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Abstract

This article presents a procedure that utilizes the local polynomial approximation approach in the es-
timation of the Dynamic Relative Gain Array (DRGA) matrix and its uncertainty bounds for weakly
nonlinear systems. This procedure offers enhanced frequency resolution and noise reduction when random
excitation is used. It also allows separation of nonlinear distortions with shorter measuring time when
multisine excitation is imposed. The procedure is illustrated using the well-known quadruple tank process
as a case study in simulation and in real life. Besides, a comparison with the pairing results of the static
RGA, nonlinear RGA and DRGA based on linearized quadruple tank model for different simulation cases
is performed.

Keywords: Dynamic Relative Gain Array, nonparametric identification, local polynomial approximation
approach, weakly nonlinear systems.

1 Introduction

Decentralized controllers are usually preferred in con-
trolling industrial plants, as their design would even-
tually reduce to designing single-input single output
(SISO) controllers. The individual controllers are also
easier to maintain and update than the multivariable
ones (Goodwin et al., 2001). It is also well-known
that the choice of the inputs and outputs pairs af-
fects the achievable performance of the decentralized
control system, which makes the selection of input-
output pairs a crucial design step. A systematic and
reliable procedure for the selection of the pairs is there-
fore needed in order to achieve the desired performance
goals for a decentralized control system. Therefore, ef-
forts to develop pairing techniques have been carried
on since the pioneer work of Bristol on the Relative
Gain Array (RGA) in 1966 (Bristol, 1966). The RGA
provides a method to select the input-output pairs for
multi-loop SISO controllers by means of the steady-

state gain matrix of the square linear systems.
Later on, many extensions were developed such as

the Dynamic Relative Gain Array (DRGA) proposed
by Witcher in Witcher and McAvoy (1977) where the
transfer function rather than the steady-state gain ma-
trix was used. A comprehensive study on the exten-
sions and variants can be found in Khaki-Sedigh and
Moaveni (2009). Since all real systems are nonlinear
to some extent, RGA is still adapted in addressing the
pairing selection for those systems. On the one hand,
the original RGA formula, is applied on the linearized
parametric model around a specified operating point.
On the other hand, nonlinear RGA formula, applied
directly to the nonlinear systems models, is derived in
Glad (2000) and updated in Moaveni and Khaki-Sedigh
(2007) resulting in a general approach to input-output
pairing for linear and nonlinear systems following the
relative gain definition. However, such approaches are
limited to systems with accurately known models.

Aiming at taking the system dynamics into consid-
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eration in the input-output pairing decision, DRGA
rather than RGA values are usually used. The com-
mon procedure to calculate DRGA values for systems
with unknown model is to use a parametric model ob-
tained from system identification techniques. There-
fore, the user needs to decide on a model structure
and model order, and subsequently to calculate the
Frequency Response Matrix (FRM). Eventually, the
DRGA values are obtained over a frequency range of
interest. The wrong choice of the model structure
and/or the model order has an influence on the quality
of the system representation (Söderström and Stoica,
1988) and consequently on the DRGA calculated val-
ues. Besides, other sources such as changes in the oper-
ating point or parameters values introduce uncertain-
ties to the RGA/DRGA values. To quantify these un-
certainties, an analytical expression of the worst-case
RGA as well as statistical RGA bounds for 2 × 2 and
n×n uncertain systems are derived in Chen and Seborg
(2002). A tighter bound of the worst-case RGA using
the structured singular value is proposed in Kariwala
et al. (2006). However, for large systems, this bound
is computationally expensive and a simpler-calculated
bound was proposed by Kadhim et al. (2015a). The re-
sults of Chen and Seborg (2002), Kariwala et al. (2006)
and Kadhim et al. (2015a) can straightforwardly be ex-
tended to the DRGA.

In previous work, (Kadhim et al., 2014) and (Kad-
him et al., 2015b), the authors have investigated an ap-
proach that seems obvious yet was not thoroughly dis-
cussed before which requires less user interaction and
efforts in estimating RGA and DRGA. The approach
employs a nonparametric system identification method
to estimate the system Frequency Response Matrix
(FRM) from input-output data and then calculates
RGA and DRGA. Consequently, from the experimen-
tal data, the controller configuration can be directly de-
cided. Such an approach reduces the uncertainties aris-
ing from incorrect user decisions by avoiding the para-
metric model identification. In Kadhim et al. (2014),
both RGA and DRGA of linear systems are first deter-
mined using random excitation signal. Following the
approach defined in Pintelon and Schoukens (2012),
data is divided into sub-records and the frequency re-
sponse is averaged over these sub-records to reduce the
effect of the leakage that result from the nonperiodic
nature of the random signal. Although the data divi-
sion proved to be efficient in limiting the leakage effect,
it has a drawback of reducing the frequency resolution
of the result. However, a multisine rather than random
excitation signal is used to determine DRGA of weakly
nonlinear systems in Kadhim et al. (2015b). The un-
certainties of the DRGA values are then obtained fol-
lowing the derivation in Chen and Seborg (2002). The

multisine excitation simplifies the distinction between
the nonlinear distortion and the output noise which is
difficult to achieve using random excitation (Pintelon
and Schoukens, 2012) as well as it improves the signal
to noise ratio (SNR) (Schoukens et al., 2010). Unfor-
tunately, this comes with the cost of requiring long ex-
perimental time for multi-input multi-output (MIMO)
systems.

This work aims to overcome the shortcomings rep-
resented by the low frequency resolution in Kadhim
et al. (2014) and the long experiment running time
in Kadhim et al. (2015b) while preserving the ad-
vantages of using the nonparametric identification ap-
proach in DRGA calculation. To achieve this for
weakly nonlinear systems, the Local Polynomial Ap-
proximation Method (LPA) and the Local Polynomial
Approximation-Fast Method (LPA-FM) introduced in
Pintelon and Schoukens (2012) are employed with both
random and multisine excitation signals, respectively.
This results in estimating the best linear approxima-
tion (GBLA) and its covarience caused by the output
noise and the nonlinear distortion. Hence, DRGA val-
ues and their uncertainty bounds can be directly calcu-
lated using the estimated frequency response and the
estimated covariance of the GBLA. To make the de-
cision more robust against the uncertainty sources, i.e
the noise and the nonlinear distortions, the uncertainty
bound of the DRGA are taken into considerations. The
proposed procedure is applied on a case study of a
quadruple tank process in simulation and on real plant
to discuss the applicability of the different nonparamet-
ric identification techniques in the input-output pairing
selection area.

The article is structured so that a brief definition of
the RGA, DRGA, the pairing rules and the uncertainty
in DRGA values are given in the following Preliminar-
ies section. Theoretical background and the algorithm
of applying the proposed procedure are given in sec-
tions 3 and 4, respectively. The advantages of imple-
menting the proposed approach in simulation and on
real plant are discussed from two prospectives in two
separate sections. Enhancing the frequency resolution
and reducing the noise effect are discussed in section 5
whereas section 6 deals with the separation of the non-
linear distortions. Finally, conclusions are drawn and
future work directions are given in the last section.

2 Preliminaries

2.1 Definition of RGA, DRGA and Pairing
Rules

The Relative Gain Array (RGA) elements (λij) are
defined as the gain between input uj and output yi
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when all other loops are opened divided by the gain
between the same input and output when all other
loops are closed under perfect control assumption
(Grosdidier et al., 1985). Provided that the steady-
state gain matrix G(0) of the systems is given, the
RGA values can easily be obtained by applying

Λ(0) = G(0)×G(0)−T (1)

where × denotes an element-by-element product and
−T is the inverse transpose of the matrix. Despite the
fact that RGA is essentially proposed at steady-state
(Bristol, 1966), (1) is usually used for any frequency in
the range of interest (Witcher and McAvoy, 1977) and
hence it can be referred to as Dynamic Relative Gain
Array (DRGA).

For input-output pairing, there are rules to be fol-
lowed (Khaki-Sedigh and Moaveni, 2009):

1. Choose the input-output pairs that correspond to
the RGA elements close to 1.

2. Avoid pairing with negative or large RGA ele-
ments.

2.2 Uncertainty in the DRGA results

Since the system models are never perfect, research ef-
forts are exerted to quantify the uncertainty effect on
the RGA results. The most important result was pro-
posed by Chen and Seborg in Chen and Seborg (2002)
based on statistical approach. In that work, a closed
form of the variance of RGA elements, denoted by σ2

λij
,

was derived. An extension of the result to frequency ω
is stated in the following lemma
Lemma. For 2×2 system, where the nominal gains
G̃(ω) and the covariance matrices Cov(G(ω)) at fre-
quency ω are given and E denotes the expectation op-
erator, the σ2

λij
(ω) can be approximated as in (2)

where
∂λij(ω)
∂Gij(ω)

is calculated as (Grosdidier et al., 1985)

∂λij(ω)

∂Gij(ω)
=

(1− λij(ω))λij(ω)

Gij(ω)
(3)

3 Theoretical Background

The definition of the weakly nonlinear system as well
as an overview of the identification methods (Spec-
tral Analysis and Local Polynomial Approximation)
are given in this section.

3.1 Weakly nonlinear systems

This study considers the class of nonlinear systems
where the outputs can be well approximated by
volterra series including hard nonlinear systems such
as saturation, clipping and dead zone (Schoukens et al.,
2014).

Definition. The weakly nonlinear system is defined
as the nonlinear system where the coefficients of the
first-order kernels of the volterra series dominate over
the coefficients of the higher order kernels (Dobrowiecki
and Schoukens, 2007).

Following the definition, a weakly nonlinear system
can be described by a linear model since the linear
contribution in the output is dominating the nonlin-
ear distortions. The disturbed output of weakly non-
linear systems, excited by a class of Gaussian excita-
tion (Gaussian noise, periodic Gaussian noise, random
phase multisine), can be approximated in least square
sense by an output of a linear model as (Pintelon et al.,
2010)

y(t) = gBLA ∗ u(t) + ys(t) + v(t) (4)

where ∗ is the convolution product, v(t) is the filtered
output noise, gBLA is the impulse response of the best
linear approximation GBLA and ys(t) represents the
portion of the nonlinear output that is not captured
by the linear model GBLA, see Figures 1 and 2. The

Nonlinear 

System

H

+ 
u(t) yo(t)

y(t)

e(t)

v(t)

Figure 1: Nonlinear system.

GBLA is defined as a linear system whose output is as
close as possible, in the mean square error sense, to
the output of the nonlinear system (Schoukens et al.,
2014).

σ2
λij

(ω) = E[(λij(ω)− λ̃ij(ω))2] ≈
2∑
k=1

2∑
l=1

2∑
m=1

2∑
n=1

(
∂λij(ω)

∂Gkl(ω)

)
G̃

(
∂λij(ω)

∂Gmn(ω)

)
G̃

Cov(G(ω)) (2)

249



Modeling, Identification and Control

GBLA
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Figure 2: Best linear approximation of the weakly non-
linear system.

3.2 Spectral Analysis Method (SA)

For the system shown in Figure 2, the input-output
Discrete Fourier Transform (DFT) spectra U(k), Y (k)
are related in DFT frequency k as follows (Pintelon
and Schoukens, 2012)

Y (k) = GBLA(ωk)U(k) + Ys(k) + TG(ωk) (5)

+H(ωk)E(k) + TH(ωk)

where ωk = 2πkfs/N and fs = 1/Ts with Ts being
the sampling time. GBLA(ωk) and H(ωk) are the fre-
quency response matrices of the best linear approxi-
mation of the system and the noise at DFT line k, re-
spectively. The term H(ωk)E(k) is usually abbreviated
by V (k). Moreover, for the same DFT line k, TG(ωk)
and TH(ωk) represent the leakage error for system and
noise respectively, while Ys(k) represents the nonlinear
distortion in frequency response measurement.

For general nonlinear ny × nu system depicted in

Figure 1, ĜBLA at DFT line k can be estimated as
(Pintelon and Schoukens, 2012)

ĜBLA(ωk) = ŜY U (k)Ŝ−1
UU (k) (6)

where ŜY U and ŜUU are the estimated cross and auto-
power spectra, respectively. To reduce the leakage ef-
fect, the collected data is divided into M blocks (sub-
records) then averaged in the estimation of ŜY U and
ŜUU at line k (Schoukens et al., 2012).

The covariance of the noise V at line k can be esti-
mated as (Schoukens et al., 2012)

ĈV (k) =
M

M − nu
(ŜY Y (k)− ŜY U (k)Ŝ−1

UU (k)ŜHY U (k))

(7)
with q = M −nu the number of the degrees of freedom
(dof) and H denotes a Hermitian transpose of the ma-
trix. Hence, the covariance of the ĜBLA is obtained
as

Cov(vec(ĜBLA(ωk))) ≈ 1

M
Ŝ−1
UU (k)⊗ ĈV (k) (8)

where ⊗ is the Kronecker product and (vec) puts the
columns of the matrix on top of each other.

As the random excitation is used, there is no easy
way to distinguish the nonlinear distortion ys(t) at the
output measurement from the noise v(t) in Figure 2
(Schoukens et al., 2014). Thus, the estimated noise co-
variance (ĈV ) in (7) accounts for both nonlinear and
noise distortions. It is worth mentioning that reduc-
ing the leakage effect by dividing the data to M blocks
renders a lower frequency resolution and introduces a
trade-off situation. To overcome this shortcoming, Lo-
cal Polynomial Approximation method is to be utilized.

3.3 Local Polynomial Approximation
Method (LPA)

The basic idea of LPA is using Taylor series expansion
to approximate GBLA(ωk±r) and T (ωk±r) in (5) for
r = 0, 1, .., n by a low order polynomial at DFT fre-
quency k where T (ωk±r) is the summation of TG(ωk±r)
and TH(ωk±r). The coefficients of the polynomial are
estimated from the DFT of the input-output data via
linear least square fit. Such an approximation is valid
since GBLA(ω) and T (ω) are considered to be smooth
transfer functions having continuous derivative up to
any order (Pintelon and Schoukens, 2012). The result
is the estimation of ĜBLA(ωk) and T̂ (ωk) at DFT line
k, whilst the noise covariance at line k can be esti-
mated from the residual of the least square fit. The
estimated noise covariance comprises the effect of both
the nonlinear and the noise distortions since a random
excitation signals is used here.

The estimation sequence is repeated for DFT fre-
quency k + 1 to estimate ĜBLA(ωk+1), T̂ (ωk+1) and
ĈV (k + 1) as well as all frequencies in the band of
interest (Pintelon et al., 2010). The procedure is sum-
marized from Pintelon and Schoukens (2012) as follows

Rewriting (5) after approximating GBLA(ωk+r) and
T (ωk+r) by polynomial of order R at DFT frequency
k, it can be expressed in the form

Y (k + r) = (GBLA(ωk) +

R∑
s=1

gs(k)rs)U(k + r) + T (ωk)

+

R∑
s=1

ts(k)rs + V (k + r)

= ΘK(k + r) + V (k + r)

(9)

where Θ is the ny× (R+1)(nu+1) matrix of unknown
complex parameters

Θ =
[
GBLA(ωk) g1(k) g2(k) · · · gR(k)

T (ωk) t1(k) t2 · · · tR(k)
]

(10)
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and K(k + r) is the (R + 1)(nu + 1) × 1 input data
vector. Notice that, the contribution of Ys(k + r) has
been included in the V (k + r) since the random exci-
tation signals are used. Redoing (9) for r = −n,−n+
1, · · · , 0, · · · , n− 1, n results in

Yn = ΘKn + Vn (11)

where Yn, Kn and Vn sizes are ny × (2n + 1), (R +
1)(nu + 1) × (2n + 1) and ny × (2n + 1), respectively.
If 2n+ 1 ≥ (R + 1)(nu + 1), Θ can be estimated from
(11) using least square method as

Θ̂ = YnK
H
n (KnK

H
n )−1 (12)

The noise covariance can be estimated form the resid-
ual of the fitting as

V̂n = Yn − Θ̂Kn (13)

ĈV (k) =
1

q
V̂nV̂

H
n (14)

where q = (2n+ 1− (R+ 1)(nu + 1)) is the number of
dof of V̂ Hn .

Then, ĜBLA and its covariance matrix at DFT fre-
quency k can be estimated as (Pintelon and Schoukens,
2012)

ĜBLA(ωk) = Θ̂

[
Inu

0

]
(15)

which selects the first nu columns of Θ̂ matrix, and

Cov(vec(ĜBLA(ωk))) ≈ SHS ⊗ ĈV (k) (16)

where S = KH
n (KnK

H
n )−1

[
Inu

0

]
.

4 Algorithm of the Proposed
Procedure

The procedure of estimating DRGA and its uncertainty
bounds for weakly nonlinear systems can be summa-
rized as in Algorithm 1. Notice that, in order to track
the occurrences of the sign change in DRGA values,
the pairing decision is to be made based on the real
part of the estimated DRGA in frequency ω. Notice
that this algorithm does not apply for the separation
of nonlinear distortions from the output noise which
will be discussed later.

5 Enhancing Frequency Resolution
and Reducing Noise Effect

In this section, LPA method is applied both in simula-
tion and real life quadruple tank plant subject to ran-
dom excitation. For comparison purposes SA method
is applied in the simulation study.

5.1 Simulation Study

The quadruple tank process working around a specified
operating point is employed to illustrate the DRGA
calculation procedure since it behaves as a weakly non-
linear system when subject to Gaussian excitation (Ar-
ranz and Birk, 2015). To give a comprehensive under-
standing, the results of the estimated DRGA (Λ̂) are
compared to the results obtained by the nonlinear RGA
(Λnl−RGA) and with both RGA (Λ(0)) and DRGA (Λ)
based on a linearized transfer function (Glin) of the
physical model around a selected operating point.

The quadruple tank physical model based on mass
balance and Bernoulli’s principle is given by (Johans-
son, 2000)

ḣ1 = − a1
A1

√
2gh1 + γ1k1

A1
u1

ḣ2 = − a2
A2

√
2gh2 + γ2k2

A2
u2

ḣ3 = − a3
A3

√
2gh3 + a1

A3

√
2gh1 + (1−γ2)k2

A3
u2

ḣ4 = − a4
A4

√
2gh4 + a2

A4

√
2gh2 + (1−γ1)k1

A4
u1

(17)

where the water heights of the 3rd and 4th tanks (h3
and h4) are considered as the system outputs. γ1
and γ2 are valves openings splitting the water between
tanks 1 and 4 and tanks 2 and 3, respectively as shown
schematically in Figure 3. u1 and u2 are the input
voltages driving the pumps 1 and 2 respectively. The
description and the values of the parameters1 used in
the simulation are tabulated in Table 2.

By manipulating the splitting valves openings, differ-
ent scenarios can be achieved such as minimum phase,
non-minimum phase, ill-conditioned, lower and upper
triangular plants. In the following subsections, esti-
mation of the DRGA for the mentioned scenarios is
presented with a special focus on the minimum-phase
case.

Table 1: Water levels in the quadruple tank for the se-
lected operating point.

h1 (cm) h2 (cm) h3 (cm) h4 (cm)

7.5 6.5 7 6.5

5.1.1 Minimum-phase case

To achieve the minimum-phase case, the splitting
valves γ1 and γ2 are chosen to be 80% opened (Jo-
hansson, 2000). The presented operating point for this
case in Table 1 renders a linearized transfer function
(Glin) as

Glin =

[ 2.516
5000s2+142.27s+1

0.473
63.45s+1

0.585
75s+1

1.761
7347.5s2+172.81s+1

]
(18)

1The parameters values are estimated based on the real quadru-
ple tank process depicted in Figure 6.
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Algorithm 1 Estimation of the DRGA and its uncertainty bounds in the frequency band of interest

procedure
Input: DFT spectra of input-output measurements using random excitations.
for each frequency ωk ∈ frequency band of interest do

Estimate ĜBLA(ωk) using (6) for SA method or using (15) for LPA method.
Estimate Cov(ĜBLA(ωk)) using (8) for SA method or using (16) for LPA method.
Estimate the DRGA values by substituting ĜBLA(ωk) in (1) as

Λ̂(ωk) = ĜBLA(ωk)× ĜBLA(ωk)−T (19)

Estimate the variance of λ̂ij by means of (2) after substituting ĜBLA, Λ̂ and Cov(ĜBLA). For 2 × 2
system σ2

λij
is found as

σ2
λij

(ωk) ≈
2∑
k=1

2∑
l=1

2∑
m=1

2∑
n=1

(
∂λij(ωk)

∂Gkl(ωk)

)
ĜBLA

(
∂λij(ωk)

∂Gmn(ωk)

)
ĜBLA

Cov(ĜBLA(ωk)) (20)

end for
end procedure

Table 2: Parameters values and description for quadruple tank process.

Parameter V alues Description

A1,..,4 28 cm2 Cross section area of tank 1, 2, 3 and 4
a1 0.074 cm2 Area of the hole of tank 1
a2 0.058 cm2 Area of the hole of tank 2
a3 0.089 cm2 Area of the hole of tank 3
a4 0.075 cm2 Area of the hole of tank 4
g 981 cm/s2 Gravity acceleration
k1 0.31 cm3/V s Flow to volt unit of pump 1
k2 0.23 cm3/V s Flow to volt unit of pump 2
kc3 3.84 V/cm Constant of the level sensor of tank 3
kc4 3.48 V/cm Constant of the level sensor of tank 4
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In this case, the diagonal pairing is suggested to con-

Figure 3: A sketch of the quadruple tank process.

trol the water levels h3 and h4 (Johansson, 2000). This
pairing selection is quite intuitive since pumps 1 and
2 pump more water into tanks 1 and 2 respectively,
thus controlling levels h3 and h4 through tanks 1 and
2 is preferable. The diagonal pairing suggestion is con-
firmed by Λ(0) values obtained using an expression that
relates (λ11(0)) element in the Λ(0) matrix to the valves
positions by (Johansson, 2000)

λ11(0) =
γ1γ2

γ1 + γ2 − 1
(21)

Thus, λ11(0) will be equal to 1.066 which promotes the
diagonal pairing according to the RGA pairing rules.
Based on the pairing rules of Λnl−RGA (Moaveni and
Khaki-Sedigh, 2007), the diagonal pairing is also sug-
gested since λ11nl−RGA

= 1.118.

Excitation Signals

Gaussian random excitation signals N (0, 10) are gener-
ated with N = 5000 samples and a sampling frequency
fs = 1 Hz. After the simulated tank levels reach the op-
erating point, the excitation signals are superimposed
on u1 and u2. The outputs of the simulation, h3 and
h4, are disturbed by filtered random Gaussian noise
N (0, 0.2) to simulate the measurement noise. Both
the excitation signals and the responded noisy outputs
are used to estimate the DRGA (Λ̂) and its uncertainty
bounds by means of SA and LPA methods.

Spectral Analysis Method

In order to reduce the leakage in the estimated results,
the collected data are divided into M blocks followed

by averaging them to a single estimate. Selecting a
suitable M is a trade-off between the leakage elimina-
tion and the frequency resolution from one side and
the noise suppression from the other (Pintelon and
Schoukens, 2012). Therefore, M should be selected
as small as possible as well as it should satisfy the con-
dition q = M − nu ≥ ny (Pintelon and Schoukens,
2012). Thus, M is selected to be 4 since both nu and
ny are equal to 2. Therefore, the frequency resolution
decreased from fs/N to Mfs/N . Moreover, to sup-
press the leakage effect on the DFT spectra, windows
other than rectangular window are usually applied to
the time domain, such as Hanning, diff or half-sine
windows. In Pintelon et al. (2010), the system and
the noise leakage error of diff and half-sine windows
are shown to be greater than Hanning window, while
the interpolation error of Hanning is greater than that
in diff and half-sine windows. The results of Antoni
and Schoukens (2007) show that diff window is optimal
in the estimation of the frequency response function
which motivates its usage in the current simulations.
Following Algorithm 1, the FRM of GBLA and its co-
variance are estimated (see Figure 4a) and then used in

the estimation of the real parts of λ̂11 and the ±3σλ11

uncertainty bounds (see Figure 4b). The real parts
of λ11 calculated from the linearized parametric model
(18) are also illustrated in Figure 4b. The pairing

suggestion of λ̂11 coincides with λ11(0) and λ11nl−RGA
for the low frequencies with recommendation of the di-
agonal pairing while it shows completely different sug-
gestion in frequencies higher than 0.008 Hz promoting
an off-diagonal pairing. That behaviour is physically
explainable since opening the splitting valves by 80%
(γ1 = γ2 = 0.8) means more water flow goes to the
upper tanks which allows easier controlling of water
levels in the lower tanks using diagonal pairing. Even
when involving the upper tanks dynamics such pairing
gives an acceptable performance with slow references
changes such as step changes. On the other hand, when
the references frequency increases, it is easier for the
levels of the lower tanks to keep tracking of the refer-
ences through the direct water pumping even with the
small splitting valve opening (1 − γ1 = 1 − γ2 = 0.2).
In other words, avoiding the upper tanks dynamics
with frequency increasing motivates off-diagonal pair-
ing. This pairing suggestion is also confirmed by λ11
obtained by the linearized parametric model, see Fig-
ure 4b. Moreover, although the value of λ̂11, (0.6)
promotes diagonal pairing around 0.006 Hz, the lower
bound of the uncertainty bounds, [0.44 0.76], reveals
that a highly interaction effect is expected. Therefore,
neither diagonal nor off-diagonal pairing can be sug-
gested for that frequency range and a sparse or cen-
tralized controllers would be preferred.
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(a) Estimated FRM of GBLA using SA of the simulated case
with random excitation.
Black: FRM of ĜBLA. light Gray: Variances of ĜBLA.
dark Gray (-·): FRM of Glin.

10
−3

10
−2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

λ 11
 ±

 3
σ λ 11

 b
ou

nd

f [Hz]

(b) Real parts of λ̂11 and ±3σλ11 bounds using SA of the
simulated case with random excitation. Black: λ̂11. light
Gray: λ̂11 ± 3σλ11 uncertainty bounds. dark Gray (-·):
λ11 calculated based on Glin. Bold vertical line: indi-
cates 0.0012 Hz.

Figure 4: Simulation results of ĜBLA and λ̂11 using SA
method.
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(a) Estimated FRM of GBLA using LPA of the simulated
case with random excitation.
Black: FRM of ĜBLA. light Gray: Variances of ĜBLA.
dark Gray (-·): FRM of Glin.
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(b) Real parts of λ̂11 and ±3σλ11 bounds using LPA of the
simulated case with random excitation. Black: λ̂11. light
Gray: λ̂11 ± 3σλ11 uncertainty bounds. dark Gray (-·):
λ11 calculated based on Glin. Bold vertical line: indi-
cates 0.0012 Hz.

Figure 5: Simulation results of ĜBLA and λ̂11 using
LPA method.
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Local Polynomial Approximation Method

To maintain the frequency resolution as fs/N and
reduce the interpolation and leakage errors on both
the estimated FRM of GBLA and its covariance, LPA
method is used. In order to make a fair comparison
with SA results, the order of the polynomial (R) is se-
lected to be 2 (lowest order possible) and the dof (q)
is selected to be 2 (equal to that in the SA case). The
LPA method is applied to the same collected data used
in the simulation of the SA method.

Figure 5a clearly shows the enhanced results of LPA
method over SA method. The leakage and the noise re-
duction of this method can be noticed from the results
of the variances of ĜBLA shown in Figure 5a compared
to Figure 4a. More reduction in those variances can be
achieved using LPA by increasing the degree of free-
dom, while increasing the degree of freedom in the SA
results is reducing the frequency resolution in returns.
Beside the higher resolution of the λ̂11, the uncertainty
bounds are reduced significantly.

Despite the fact that the same pairing decisions are
obtained based on λ̂11 values of both LPA and SA
methods for low and high frequencies, the user can take
more confident pairing decision based on LPA results
since the uncertainty bounds are significantly reduced,
see Figure 5b. For example, utilizing a diagonal decen-
tralized controller for a closed-loop bandwidth around
0.0012 Hz, the system would be mistaken to suffer per-
formance degradation due to the uncertainty bounds
of λ̂11, [0.62 1.55], indicating largely interactive sys-
tem in the SA results. Whereas the system is almost
decoupled at that frequency based on the uncertainty
bounds of λ̂11, [1 1.06], in the LPA method.

5.1.2 Other Simulation Cases

Non-minimum phase, lower triangular, upper triangu-
lar and ill-conditioned plant (with condition number
value of 26) cases are also simulated in order to verify
the results of the proposed procedure. These cases are
easily achieved by changing the opening of the split-
ting valves γ1 and γ2. Combinations of splitting valves
opening, the values of RGA (λ11(0)), λ11nl−RGA and

λ̂11 with the standard deviation (σλ11) are tabulated

in Table 3. Values of λ̂11 and σλ11
are obtained us-

ing LPA method with both R and dof equal to 2 for
frequency (f) 0.0002 Hz, 0.0014 Hz and 0.007 Hz.

Non-minimum case

The negative or close to zero values of λ11 for different
frequencies of the proposed procedure coincide with the
other methods and the intuition of having off-diagonal
pairing. 80% of the amount of the water is pumped

directly to the lower tanks from the opposite sources,
i.e. most the water of the tank 3 and 4 come from
pump 2 and 1, respectively (see Figure 3).

Triangular cases

The diagonal pairing is inevitable for the triangular
cases (Khaki-Sedigh and Moaveni, 2009), the λ11 val-
ues for the different methods are equal or close to 1.
From Figure 3, in the lower triangular case, tank 3 re-
ceives the water only from pump 1 hence h3 can only
be manipulated through that pump. Similarly, tank
4 in the upper triangular case receives the water from
only pump 2 suggesting the diagonal pairing for all fre-
quencies which confirms the results of λ̂11.

Ill-conditioned case

The pairing suggestions of the ill-conditioned case are
quite different for the different pairing methods. On
the one hand, RGA suggests diagonal pairing with an
indication of difficult controlling since λ11(0) value is
much higher than 1. On the other hand, nonlinear
RGA suggests off-diagonal pairing based on λ11nl−RGA
value (-2.271). Both pairing suggestions appear in the
result of the proposed method which favours the diago-
nal pairing for the frequencies close to the steady-state
and off-diagonal for the middle and higher frequencies.
The selection is similar to that of the minimum case yet
it suggests the off-diagonal pairing in lower frequency
(0.0014 Hz ) since the opening of the direct splitting
valves toward the lower tanks (1− γ1 = 1− γ2 = 0.48)
are bigger than that in the minimum phase case (0.2).
Moreover, the difference in the suggestions of the non-
linear RGA and RGA is a result of considering or ne-
glecting the system dynamics, respectively. Finally,
the high standard deviation in the estimated DRGA
results is expected since the plant in the ill-conditioned
case is sensitive to the noise and nonlinear distortion
uncertainties.

5.2 Real Life Study

In order to apply the proposed procedure on real plant,
a real quadruple tank process shown in Figure 6 in
the minimum-phase case is employed. u1 and u2
were applied to drive the pumps to operate at 60% of
their power until the equilibrium operating point was
reached. With 80% opening of γ1 and γ2, the water
levels in the tanks at that operating point are depicted
in Table 1. Thereafter, the same random excitation
inputs used in the simulation cases were applied. The
random excitations are designed to be changed each
5Ts (Ts = 1/fs) to allow the quadruple tank to re-
spond to that change.
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Table 3: Pairing suggestions of different plant cases based on different methods

Plant Case Opening λ11 values for different methods

γ1 γ2 λ11(0) λ11nl−RGA (λ̂11, σλ11
)

f= 0.0002 Hz f= 0.0014 Hz f= 0.007 Hz

Non-minimum 0.2 0.2 -0.066 -0.038 (-0.09,0.02) (-0.04,0.002) (0.004,0.001)
Lower triangular 0.75 1 1 1 (1,0.01) (0.99,0.05) (1.02,0.03)
Upper triangular 1 0.75 1 1 (0.99,0.07) (1,0.02) (1.03,0.2)
Ill-conditioned 0.52 0.52 6.76 -2.271 (3.4,0.9) (0.41,0.07) (0.108,0.009)

Figure 6: The quadruple tank process in the Control
Engineering Group lab.

The LPA method is utilized in the estimation of
DRGA with the values of polynomial order (R) and
dof (q) are selected to be 3 and 18, respectively. The

real parts of λ̂11, λ̂11 ± 3σλ11 uncertainty bounds and
the real part of λ11 obtained from the linearized model
(18) are illustrated in Figure 9a. The figure shows that

the real parts of λ̂11 and λ11 suggest the same pairing
decision (diagonal pairing) up to a frequency 0.006 Hz.
For higher frequencies, discrepancy occurs between the
results of the real plant and its model due to the neg-
ligence of the dynamics of some system parts such as
pumps and sensors. As discussed for the model, a good
performance is still expected when using a diagonal de-
centralized controller around a closed-loop bandwidth
of 0.0012 Hz since the uncertainty bounds of λ̂11, [0.995
1.24], show a plant with low interaction.

6 Separation of Nonlinear
Distortions

Separation of nonlinear distortions ys(t) and noise v(t)
is possible when a nonlinear system such as that shown

in Figure 1 is excited by the multisine signal

u(t) =
1√
N

N
2 −1∑

k=−N
2 +1

Uke
j(2πk t

N +φk) (22)

with amplitude U−k = Uk and randomly chosen phases
φ−k = φk such that E{ejφk = 0}. It follows that
the DFT spectra of the input-output relation are as
(Pintelon and Schoukens, 2012)

Y (k) = GBLA(ωk)U(k)+Ys(k)+V (k)+TH(ωk) (23)

The noise covariance (CV ) can be estimated over P
periods of the same u(t) realization knowing that ys(t)
is uncorrelated with, yet dependent on u(t) and does
not change over these periods. Besides, measuring the
system outputs for M different u(t) realizations allows
estimating the covariance of the nonlinear distortion
(CYs

) since ys(t) changes from one realization to the
other (Pintelon and Schoukens, 2012).

Distinction between ys(t) and the noise v(t) for mul-
tivariable ny × nu system requires at least M × nu ex-
periments with P periods after the transient. Hence, in
order to quantify Ys, the realization of excitation sig-
nal needs to be changed not only from input to input
but also between the sub-experiments. For that pur-
pose, excitation signal known as full orthogonal random
phase multisine is used that is represented by

U[m,p] =

 U1ke
j(φ1k+α1k) · · · U1ke

j(φ1k+αnuk)

...
. . .

...
Unuke

j(φnuk+α1k) · · · Unuke
j(φnuk+αnuk)


(24)

for m = 1, ..,M where M ≥ 2 and p = 1, .., P where
P ≥ 2 with α being uniformly distributed over [0, 2π)
(Schoukens et al., 2010)(Wernholt and Gunnarsson,
2006). However, this signal prolongs the measuring
time and it is more convenient to use an alternative
approach as discussed in the following section.
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Local Polynomial Approximation-Fast
Method (LPA-FM)

This method has an advantage of using only one ex-
periment with periods P ≥ 2, thus only one column
of (24) is needed rather than the M ×nu experiments.
Two estimation phases are employed to estimate the
frequency response of GBLA, the noise and the nonlin-
ear distortion covariance matrices. The first phase is
used to nonparametrically suppress the noise leakage
error TH ; while the second phase is employed to esti-
mate the frequency response of the GBLA, the sample
total noise and the nonlinear distortion covariances.
The two phases basically follow the same principle of
the LPA method. For curtailment purposes, the proce-
dure of this method is skipped here and can be found
in Chapter 7, Section 7.3 in Pintelon et al. (2010).

6.1 Simulation and Real life studies

Multisine excitations are used in order to sort out the
uncertainty in the DRGA values caused by the nonlin-
ear distortions and output noise. Multisine excitations
with RMS = 10 are designed to excite the odd DFT
lines fs

N , 3fs
N , 5fs

N , 7fs
N ....., 2499fs

N with N = 5000 and
fs = 1Hz. Two periods of these excitations (P = 2)
are superimposed on u1 and u2 after the tank levels in
simulation and real for the minimum-phase case reach
the operating points in Table 1. In the simulation, the
outputs h3 and h4 are disturbed by filtered random
Gaussian noise N (0, 0.5) to simulate the measurement
noise. Both the excitation signals and the noisy out-
puts are used to estimate the DRGA and its uncer-
tainty bounds by means of LPA-FM. The multisine ex-
citation signals constitute one column of the excitation
signal given in (24) which reduces the experiment time
significantly compared to the methods used in Kad-
him et al. (2015b). Applying LPA-FM on the simu-
lated data, the FRM of the GBLA in addition to both
the sample noise covariance (CV ) and the covariance of
the nonlinear distortions (CYs) are estimated, see Fig-
ure 7. The figure shows that the linear contribution
is dominating the distortion caused by the nonlinear-
ity at this operating points; therefore, it is sufficient
to consider the linear model in the pairing decision for
this case. Thereafter, DRGA and its bounds of un-
certainties caused by noise and nonlinear distortions
shown in Figure 8 are estimated by means of (19) and
(20), by exploiting CYs

and CV respectively in the Al-
gorithm 1. The dof is selected to be 4 in this method
which satisfies the condition dof ≥ nu + ny. The pair-
ing suggestion coincides with the minimum-phase case
using LPA method as it suggests the diagonal pairing
at the low frequencies and off-diagonal pairing at the
high frequencies.
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Figure 7: Estimated FRM of GBLA using LPA-FM of
the simulated case with multisine excitation.
Black: FRM of ĜBLA. Gray: Variances
caused by noise. light Gray (-+): Variances
caused by nonlinear distortions. dark Gray
(-·): FRM of Glin.
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Figure 8: Real parts of λ̂11 and ±3σλ11
bounds using

LPM-FM of the simulated case with mul-
tisine excitation. Black: λ̂11. Gray (- -):

λ̂11 ± 3σλ11
uncertainty bounds caused by

noise. light Gray: λ̂11 ± 3σλ11 uncertainty
bounds caused by nonlinear distortions. dark
Gray (-·): λ11 calculated based on Glin.
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Although LPA-FM gives the user the privilege of dis-
tinguishing between the noise and the nonlinear con-
tributions in the estimation, it needs twice as long ex-
periment times (at least P ≥ 2) compared to the LPA
method using random excitation which might be im-
practical for some applications. Thus, the user needs
to compromise between the importance of sorting out
of the nonlinear distortion or conducting the experi-
ment for a shorter time.

For the real plant, DRGA and its uncertainty bounds
caused by the noise and the nonlinear distortions are
estimated after the FRM of theGBLA, the sample noise
covariance (CV ) and the covariance of the nonlinear
distortions (CYs

) have been estimated using LPA-FM
method with dof equal to 7. The results depicted Fig-
ure 9b suggest similar pairing decision to result ob-
tained using random excitation in Figure 9a. How-
ever, the values of λ̂11 and its uncertainty bounds are
not identical, since GBLA depends on the amplitude
distribution and the power spectrum of the excitation
signal (Pintelon and Schoukens, 2012). Again, around
a closed-loop bandwidth of 0.0012 Hz the system is
expected to show good performance under a diagonal
decentralized controller.

7 Conclusion and Future Work

In this paper a procedure to estimate the DRGA and
its uncertainty bounds for weakly nonlinear systems
using local polynomial approach is presented. The
procedure allows the user to decide on the controller
configuration without the need to rely on a paramet-
ric model. Local Polynomial Approximation (LPA)
method was found to enhance DRGA estimation re-
sults compared to the Spectral Analysis (SA) method
when the random excitations are imposed. Moreover, if
the nonlinear distortions are to be estimated individ-
ually, Local Polynomial Approximation-Fast Method
(LPA-FM) was found to shorten the experiment time
using multisine excitation. Furthermore, in contrast
to nonlinear RGA and DRGA based on the linearized
model, estimated DRGA does not require an accu-
rate system model for pairing decisions. Moreover, the
estimation approach delivers the uncertainty bounds
caused by the nonlinearities distortions and the mea-
surement noise. The uncertainty bounds are useful to
predict the magnitude of the interactions in specific
frequencies. As for the practicality, even though RGA
(Λ(0)) can be estimated easily using step response, it
does not take the system dynamics into considerations
and might lead to incorrect suggestions for the pairing
decision as was shown in the case studies. Moreover,
the step tests have to be applied sequentially for the
MIMO systems which renders high costs in time and
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(a) Real parts of λ̂11 and ±3σλ11 bounds using LPA of the
real case with random excitation. Black: λ̂11. light Gray:
λ̂11 ± 3σλ11 uncertainty bounds. dark Gray (-·): λ11

calculated based on Glin. Bold vertical line: indicates
0.0012 Hz.
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(b) Real parts of λ̂11 and ±3σλ11 bounds using LPM-FM
of the real case with multisine excitation. Black: λ̂11.
Gray (- -): λ̂11 ± 3σλ11 uncertainty bounds caused by
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Figure 9: Real life results using LPA and LPA-FM
methods.
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manpower whereas the excitation signals are applied
simultaneously in the proposed procedure. Indeed, the
nonparametric approach has its own difficulties to get
informative results, still it is a very useful option to
start with.

Towards more robust pairing decision, DRGA and its
uncertainty bounds obtained by the proposed method
can be utilized in future work to develop an algorithm
for automatic configuration selection.
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