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Abstract

Visual Odometry (VO) is increasingly a useful tool for robotic navigation in a variety of applications,
including weed removal for agricultural robotics. The methods of evaluating VO are often computationally
expensive and can cause the VO measurements to be significantly delayed with respect to a compass, wheel
odometry, and GPS measurements. In this paper we present a Bayesian formulation of fusing delayed
displacement measurements. We implement solutions to this problem based on the unscented Kalman
filter (UKF), leading to what we term an unscented multi-point smoother. The proposed methods are
tested in simulations of an agricultural robot. The simulations show improvements in the localization
RMS error when including the VO measurements with a variety of latencies.
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1 INTRODUCTION

Figure 1: A prototype of the Asterix robot.

In recent years Agricultural Robotics has been an in-
creasingly important research topic, and there are nu-
merous publications presenting unmanned ground ve-
hicles and robot platforms, (Bogue, 2016; Biber et al.,
2012; Jørgensen et al., 2007; Molstad et al., 2014; Grim-

stad et al., 2015, 2016). Most agricultural platforms
rely heavily on GPS for navigation. RTK GPS sys-
tems may provide localization accuracy of ±0.02 m un-
der ideal conditions. The cost of an RTK GPS system
may hinder the adaption of mobile robots in agricul-
ture, and the signal conditions often reduce the posi-
tion accuracy.

Visual-aided navigation may provide several bene-
fits for agricultural robots, and lessen the dependence
on expensive RTK GPS systems. The work presented
here has sprung out from a research project by Adigo
AS, in cooperation with the Norwegian University of
Science and Technology and the Norwegian Institute
of Bioeconomy Research (NIBIO).

An agricultural robot for high precision drop-on-
demand herbicide application for row crops is under
development. The robot uses a downward facing cam-
era to identify weeds and a nozzle array applies the
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herbicide as the robot passes over them, (Urdal et al.,
2014; Utstumo and Gravdahl, 2013; Utstumo et al.,
2015).

Weed control is a vital part of agriculture, and au-
tonomous robotic weed control has become an impor-
tant research area. The review by Slaughter et al.
(2008) illustrates the potential of robotic weed control,
and presents several similar systems to the one which
is the focus of this paper.

The same images used for plant classification may
also be used to compute visual odometry (VO) mea-
surements. In this paper, VO measurements are as-
sumed to be frame-to-frame rotation and displace-
ments that the robot has undergone between two over-
lapping images.

The VO technique considered finds a set of match-
ing features in two subsequent images. These features
are used to reconstruct the movement of the camera
by minimization of the transformation that matches
one set to the other. This is similar to wheel odometry
(WO) which uses the wheel encoders to reconstruct the
movement of the robot. Unlike the WO measurements,
VO will be unaffected by any skidding and sliding of
the wheels. Both VO and WO are relative displace-
ments with respect to a previous state of the system.
Absolute measurements, such as GPS, provide mea-
surements with respect to a known coordinate frame.

The feature identification and matching algorithms
introduces a latency between when a picture is taken,
and when the measurement becomes available. We re-
fer to this time as processing delay. This processing
delay may be more than one second in non-optimized
implementations, to an order of milliseconds in imple-
mentations as described in Forster et al. (2014), or with
dedicated hardware and tight coupling of inertial and
VO measurements as in Goldberg and Matthies (2011).

The processing delay for the VO measurement is
characteristically different from the other available sen-
sors such as compass, GPS, wheel encoders, which are
considered instantaneous in this paper. The process
of detecting and matching feature points, and solving
for the displacement measurement, is not necessarily
fixed. It may vary with the number of feature points
processed.

The camera is triggered by a hardware GPIO line.
This allows us to know when a picture is taken with
the same time reference as the GPS, compass and other
measurements.

For the fusion of relative displacement measure-
ments, a method called stochastic cloning (Mourikis
et al., 2007) was considered. This method “clones”
the state estimates when a measurement should have
arrived, augmenting the state vector used by the fil-
ter, thus maintaining the cross-covariances between

the current state of the system and the time when
a measurement should have arrived. Practical exam-
ples of stochastic cloning can be found in Romanovas
et al. (2013) for visual-inertial/magnetic data fusion,
in Van der Merwe and Wan (2004) under the name la-
tency compensation, and in Mourikis et al. (2009) for
spacecraft entry, descent and landing.

Similar to Van der Merwe and Wan (2004), we use
the UKF as opposed to the EKF. The EKF often suf-
fers from providing covariance estimates that are lower
than the actual covariance, something which can be
very detrimental in precision agriculture where the de-
cision to spray or not may be directly based on the
covariance estimate. Instead we use the Unscented
Kalman filter (UKF), which through the unscented
transform (UT) deals more directly with non-linearities
by choosing a strategic set of sample points (Julier and
Uhlmann, 1997).

The main contributions of this paper are

• A presentation of a Bayesian framework for de-
layed displacement fusion, which build upon the
method of stochastic cloning.

• An implementation of a novel fixed-point
smoother termed unscented multi-point smoother.

• A description of the relation between stochastic
cloning and the proposed framework.

The remainder of this paper is structured as follows: in
Section 2 the Bayesian formulation of delayed displace-
ment measurement fusion is presented. The dependen-
cies in the basic model and the delayed displacement
scenario are presented with Hidden Markov models.
These are used to formulate a Bayesian filter capable
of fusing the delayed displacement measurement. In
Section 3 the unscented multi-point smoother is im-
plemented. First Gaussian assumptions are applied
to the filter algorithm, such that the algorithm is de-
scribed using an augmented state vector for a mul-
tivariate Gaussian distribution. Then the unscented
transform is briefly described for evaluating the nec-
essary expectations and covariances. In Section 4 the
robot simulation setup is described, followed by sim-
ulation results. In Section 5 potential future work is
outlined.

2 BAYESIAN FORMULATION
In this section we present the Bayesian formulation of
fusion with delayed displacement measurements, using
graphical models to indicate stochastic dependencies.
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Figure 2: Hidden Markov Model of the basic sys-
tem (1)-(2) with state vector x, and
measurement vector z. Green arrows
represent (1) and red represent (2).

2.1 Basic System
The basic underlying system considered in this paper
is

xk+1 = f(xk) + wk (1)
zk = h(xk) + vk (2)
wk = N (wk; 0, Qk) (3)
vk = N (vk; 0, Rk) (4)

where x ∈ RL is the state vector of pose, forward ve-
locity, and rotational velocity, z are the measurements
from the fast sensors, compass, GPS, and WO. The
process noise wk and measurement vk is considered
additive Gaussian. In Fig. 2 a Hidden Markov model
is presented where there is no delay on any measure-
ments, and there are no displacement measurements.
The green arrows indicate the transition model, (1),
showing how the next state is only conditioned on the
previous state. The red arrow indicates the measure-
ment model, (2), and how the likelihood of the mea-
surement is only conditioned on the current state. We
desire to find the probability density function (pdf) of
the current state given the measurements, p(xk|z0:k).
For the basic system this can be done with a recursive
Bayesian filter (Thrun et al., 2005).

2.2 Delayed Displacement Measurements
The delayed displacement measurement model is

dn = h̃(xl,xm) + ṽn (5)
ṽn = N (ṽn; 0, R̃n) (6)

where dn is the delayed displacement measurement de-
pendent on two previous states xl and xm, and ṽn is
Gaussian noise. The Hidden Markov model of the sys-
tem is given in Fig. 3. At time tl the first picture is
taken, and at time tm the second picture is taken. The
displacement measurement becomes available at time
tn. We desire to find the distribution p(xn|z0:n,dn).

xl

z l

xm

zm

xn

zn

... ...

dn

Figure 3: Hidden Markov model showing a de-
layed displacement measurement dn be-
ing dependent on the states xl and xm,
but arriving at tn. Green arrows repre-
sent (1), red arrows represent (2), and
blue arrows represent (5).

As the delayed displacement measurement is depen-
dent on two previous states, optimal fusion of dn re-
quires a joint distribution of xl, xm and xn.

In reality, the displacement measurements are de-
pendent on the underlying features’ poses relative to
the camera’s pose at time tl and tm. The simplifica-
tion of the displacement measurement as a function of
the states is based on Mourikis et al. (2007).

With an initial distribution p(x0), from t0 until tl,
the measurements z0:l are fused iteratively using the
recursive Bayes filter up to p(xl|zl). From there on
the filter must maintain xl. This can be done by aug-
menting the state vector by a “clone” xc

l of xl at time
tl. This leads to a joint density as

p(xl,x
c
l |zl) = p(xc

l |xl)p(xl|zl) (7)

where p(xc
l |xl) is a Dirac delta distribution. Thus,

even if p(xl|zl) is Gaussian, the joint density will not
be Gaussian unless a regularization constant ε is used.
Under Gaussian assumptions,

p(xl,x
c
l |zl) = N (xc

l ;xl, εI)N (xl; x̂l|l, Pl|l). (8)

A just as straightforward, and in principle more gen-
eral, solution to the delayed fusion problem follows
from “extending” the state vector when the first pre-
diction after time tl is done:

p(xl,xl+1|zl) = p(xl+1|xl)p(xl|zl) (9)

which under Gaussian assumptions is

p(xl,xl+1|zl) =
N (xl+1; f(xl), Ql)N (xl; x̂l|l, Pl|l). (10)
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This is referred to as extending, and occurs as an al-
ternative to prediction at timestep tl+1. In this spirit,
we can make further extensions as required. In par-
ticular, we also extend at time tm+1 to arrive at the
joint distribution p(xl,xm,xm+1|zm), which, when it-
eratively fusing z with a recursive Bayes filter leads to
p(xl,xm,xn|zn).

When a picture has been taken at a timestep, the
next predict step in the filter is replaced with an ex-
tend step. A system where the camera is not synchro-
nized with the filter will face the additional challenge of
estimating the clock synchronization and trigger time.

With the joint distribution p(xl,xm,xn|zn), the
delayed displacement measurement dn is fused using
Bayes theorem according to

p(xl,xm,xn|zn,dn) =
µp(dn|xl,xm)p(xl,xm,xn|zn) (11)

where µ is the normalization constant and p(dn|xl,xm)
is the likelihood of the displacement measurement.
Note that the likelihood is specified conditional on both
xl and xm, but not on xn. If no other displacement
measurements depend on the states xl and xm, the
states are marginalized from the joint distribution by

p(xn|zn,dn) =∫
xl

∫
xm

p(xl,xm,xn|zn,dn)dxmdxl (12)

which under Gaussian assumptions is simply done by
omitting the parts of the expectation vector and co-
variance matrix associated with xl and xm.

In Alg.1 the delayed displacement fusing filter algo-
rithm is outlined. This algorithm is a Bayesian on-
demand smoother. When a picture has been taken,
the state vector is extended with the predicted state.
And after updating with a displacement measurement,
any unnecessary old states are marginalized. The list
of state indices when the pictures have been taken is
denoted K. The set N contains the current index i
only if a displacement measurement is available. The
augmented state vector xS contains all the states main-
tained in the joint distribution.

The purpose of the list S is to keep track of the
corresponding state indices. In the algorithm ∪ is used
to append an index, and \ is used to remove indices.
The function ind(d) returns the indices associated with
a displacement measurement d (e.g. l and m) that
can be marginalized. The function ind and the list
S are used to handle the case when a picture is used
for more than one displacement measurement. This is
generally the case, as an image generates displacement

Algorithm 1 Bayesian delayed displacement fusion
Require: p(x0), K, N

1: S ← {0}
2: for i = 1 to i =∞ do
3: Predict:
4: if i ∈ K then {picture taken}
5: p(xS ,xi|z0:i−1) = p(xi|xi−1)p(xS)
6: S ← S ∪ {i}
7: else
8: p(xS ,xi|z0:i−1) =∫

xi−1
p(xi|xi−1)p(xS)dxi−1

9: S ← S \ {i− 1}
10: S ← S ∪ {i}
11: end if
12: Update:
13: if i ∈ N then {displacement available}
14: p(xS |z0:i,di) = µp(zi,di|xS)p(xS |z0:i−1)
15: A← ind(di)
16: p(xi|z0:i,di) =

∫
xA
p(xS |z0:i,di)dxA

17: S ← S \A
18: else
19: p(xS |z0:i,di) = µp(zi|xi)p(xS |z0:i−1)
20: end if
21: end for

measurements both together with the preceeding and
the succeeding image.
K is updated by the camera triggering before each

iteration and N is updated before the update step by
the VO module indicating a displacement measurement
being ready. The filter acts similar to a fixed-point
smoother with the capability of formulating the points
to be smoothed on-demand, a “multi-point” smoother.

3 UNSCENTED MULTI-POINT
SMOOTHER

In this section we look at an unscented multi-point
smoother based on Alg.1. First we describe more thor-
oughly what the Gaussian assumptions means for our
augmented state vector xS , then we present impor-
tant properties of the unscented transformation, and
show how the method in this paper relates to stochas-
tic cloning.

3.1 Gaussian Assumption
To implement Alg.1 with a UKF as the underlying fil-
ter, one must define how the extension method, (10),
under Gaussian assumptions, behaves for the aug-
mented state vector xS . Consider the case where we

4



Arbo et.al., “Unscentet Multi-point smoother”

are extending at time tk

p(xS ,xk|zk−1) = p(xk|xS)p(xS |zk−1) =

N
([

xS

xk

]
;
[
E(xS)
E(xk)

]
,

[
Var(xS) Cov(xS ,xk

Cov(xk,xS) Var(xk)

])
.

(13)

The notation Cov(xS ,xk) is shorthand for

Cov(xS ,xk) =

 Cov(xS1 ,xk)
...

Cov(xk−1,xk)

 (14)

where S1 indicates the oldest index in the list of state
indices S. The newest index is always k−1. The mean
and covariance of xS is maintained by the filter. We
must evaluate the parts associated with xk. In the
following section we describe E(xk) and Var(xk) with
the unscented transform. For the cross-covariances be-
tween xS and xk, (14), consider S+ to be a list of state
indices containing the same indices as S, with the last
index, k−1 replaced with k. Then the cross-covariance
between xS and xS+ is by definition

Cov(xS ,xS+) = Var(xS1) . . . Cov(xS1 ,xk)
...

. . .
...

Cov(xk−1,xS1) . . . Cov(xk−1,xk)

 . (15)

Hence, evaluating the cross-covariance between xS and
xS+ , and extracting the rightmost columns of size L,
gives us (14). This augmented system keeps all but the
last state the same between each iteration.

xS+ = fa(xS) =


xS1

xS2
...

f(xk−1)

+


0
0
...

wk−1

 (16)

zk = ha(x+
S ) + vk = h(xk) + vk. (17)

The augmented version of the displacement measure-
ment model h̃ must know which states in the aug-
mented state vector xS correspond to the imminent
displacement measurement

dn = h̃a(xS) + ṽn. (18)

3.2 Unscented Transform
In this section we briefly introduce the unscented trans-
form and the properties that need to be evaluated for
Alg.1.

The basic premise of the unscented transform is that
it is easier to approximate a probability distribution
than a nonlinear function (Julier and Uhlmann, 2002).
This is done by propagating a set of deterministically
chosen sigma-points through the nonlinear function.
For a nonlinear transformation

y = f(x) (19)

where x ∈ RL is a Gaussian random variable of dimen-
sion L. Sigma-points can be defined by the selection
scheme

Y0 = E(x) (20)

Yh = E(x) +
√

(L+ λ)Var(x)i (21)

Yj = E(x)−
√

(L+ λ)Var(x)i (22)
w0 = 1/(L+ λ) (23)

wh,j = 1/2(L+ λ) (24)

for h = 1, ..., L, i = 1, ..., L, and j = L + 1, ..., 2L + 1,
where λ is a tuning parameter defining the spread of
the sigma-points around the expected value (Van der
Merwe, 2004).

The subscript i of the matrix Var(x) denotes its ith
column vector. From Van der Merwe (2004), under the
Gaussian assumption, the mean, covariance and cross-
covariance are constructed from the sigma-points by

E(y) =
2L+1∑
i=0

wiYi, (25)

Var(y) =
2L+1∑
i=0

wi (Yi − E(y)) (Yi − E(y))T
, (26)

and

Cov(x,y) =
2L+1∑
i=0

wi (X i − E(x)) (Yi − E(y))T
. (27)

These methods allow us to evaluate the expecta-
tion, covariance, and cross-covariance of the augmented
system described in the previous section, and the un-
scented multi-point smoother can be constructed.

3.3 Remark on Stochastic Cloning
If the underlying filter is an EKF, then f(xk) ≈ Fkxk.
The cloning procedure of (7) without a regularization
constant constructs the augmented expectation state
vector x̂S|k, and covariance matrix PS

k|k of the filter
according to
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x̂S|k =
[
x̂k|k
x̂k|k

]
(28)

PS|k =
[
Pk|k Pk|k
Pk|k Pk|k

]
. (29)

This does not describe a Gaussian distribution as the
covariance matrix is singular. When performing the
prediction step, an UKF will fail as it relies on the
Cholesky factorization of the state covariance matrix,
which is only unique on nonsingular matrices. On the
other hand, an EKF can readily perform the prediction
step with an augmented transition model giving the
expectation state vector and covariance matrix given
by

x̂S+|k =
[

x̂k|k
Fkx̂k|k

]
(30)

and

PS+|k =
[
Pk|k Pk|kF

T
k

FkPk|k FkPk|kF
T
k +Qk

]
, (31)

which is identical to the extension method described
in this paper. It is interesting to note that by Schur’s
complement, we require non-zero process noise to en-
sure that the distribution remains Gaussian through
an extend step.

3.4 Remark on Smoothing

The filter algorithm, Alg.1, performs optimal fixed-
point smoothing of the augmented states under the
assumption that the model can be described by (1),
(2) and (5). If the transformations are highly nonlin-
ear, the unscented transform will also encounter prob-
lems. As such, it is debatable whether the smooth-
ing procedure is beneficial. When absolute measure-
ments are available from e.g. GPS or a compass, it
was observed that the covariance associated with an
old augmented state diminished to the point where the
delayed displacement measurement was assumed to be
more accurate than it actually was. To remedy this, for
the simulation with high process delay and low cam-
era framerate, the covariance associated with the oldest
augmented state had a lower threshold it could not de-
crease below. This was used on the pose of the robot
as these were the states affected by the absolute mea-
surements.

4 ROBOT SIMULATION
4.1 System
The robot is modeled as a unicycle-like robot with no-
slip conditions. The kinematic model for the system is
based on the model by Cruz and Carelli (2006), with
a change where the castor wheel is at the rear end of
the robot,

ẋ =


ẋ
ẏ

ψ̇
u̇
ω̇

 =


u cosψ − aω sinψ
u sinψ + aω cosψ

ω
0
0

 (32)

where x and y is the robot’s east-north position, ψ is
yaw, u is the forward speed, and ω is the yaw rate.
The kinematic model (32) was implemented by using
the forward Euler method and Gaussian process noise
was added:

ẋ = fc(x) (33)
xk+1 = xk + fc(xk)(tk+1 − tk) + wk. (34)

We assume that the onboard sensors are not de-
layed, except for the visual odometry measurements,
when setting up the observation mapping h(xk), (2).
We model the onboard RTK-GPS, compass, and wheel
odometry, as direct measurements of the position,
(x, y), the heading (ψ), and linear and angular veloci-
ties (u, ω) respectively. The measurements are assumed
to be affected by additive Gaussian measurement noise.

The measurement dn is rotated by the oldest picture
frame,

dn =
[
R(−ψk) 0

0 1

]xm − xk

ym − yk

ψm − ψk

+ ṽn (35)

where R(·) is the 2D rotation matrix. Using the
simulink models and controller of Martins (2013) the
robot was simulated with a timestep of 0.05 s, follow-
ing a figure eight trajectory. As the robot is heavy
and slow moving, the process noise is negligible. The
acronym JUKF is used for the delayed displacement
fusing UKF in reference to the joint distribution. The
kinematic controller has an upper bound of 1.5 m/s in
these simulations.

For the simulations, the errors of the filter estimates
are 

x̃k

ỹk

ψ̃k

ũk

ω̃k

 = xk − x̂k|k. (36)
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ψ

x
y

Figure 4: Simulation of the robot showing pose er-
ror with respect to time. Simulated with
τC = 3s and τD = 2s. Purple indicates
UKF, green indicates JUKF.

u
ω

Figure 5: Simulation of the robot showing velocity
error with respect to time. Simulated
with τC = 3s and τD = 2s. Purple indi-
cates UKF, green indicates JUKF.

4.2 Simulation Results
In Test 1 the time between images, τC , is 0.25 s, and
the processing delay, τD is 0.2 s. The RMS errors are
given in Tab. 1. The JUKF fusing the delayed dis-
placement measurements has a lower RMS error than
the UKF not fusing the delayed displacement measure-
ment.

In Test 2 the time between images is 2 s, and the
processing delay is 1 s. The RMS errors are given in
Tab. 2. The JUKF fusing the delayed displacement

Table 1: RMS errors of the simulation Test 1, τC =
0.25s, τD = 0.2s.

x y ψ u ω
UKF 0.272287 0.239938 0.089938 0.100554 0.045322
JUKF 0.040214 0.043980 0.034718 0.017865 0.032077

Table 2: RMS errors of the simulation Test 2, τC = 2s,
τD = 1s

x y ψ u ω
UKF 0.262771 0.233008 0.098997 0.101097 0.058464
JUKF 0.093007 0.115435 0.065567 0.051329 0.053759

measurement has a lower RMS error than the UKF
not fusing the delayed displacement measurement.

In Test 3 the time between images is 3 s, and the pro-
cessing delay is 2 s. The RMS errors are given in Tab.
3. See Fig. 4 for the error in pose with respect to time,
and Fig. 5 for error in velocities with respect to time.
The purple line is the UKF, the green is the JUKF.
Note that whenever a VO measurement is fused, the
error in JUKF decreases, causing a sawtooth effect.

In Test 4 the time between images is 5 s, and the
processing delay is 3 s. The RMS errors are given in
Tab. 4. In this test a covariance threshold was ap-
plied to the covariances associated with the oldest x,
y and ψ. Without the covariance threshold, the JUKF
did not have lower RMS errors than the UKF. At this
frame rate, the pictures are not expected to overlap
for the robot under typical field conditions. This test
was included to show that the algorithm show improve-
ment in the localization RMS error for cases beyond the
worst expected latencies.

5 Future Work and Discussion
The algorithm proposed in this paper handles a mild
case of out-of-sequence measurements, in the sense that
displacement measurements are only processed after
several GPS and compass measurements have been
processed, i.e. out-of-sequence. The key to handling
this is the ind function, declaring which augmented
states are to be marginalized.

In the simulations presented here, we have only con-
sidered GPS and compass measurements in addition to
VO. In practice, most platforms will also have inertial

Table 3: RMS errors of the simulation Test 3, τC = 3s,
τD = 2s

x y ψ u ω
UKF 0.251910 0.249378 0.099966 0.101343 0.058235
JUKF 0.138441 0.117433 0.081633 0.072851 0.056340
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Table 4: RMS errors of the simulation Test 4, τC = 5s,
τD = 4s.

x y ψ u ω
UKF 0.278994 0.252959 0.098941 0.102308 0.057945
JUKF 0.265563 0.244570 0.09856 0.097869 0.057328

sensors available, which may be included in the mea-
surement model. When using MEMS sensors, it would
also be natural to include the gyro and accelerometer
biases in the filter.

Finally, this work employed a full-state represen-
tation as opposed to an error-state representation,
which has been used for visual odometry as described
in Mourikis and Roumeliotis (2007). In continua-
tion of this research, it may be interesting to investi-
gate how error-state smoothing relates to the Bayesian
paradigm.

6 Conclusion
This paper has proposed a Bayesian framework for the
fusion of delayed displacement measurements. This led
to a multi-point smoother capable of defining fixed-
points to be smoothed on demand according to the
GPS, WO, and compass measurements. This filtering
technique may prove useful in other scenarios where
fixed-points to be smoothed are formulated while the
filter is running.

By using the unscented transform, the filter was able
to use the smoothing effects of the fusion method for its
benefits. The filter maintains estimates of the state the
robot was in when a picture was taken, smoothed by
the absolute measurements. The VO fusing methods
improved the localization RMS error for a variety of
latencies.
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