experiment serves as a proof of con-
cept. It demonstrates how it is possible to implement
the algorithm in practice. However, the practical ex-
periment has several weaknesses. First, the simulated
icebergs are too close to each other, for iceberg number
3, 4 and 5 the UAV goes directly from observing one
iceberg to another. In addition, when the icebergs are
so close to each other the UAV will inevitably visit each
iceberg often independent of the sequence chosen by
the MILP algorithm. Unfortunately, during the day of
the experiment there was a lack of real icebergs. This
lead to not getting image processing tested together
with the MILP-algorithm.

In future experiments, a platform with greater reach
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and greater durability is desired. Longer reach means
that the UAV can track icebergs in a larger area, where
selecting a more optimal visiting sequence for each
UAV becomes essential. We believe the benefits of the
proposed algorithm will be more substantial in such a
case. Furthermore, in future experiments it will also
be interesting to test tracking icebergs moving in open
sea. The icebergs in Kongsfjorden close to Ny-Ålesund,
where we did our experiments, do not move much and
this makes them very easy to track.

Furthermore, for experiments in open sea the ob-
server should be improved. It should handle false pos-
itive and false negative measurements. In addition, it
should also be able to determine and reject outliers.
For example, if two icebergs are close to each other
at the time of observation, the observer might mistake
them. This will lead to a wrong velocity estimate for
both of them.

8 Conclusion

In this paper, we have studied the problem of track-
ing moving icebergs using a set of moving sensor plat-
forms. To solve the problem we have used mathemat-
ical optimization, or more specifically, combinatorial
optimization. To demonstrate the algorithm we have
constructed a case with 10 icebergs and performed
a simulation with one UAV and another with three
UAVs. The simulations show that a single UAV is un-
able to track all ten icebergs, while 3 UAVs manage
it.

We have also taken the first step towards practi-
cal implementation with a practical experiment con-
ducted at Ny Ålesund in Svalbard during the fall of
2015. Here, we have made a successful first practical
implementation of the algorithm with one UAV.

Future Work

Possibilities for future work include:

1. Integration of the of MILP-algorithm with an im-
age processing algorithm like Leira et al. (2015).

2. Practical experiments with real icebergs and the
use of image processing for iceberg detection.

3. Practical experiments with long distance UAV
platform.

4. Use of multiple UAVs in practical experiments.

5. Extend observer to handle false positive and neg-
ative measurements, in addition to outliers.
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Jünger, M. and et.al. 50 Years of Integer Programming
1958-2008: From the Early Years to the State-of-
the-art. Springer Science & Business Media, 2009.
doi:10.1007/978-3-540-68279-0.

Leira, F., Johansen, T. A., and Fossen, T. I. Auto-
matic detection, classification and tracking of ob-
jects in the ocean surface from uavs using a ther-
mal camera. In IEEE Aerospace Conference. 2015.
doi:10.1109/AERO.2015.7119238.

Lesinskis, I. and Pavlovics, A. The aspects of imple-
mentation of unmanned aerial vehicles for ice situa-
tion awareness in maritime traffic. Proc. Intl. Conf.
Transport Means, 2011. pages 65–68.
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