
Modeling, Identi�cation and Control, Vol. 37, No. 4, 2016, pp. 225�238, ISSN 1890�1328

Industrial Evaluation of Integrated Performance

Analysis and Equation Model Debugging for

Equation-Based Models

Å. Kinnander 1 M. Sjölund 2 A. Pop 2

1Siemens Turbo Machinery AB, Finspång, Sweden. E-mail: ake.kinnander@outlook.com

2Department of Computer and Information Science, Linköping University, Linköping, Sweden.

E-mail: {martin.sjolund,adrian.pop}@liu.se

Abstract

The ease of use and the high abstraction level of equation-based object-oriented (EOO) languages such
as Modelica has the drawback that performance problems and modeling errors are often hard to �nd.
To address this problem, we have earlier developed advanced performance analysis and equation model
debugging support in the OpenModelica tool. The aim of the work reported in this paper is to perform
an independent investigation and evaluation of this equation model performance analysis and debugging
methods and tool support on industrial models.

The results turned out to be mainly positive. The integrated debugger and performance analyzer
locates several kinds of errors such as division by zero, chattering, etc., and greatly facilitates �nding the
equations that take most of the execution time during simulation.

It remains to further evaluate the performance pro�ler and debugger on even larger industrial models.

Keywords: pro�ler, debugging, Modelica, industrial, OpenModelica

1 Introduction

The development of today's complex products requires
integrated environments and equation-based object-
oriented declarative (EOO) languages such as Modelica
(Modelica Association, 2014; Fritzson, 2015) for mod-
eling and simulation.
The increased ease of use, the high abstraction, and

the expressivity of such languages are very attractive
properties. However, the drawback of this high-level
approach is that understanding the causes of unex-
pected behavior, slow performance, and numerical er-
rors of certain simulation models is very di�cult, in
particular for users who are not experts in simulation
methods.
Therefore Pop et al. (2014) have recently developed

an advanced equation model debugger for the Modelica

language, as part of the OpenModelica (Open Source
Modelica Consortium, 2016) tool. This is quite dif-
ferent from debuggers of conventional algorithmic pro-
gramming language debuggers (Stallman et al., 2014;
Nethercote and Seward, 2007; Zeller, 2009). Pop and
Fritzson (2005) developed a debugger for the algorith-
mic subset of Modelica and Bunus (2004) developed a
debugger that analyzes the causes of over-constrained
or under-constrained systems of equations. The new
debugger is also based on the recent development of
the advanced bootstrapped OpenModelica compiler
(Sjölund et al., 2014).

The applications used for evaluation perform sim-
ulation of combined cycle power plants. This involves
the dynamics of water cycling from water to steam and
back while streaming in di�erent �ow regimes through

doi:10.4173/mic.2016.4.3 © 2016 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2016.4.3


Modeling, Identi�cation and Control

pipes, valves and volumes, a�ecting the heat transfer
from the �ue gases. To handle these rather compli-
cated phenomena including boiling and condensation
in and on tubes, accurate dynamic models often re-
quire high computation power, e�cient programming
as well as a good balance between accuracy and com-
putational speed in the aspect of simulation purposes.
The performance analyzer, also called pro�ler, which
is a tool that informs where in user equations CPU
power is spent and gives thereby possibility to evalu-
ate di�erent mathematical methods and make delib-
erated trading between accuracy and computational
speed. As described in Sjölund (2015), the techniques
used when pro�ling Modelica equation-based models
are quite di�erent from pro�ling of general programs
(Graham et al., 1983). Some earlier more limited ap-
proaches to pro�ling Modelica models are presented by
Huhn et al. (2011) and Schulze et al. (2010).
The integrated equation model debugger has been

evaluated by the designers and performs well on both
small and big models. However, an independent eval-
uation of the integrated performance analyzer and de-
bugger by industrial users on industrial problems was
still missing. Such an evaluation is the main topic of
this paper. We have earlier made a preliminary in-
dustrial evaluation only of the debugging functionality
(Kinnander et al., 2016). This paper presents an eval-
uation of the integrated performance analysis and de-
bugging methods and tool, including a slightly updated
version of the debugging evaluation results presented
by Kinnander et al. (2016).
The rest of the paper is structured as follows: �rst

the errors to be investigated and models to be eval-
uated are brie�y presented. Section 2 introduces the
debugger tests in more detail. Section 3 presents de-
bugging of errors in the logarithmic temperature calcu-
lation whereas Section 4 presents debugging of errors
due to bad initial values. Section 5 presents the perfor-
mance analyzer and its use. Finally, Section 6 presents
conclusions.

1.1 Errors to be Investigated

In order to investigate di�erent types of errors that
could be expected to occur, a small and simple evap-
orator model is used. This has been fetched from a
larger model used for transient analysis of combined
power plants by Siemens Industrial Turbomachinery
AB in Finspång, Sweden. The following errors are to
be investigated:

1. Division by zero

2. Errors in the average logarithmic temperature dif-
ference used for heat transfer calculation:

a) Inlet temperature di�erence =0

b) Inlet temperature di�erence=outlet temper-
ature di�erence.

3. Boiling in the evaporator that causes halt of simu-
lation progress by much too small time steps (sti�-
ness)

4. Various test of bad initial values, with variation
of pressure, temperatures, �ows and masses in the
di�erent parts of the process.

The model selected is a simpli�ed model of an error
free model, hence the above test will be deliberately
inserted and the debugging tool will only be exam-
ined by its outputs, while a sharper application for
a real model development where errors are unknown
and the debugger support for identifying them will be
more apparent, will be carried out later. The reason
for this is the limited time available for testing, and
that a sharp application will only provide stochastic
errors and could thereby not be planned in time.

1.2 Models for the Debugger and
Performance Pro�ler Evaluation

The evaporator test model shown in Figure 1 will
be used for the investigation, containing an instance
(Evap) of the Evaporator model shown in the middle
of the connection diagram.
It consists of an evaporator model that has �ue

gases as heating source and water as coolant, produc-
ing dry steam to the steam sink. The steam produc-
tion is decided by the heat from the �ue gases, the en-
thalpy (temperature and pressure) of the water source
(FWpump), and the steam extraction to the steam sink
(SteamSink) that in turn is tracking the evaporators
drum pressure with a negative bias of 0.1 to 1 bar.
The model has 1110 equations.
The evaporator model is designed according to Fig-

ure 2.
The evaporator model has a drum model (Drum), a

heat exchanger (Hex) and a level controller (DLC) that
controls level by a control valve (FW_CV). The level con-
troller is no actual water level controller in length units
(m), instead it controls the amount of water (kg) in the
drum. The thermal capacity of the drum metals is rep-
resented of a heat capacity model (DrumWallHeatMass)
but the insulation towards surroundings are assumed
to be perfect, i.e. no heat losses to the outside of the
drum. This model has 809 equations.
The drum model is the volume model from the Fluid

library manipulated to only let steam exit, i.e., always
perfect separation. The heat exchanger is according to
Figure 3.

226



Kinnander et.al., �Industrial Evaluation of Performance Analysis and Debugging for Equation-Based Models�

FGinV

m

FGsource

FGsink

FGoutV

FGflow

duration=600

FGtemp

duration=600

FGinVu

k=1

FGoutVu

k=1

system

g

defaults

FWpump

FWpump_p

duration=300

FWinletV

FWinletVu

k=1

FWoutletV

SteamSink

FGoutletVu

k=1

FWpump_h

duration=600

max(
 1e4,
 Evap.Drum.medium.p - 1e5
)

LBAp

Evap

Figure 1: Evaporator test model

FWport

SteamPortFGport_a

FGport_b

Hex

Drum

V=V

FWflow

m_flow

m

DownCommerSource

Drum.medium.h

Drum_h

RiserSink

Drum.medium.p

Drum_p

max(
 0.1,
 FWflow.m_flow * FlowGain
 + FlowBias
)

EvaFlow

Hex.LnQ1.Qt +
Hex.LnQ2.Qt

EvaQ
DrumWallHeatMass

cpm *
(Drum.V * 3) ^ (2 / 3) *
4 *
(pi * 4) ^ (1 / 3) *
Drum_t

EvaQsource

DLC

PI

FW_CV

Dsp

duration=500

Drum.m

DrumMass

Figure 2: Evaporator model

227



Modeling, Identi�cation and Control

Hport_a
Hport_b

Cport_aCport_b

LnHLnH

nNodes

LnCLnC

nNodes

T

Th2

T

Th1

T

Tc2

T

Tc1

Tdiff

Theat-Tcold

LnQ2
Th1

Th2

Tc1

Tc2
Tdiff

Theat-Tcold

LnQ1
Th1

Th2

Tc1

Tc2

LnH.mediums[1].T

Th12

LnC.mediums[1].T

Tc12
Qc1

k=-1

gain1
Qh1

Qc2

k=-1

gain2

Qh2

Figure 3: Heat exchanger

Qt

Th Tc

Ts

Tln

PT1

T=1

HeatAreaArea

duration=600

HeatTransfer

k_cut_off_by_delT

k_cutoff1

k_cutoff

ktotktot

1

realExpression1

add1add1

+
+1

+1

division1division1

division2division2

kinner

k_inner

kouter

k_outer

Figure 4: Heat transfer calculation model

228



Kinnander et.al., �Industrial Evaluation of Performance Analysis and Debugging for Equation-Based Models�

The heat exchanger has a pipe model (LnH) that cor-
responds to the �ue gas channel and a pipe model (LnC)
that corresponds to the pipe bundle carrying the water
to be heated. The heat exchanger has parallel �ows.
In this simpli�ed model the overall heat transfer coe�-
cient (J/m2/K) is a constant, i.e., it takes not con�gu-
ration or medium properties into account. The driving
temperature di�erence is calculated for respectively in-
let and outlet sections of the pipe bundles (i.e. they are
con�gured with 2 nodes each) by the models LnQ1 and
LnQ2. The temperatures are measured besides inlets
and outlets for both pipe models also in the middle
(Tc12 and Th12). This model has 580 equations.
Finally, the heat calculation models LnQ1 and LnQ2

are according to Figure 4. All other models are from
the standard Modelica library.
The model has a low pass �lter with an input con-

nected in the text layer where the logarithmic temper-
ature di�erence from the connectors Th and Tc which
both are connecting both inlet and outlet temperatures
respectively medium side, is calculated. The output of
the model is the calculated heat transfer (W). The over-
all heat transfer coe�cient ktot is calculated from pa-
rameters representing the heat transfer coe�cient from
�ue gas to metal, k_outer, and from metal to water,
k_inner. In the present full size boiler model those
parameters are replaced with connectors that provide
more accurate values, based on medium and �ow prop-
erties calculated in separate models. The heat transfer
area is a ramp with selectable duration and height val-
ues, to be adopted to what is needed from initializing
aspect (duration of suitable size respectively to the real
heat transfer area).
This model contributes with 39 equations of the total

of 1110 equations.

2 Debugger Tests

2.1 Activation of Debugger

The debugger is activated by setting the �ag � Launch
transformational debugger �. After a successful simu-
lation the output windows are containing the following
information (Figure 5).
The simulation output window contains assertion vi-

olation messages that are false, because the enthalpy
�ow H (W) has too narrow range in the Standard Mod-
elica library. It ought to be at least 10 times as big.
This violation has no in�uence on the simulation re-

sult (might there be an unnecessary delay?). The win-
dow shows with a green bar that 100 % of simulation is
done and the blue text that it has been successful. The
transformational debugger window shows all variables
in the variable browsers window and all equations in

the equation browser window, as found in the simula-
tion code. All other frames in the debugger are empty.

2.2 Division by Zero by Parameter
Setting

The test is done by setting parameter k_inner to zero.
The simulation output window displays the following
messages (Figure 6).
The simulation output window gives the required in-

formation that simulation crashed at initialization due
to an assertion that avoids division by zero and this is
caused by k_inner=0.The debugger window looks as
before but after clicking debug more in the simulation
output window it looks as in (Figure 6).
The equation browser marks initial equation with in-

dex 102: Evap.Hex.LnQ1.add1.u1 := DIVISION(1.0,

Evap.Hex.LnQ1.kinner), which is the same informa-
tion as in simulation output window. The frame de-
noted Defines gives the variable that becomes unde-
�ned by the zero division. The frame denoted Depends

give the variable name Evap.Hex.LnQ1.k_inner. For
this error the debugger gives all information necessary.

2.3 Division by Zero by Time Function

The k_inner variable is replaced by a time function
that ramps it down to zero in 100 seconds. This results
in a never ending simulation.
The solver manages to pass the 100 s time point

where k_inner is zero and a division by zero occurs.
No plots are available but the ramp proceeds to neg-
ative values for k_inner. The solver has skipped the
exact 100 s time point, but then continued into other
problems, due to the negative k_inner value. On the
passage it has however produced two messages about
zero division at time 100 when they occurred. In the
case of the user being unaware of the division problem,
the large amount of output in the simulation output
window hides those messages.
For a ramped denominator passing zero, the debug-

ger is not optimal in case the solver manages to pass
the critical point and that consecutive errors then hide
the information from the user. A solution would be the
option to let the user decide if division by zero should
be accepted or not, i.e., the solver should then inter-
rupt and save when any denominator having a passage
of zero.

2.4 Division by Zero due to Mismatch in
Parameter Settings

By deselection of the heat transfer used in the LnC pipe
in the Hex model (Figure 3) the test model still checks
OK, but now with only 1106 equations instead of 1110.

229



Modeling, Identi�cation and Control

Figure 5: Information from OpenModelica with debugger activated at successful simulation

Figure 6: Debugger activated after division by zero by parameter setting.

230



Kinnander et.al., �Industrial Evaluation of Performance Analysis and Debugging for Equation-Based Models�

Figure 7: Outputs after no use of heat transfer speci�ed but corresponding heat transfer connectors any way
connected

Simulation gives the following simulation output win-
dow and transformational debugger window (Figure 7).

The simulation crashes at initialization due to divi-
sion by zero where the denominator is involving the
variables Qt and alpha. A check of the model re-
veals that alpha is the heat transfer coe�cient to
surroundings and is deliberately zero. That is, this
model is impossible to run although it checks OK.
The debugger points to the equation numbered 1258.
Marking that equation points to a source code line
1612 where the Modelica standard library (MSL) com-
ponent PrescribedHeatFlow (PHF) equals the heat
ports heat �ow (Q_Flow) to the connector input Q_Flow
(the prescribed �ow). This equation contains also a
dependence on alpha, but with alpha=0 the equa-
tion should be OK: port.Q_Flow=-Q_Flow. The PHF
model calculates its internal temperature in order to be
able to have the prescribed heat �ow by this equation
(index 1258). This temperature should be the same as
the connected pipes temperature as there is no thermal
resistance in the connection itself so why is it calcu-
lated in this way? One could not be sure that any user
would understand that this equation is unexpected and
caused by a wrong parameter setting in the pipe model.

It would have been better if there would be a con-
sistency check between connectors and their use in the
model. One way would be not to show the connector
unless it is activated, or give an error message if it is
anyway connected. Could the variables browser shed
some light over the problem? The variables browser is

presented in (Figure 8) after the port temperature has
been clicked.
It gives the same information augmented with the

initial equations. A question is why the debugger is
not pointing to the initial equations indices 276 and
771, as the simulation output window tells that the
error appeared at initialization.

3 Errors in the Logarithmic

Temperature Di�erence

Calculation

Errors in the logarithmic temperature di�erence calcu-
lation should be treated the same way as the division
by zero. Interesting is however, if the solver also for
this type of errors manage to pass the critical point as
their time duration could be expected to be very short.
Basically this investigation is more an investigation of
the solver and not the debugger but the debugger will
be activated and therefore also this investigation is a
part of the paper.

3.1 Temperature Di�erences Passing
Zero

This test is achieved by removing the numerical fences
that prevent zero crossing. Unfortunately, it turns out
that there are no crossings that passes delT=0 for the
case simulated, and the test needs further work to be

231



Modeling, Identi�cation and Control

Figure 8: Information from the debugger variables browser

carried out, and therefore postponed and not published
in this paper. This is unexpected and errors might have
occurred when moving the model from another tool to
OpenModelica.

3.2 Temperature Di�erences at Outlet
and Inlet Passing Equal Values

This is happening without any numerical problems,
i.e., the solver skips the critical time where they are
equal or happens to avoid it without any actions.

4 Bad Initial Values or Bad

Simulation Boundaries

The debugger support, if any, is to be investigated for
this type of problems where simulation runs into nu-
merical problems.

4.1 Too high Backpressure

By increasing the back pressure from the steam pipes to
exceed drum pressure, and thus preventing steam �ow
out of the drum the simulation terminates at 277.7 s.
The result �le is written, i.e. it is possible to plot.
The plotting reveals that the simulation crash is prob-
ably due to the drum getting �lled with water. The
transformational debugger window points at the drum.
The simulation output window recommends to log non-
linear systems (NLS). Doing this gives a not respond-

ing OpenModelica. Restart gives a runtime error. A
restart and simulation again without LOG_NLS acti-
vated gives the same result. The plotting of the Drum
parameter mass shows that drum gets �lled as it has
no outlet (Figure 9).
The debugger test failed here on an OpenModelica

problem with handling LOG_NLS. However, at this
error the result �le was generated and provides use-
ful information for debugging. On the other hand,
LOG_NLS is not a part of the debugger. The debug-
ger information for this type of failure is not su�cient
to remedy the problem directly, although it points at
the drum as a probable cause. Eventually the recom-
mended logging of NLS could have given the direct
cause of crash. From the OpenModelica user point of
view, the plotting after crash is very valuable, and it
reveals that the drum gets �lled from the steam pipe
model1, which calls for corrective actions regardless of
the what caused the actual solver crash.

5 Performance Analyzer Usage

Evaluation

The performance analyzer (usually called pro�ler)
analysis methods and implementation are described in
more detail in (Sjölund, 2015, Chapter 5).
The OpenModelica pro�ler uses compiler-assisted

source code instrumentation.
1LBA in Figure 1, named according to the Kraftwerk-
Kennzeichen-System (KKS) identi�cation system.

232



Kinnander et.al., �Industrial Evaluation of Performance Analysis and Debugging for Equation-Based Models�

Figure 9: Plot of drum mass at blocked drum outlet

There is one call to the clock before executing the
equation block or function call and one call to the clock
after execution of the block. Associated with each call
is a counter that keeps track on how many times this
function was triggered for the given time step. Simi-
larly, each call is associated with clock data one vari-
able for the total time spent in the block for all time
steps, and one variable for the total time spent in the
block for the current time step. These calls to the clock
are in the code generation as a macro set that is gen-
erated if pro�ling is desired this means zero overhead
unless pro�ling is explicitly enabled.
Pro�ling can be enabled for all equations and func-

tion calls. With pro�ling enabled only for equation
blocks (SCCs) and functions, the overhead cost is low
compared to the cost of solving most nonlinear sys-
tems of equations, which is more suitable for real-time
simulation.
The instrumentation is performed by compiling a

model with additional code generated to query real-
time clocks at appropriate places.
The integrated performance pro�ler functionality is

accessible from the GUI of the transformational debug-
ger (Figure 10).
In the foreground is the window Transformational

Debugger that invoked by the selection of � Pro�ler
All � in the simulation setup options for simulation
�ags. Behind that the � Simulation Output � win-
dow, giving the important information that 100% of
speci�ed simulation time is successfully reached, but
also various warnings in red with an option to debug
more. (The output window is better always placed in
forefront, to see the progress of the simulation, or alter-
natively the plot window if it plots the progress contin-
uously or at least frequently). In the background the

OpenModelica OMEdit main window is visible, now
displaying the plotting interface.
A closer look at the Transformational Debugger and

Pro�ling window (Figure 11) gives the following:
To the left the integrated transformational debug-

ger and performance pro�ler displays two browser win-
dows, one for variables and one for equations. Clicking
on a variable in the variable browser window (middle
left) will show the following:

� where it is de�ned

� where it is used

� operations made

� the source code line that de�nes the variable value
will be highlighted (source browser to the right)

The contents of displayed lines are truncated to allow
all windows above to �t into the same screen. Ex-
panding/resizing windows and scrolling can display all
hidden text. Thus, knowledge about where a variable
is used becomes instantly available which substantially
helps to analyze the consequences of a model change.
The index presented provides the link to the equa-

tions which are used in the model and presented in the
equation browser. Clicking on a line in the equation
browser window (lower left) gives:

� which variable the equation de�nes

� what variables it depends upon

� what operations that are made for the equation

� where in the source code the equation is placed

233



Modeling, Identi�cation and Control

Figure 10: Output on computer screen after a successful execution with pro�ler activated (option all selected)

Figure 11: Transformational debugger and pro�ling window

234



Kinnander et.al., �Industrial Evaluation of Performance Analysis and Debugging for Equation-Based Models�

Figure 12: Using the performance pro�ler to �nd the computationally heaviest equation after sorting according
to used time (table lower left), see close-up in Figure 13.

Figure 13: Transformational debugger and pro�ling window

235



Modeling, Identi�cation and Control

Figure 14: Performance pro�ler output after a minor model adjustment. See also close-up in the Figure 15.

Figure 15: Close-up of performance pro�ler output after a minor model adjustment. The 28 equations at Index
1693 use 27.4% of the time.

236



Kinnander et.al., �Industrial Evaluation of Performance Analysis and Debugging for Equation-Based Models�

The equation browser gives the link between the C-
code equation solved and the source code in the Mod-
elica source �les. This browser also displays columns
for execution times, number of executions and, total
execution time, both as fractions of total simulation
time and in seconds. Sorting by the fraction of execu-
tion time used with the largest value at the top of the
table presents the equations in order according to the
time consumed.
As shown in Figure 12 and Figure 13 the pro�ler dis-

plays that Index 1693, a strongly connected equation
subsystem that de�nes the derivative of the enthalpy
and pressure of the drum together with the derivative
of the enthalpy of the outlet volume of the evapora-
tor pipes (LnC[2]), is by far the equation that takes
most of the CPU power, 27.5 % while next equation
takes 5 % (not shown in �gure above). As there are
three variables de�ned by this equation no equation
is pointed out in the Modelica �le (shown in Source
Browser is a previous clicked index�a clearing of that
window should be considered when selected variables
and equations not corresponds to a line in the source
code) nor are any dependencies shown.
Index 1693 constitutes 28 other variables (size 28)

and clicking on 1693 reveals indices from 1665 to 1692
(28 equations). Those are the used equations by the
solver and clicking on any of them shows the corre-
sponding source code, and what variables the equation
is dependent upon and the operations made.
The conclusion from this is that the Drum is the

computationally heaviest part of the model, and im-
provements of its equations should have the best chance
of improving performance and reducing the simulation
time.
Exploring the 28 equations (Figure 13) reveals only

one that is provided by the user (amongst the equa-
tions using 85 % of the calculation time). The rest
are equations from the Modelica Fluid library. To see
the impact by that equation on the performance, one
of its parameters was changed. The equation has a
parameter delTlim that is limiting the heat transfer
calculation preventing that the temperature di�erences
become equal, thereby causing a simulation crash. In-
creasing delTlim value from 0.1 to 0.5 �, which dete-
riorates the accuracy of the heat transfer calculation,
gives the result that equations with index 1693 makes
a minor reduction from 27.5 % to 27.4 % of the to-
tal time (Figure 14 and Figure 15), but the simulation
time (major part of the total time) is anyway reduced
from 30.0 to 28.5 s (not shown).
From that change the user could conclude that

changing delTlim, which rather drastically deterio-
rates the accuracy of the heat transfer, the resulting
improvement on the performance for index 1693 is neg-

ligible, but the change any way in�uences the total time
a bit more substantially.
In general our experience is that the performance

analyzer/pro�ler is a very important tool for model
performance optimization since it is very easy to see
the link between a slow execution and the equations
used. This information is very helpful when changing
the model in order to speed up its simulation.

6 Conclusions

A basic property of the debugger is to assist in case of
numerical problems and violation of assertions like nu-
merical ranges that a certain variable is expected never
to exceed. Then the debugger points out the equation
causing the problem. In the work reported in this paper
only small to medium-sized (1000-equation size) indus-
trial models have been tested, which demonstrates that
the debugger and performance analyzer work well and
give signi�cant assistance to the user. The debugger
has also been brie�y evaluated by Pop et al. (2014) on
11116-equation size models in the Modelica Standard
Library such as V6Engine. To really evaluate the bene-
�ts of the debugger, but also its functionality, it should
also be applied to larger industrial models.
The following conclusions were made from the tests

with the transformational debugger and performance
analyzer for equation models:

� The debugger works well to �nd zero denominators
that are parameters.

� The debugger does not come into play automat-
ically if the zero denominator is only a momen-
tarily value, as the solver managed work around
such time points in so far tested simulations. How-
ever, it catches the problem in the simulation out-
put window, and gives a message that by click-
ing opens the transformational debugger window
which displays the concerned equation. However,
there is a risk that this is unnoticed as the solver
continues and could generate a lot of consequen-
tial or other messages that could hide the zero de-
nominator messages. It would be preferable if the
simulation output window could aggregate mes-
sages of the same type into one, expandable, line,
thereby giving a better overview of all the types
of messages the simulation has generated.

� A zero denominator caused by structural model
errors, like connection to not used connectors (this
should not pass the model checking) the debugger
points to the causing equation. One could not
ask more of the transformational debugger, but

237



Modeling, Identi�cation and Control

the OpenModelica model check or model building
could be made to prevent such mistakes.

� In case of numerical problems causing long exe-
cution times the debugger points to the equations
that have problems, but to understand the exact
problem, plots of variables could be necessary�
hence the result �le should always be generated,
regardless if the simulation is interrupted by solver
or manually. This is not the case in the tested ver-
sion for all the tests.

� The performance analyzer/pro�ler is a very impor-
tant tool for model optimization as it is possible
to easily see the link between a slow execution and
the equations used. Compared to the alternative
method where only the CPU curve together with
plots of all other variables are available for guid-
ance in the process of �nding a good spot in the
model to improve, the pro�ler makes the process
of performance optimization of models radically
shorter.

Acknowledgments

This work was partially supported by the ITEA2
MODRIO project and the ITEA3 OPENCPS project
via the Swedish Government (Vinnova), by the
RTISIM project funded by Vinnova, and by Siemens
Turbo Machinery AB.

References

Bunus, P. Debugging techniques for Equation-Based

languages. Doctoral thesis No 873, Linköping Uni-
versity, Department of Computer and Information
Science, 2004. URL http://urn.kb.se/resolve?

urn=urn:nbn:se:liu:diva-35555.

Fritzson, P. Principles of Object-Oriented Modeling

and Simulation with Modelica 3.3: A Cyber-Physical

Approach. Wiley-IEEE Press, 2 edition, 2015.

Graham, S., Kessler, P., and McKusick, M. An
execution pro�ler for modular programs. Soft-

ware: Practice and Experience, 1983. 13(8):671�685.
doi:10.1002/spe.4380130803.

Huhn, M., Sjölund, M., Chen, W., Schulze, C.,
and Fritzson, P. Tool support for Modelica
real-time models. In C. Clauÿ, editor, Proceed-

ings of the 8th International Modelica Confer-

ence. Linköping University Electronic Press, 2011.
doi:10.3384/ecp11063537.

Kinnander, Å., Sjölund, M., and Pop, A. Industrial
evaluation of an e�cient equation model debugger

in OpenModelica. In Proceedings of 9th EUROSIM

Congress on Modelling and Simulation. 2016.

Modelica Association. Modelica: A uni�ed object-
oriented language for physical systems modeling,
language speci�cation version 3.3 revision 1. 2014.
URL http://www.modelica.org/.

Nethercote, N. and Seward, J. Valgrind: a frame-
work for heavyweight dynamic binary instrumen-
tation. In Proceedings of the 2007 ACM SIG-

PLAN conference on Programming language design

and implementation, PLDI '07. pages 89�100, 2007.
doi:10.1145/1250734.1250746.

Open Source Modelica Consortium. Openmodelica.
2016. URL https://openmodelica.org/.

Pop, A. and Fritzson, P. A portable debugger for algo-
rithmic Modelica code. In G. Schmitz, editor, Pro-
ceedings of the 4th International Modelica Confer-

ence. 2005.

Pop, A., Sjölund, M., Ashgar, A., Fritzson, P., and
Casella, F. Integrated Debugging of Modelica Mod-
els. Modeling, Identi�cation and Control, 2014.
35(2):93�107. doi:10.4173/mic.2014.2.3.

Schulze, C., Huhn, M., and Schüler, M. Pro�l-
ing of Modelica real-time models. In P. Fritzson,
E. Lee, F. Cellier, and D. Broman, editors, Pro-

ceedings of the 3rd International Workshop on Equa-

tion-Based Object-Oriented Modeling Languages and

Tools. Linköping University Electronic Press, pages
23�32, 2010. URL http://www.ep.liu.se/ecp/

047/.

Sjölund, M. Tools and Methods for Analysis, Debug-

ging, and Performance Improvement of Equation-

Based Models. Doctoral thesis No 1664, Linköping
University, Department of Computer and Informa-
tion Science, 2015. doi:10.3384/diss.diva-116346.

Sjölund, M., Fritzson, P., and Pop, A. Bootstrapping
a Compiler for an Equation-Based Object-Oriented
Language. Modeling, Identi�cation and Control,
2014. 35(1):1�19. doi:10.4173/mic.2014.1.1.

Stallman, R., Pesch, R., Shebs, S., et al. De-

bugging with GDB. Free Software Foundation,
2014. URL http://www.gnu.org/software/gdb/

documentation/.

Zeller, A. Why Programs Fail: A Guide to Systematic

Debugging. Morgan Kaufmann Publishers Inc., 2nd
edition, 2009.

238

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-35555
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-35555
http://dx.doi.org/10.1002/spe.4380130803
http://dx.doi.org/10.3384/ecp11063537
http://www.modelica.org/
http://dx.doi.org/10.1145/1250734.1250746
https://openmodelica.org/
http://dx.doi.org/10.4173/mic.2014.2.3
http://www.ep.liu.se/ecp/047/
http://www.ep.liu.se/ecp/047/
http://dx.doi.org/10.3384/diss.diva-116346
http://dx.doi.org/10.4173/mic.2014.1.1
http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/
http://creativecommons.org/licenses/by/3.0

	Introduction
	Errors to be Investigated
	Models for the Debugger and Performance Profiler Evaluation

	Debugger Tests
	Activation of Debugger
	Division by Zero by Parameter Setting
	Division by Zero by Time Function
	Division by Zero due to Mismatch in Parameter Settings

	Errors in the Logarithmic Temperature Difference Calculation
	Temperature Differences Passing Zero
	Temperature Differences at Outlet and Inlet Passing Equal Values

	Bad Initial Values or Bad Simulation Boundaries
	Too high Backpressure

	Performance Analyzer Usage Evaluation
	Conclusions

