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Abstract

This paper studies Tube Model Predictive Control (MPC) with a Sliding Mode Controller (SMC) as an
auxiliary controller. It is shown how to calculate the tube widths under SMC control, and thus how much
the constraints of the nominal MPC have to be tightened in order to achieve robust stability and constraint
fulfillment. The analysis avoids the assumption of infinitely fast switching in the SMC controller.
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1. Introduction

Model Predictive Control (MPC) has been a great in-
dustrial success, particularly in the process industries
(Qin and Badgwell, 2003). Still, robustness of MPC
controllers continues to be an active research issue.
There are many approaches to robust MPC, includ-
ing dynamic programming, optimization over feedback
policies, min-max MPC, etc. Providing an overview
over these various approaches to robust MPC is be-
yond the scope of this paper, the interested reader is
instead referred to the bibliographic notes in Chap-
ter 3 of Rawlings and Mayne (2009). As is noted
in (Rawlings and Mayne, 2009), optimal or close-to-
optimal approaches to robust MPC generally have pro-
hibitive online calculation requirements. More prac-
tical approaches are therefore a compromise between
performance and online calculation requirements.

A popular approach among such MPC formulations
that trade off performance against online calculation
requirements is the so-called Tube MPC (Rawlings and
Mayne, 2009). In the ’basic’ Tube MPC, the MPC
controller essentially controls the nominal plant, while
there is an auxiliary controller that keeps ’all possible’

plants inside a ’tube’ close to the nominal plant. To
ensure robust constraint satisfaction, the state/output
constraints of the nominal MPC have to be modified to
account for the width of the tube, and the magnitudes
of control inputs that are available to the nominal MPC
also have to be reduced to account for the additional
input component coming from the auxiliary controller.

It is clearly desirable that the auxiliary controller
should add little to the overall computational require-
ments of the control. If this is the case, the auxil-
iary controller may execute at a significantly higher
sampling frequency than the nominal MPC, thereby
taking advantage of feedback also between the sam-
ples of the nominal MPC. There is substantial ongo-
ing research effort aiming to reduce the online calcu-
lation requirements of MPC. However, approaches like
explicit MPC (Bemporad et al., 2002) appear to be
limited to a fairly modest number of states, and ap-
proaches focusing on online solution of an optimiza-
tion problem will inevitably have a significant calcula-
tion requirement. The higher calculation requirements
for MPC will typically result in modest sampling fre-
quencies compared to what is achievable with linear
state feedback or controllers of similar complexity. The
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computational requirements of the Sliding Mode Con-
trol (SMC) are trivial, and combined with the good
robustness properties of SMC this should make SMC
an attractive candidate for the auxiliary controller in
Tube MPC.

SMC is known for its robustness to parameter vari-
ations and external disturbances. It belongs to a
special class of nonlinear discontinuous control algo-
rithms, known as variable structure control (Utkin,
1978; Young et al., 1999; Yu and Kaynak, 2009). In
its basic form, the SMC input is simply a relay out-
put, depending on the location of the present state
relative to a switching surface, which forces a system
state to move along this surface, known also as a slid-
ing surface. The modern realization of SMC, by using
microcontrollers or digital signal processors, causes a
quasi-sliding motion (Milosavljević, 1985) usually in
O(T) vicinity of sliding surface, with T denoting a
sampling time, which could induce a chattering, mani-
fested by high-frequency control signal exciting unmod-
elled system dynamics and reducing plant lifecycle. An
overview of existing digital SMC algorithms is given in
(Milosavljević, 2004).

In recent years, researchers have developed several
control methodologies based on the combination of
SMC and MPC. The combination of SMC and general-
ized predictive control (GPC), as a subclass of MPC, is
discussed in (Corradini and Orlando, 1997; Mitić et al.,
2013) for systems with discrete-time transfer function
models. In (Garcia-Gabin et al., 2009) the cost func-
tion is partially optimized with respect to only the pre-
dictive part of controller, while sliding mode control
is not involved in the optimization problem. More-
over, the reaching and existence conditions of sliding
mode are not derived and the stability issues are not
discussed. Unfortunately, all these approaches cannot
deal with MIMO systems.

In digital SMC based on state-space models, and
hence applicable to MIMO systems, one approach to
control law design is to force the system to reach the
sliding surface at the very next sampling instant (Su
et al., 2000). This digital SMC method provides a
O(T 2) sliding mode accuracy when the system distur-
bances are known at each time instant or a unit-step
delayed disturbance estimate is used in the presence
of unmodeled disturbances. However, when the dis-
turbance depends on the control input, the system be-
comes unstable or causes chattering. That is why two
different approaches in integrating digital SMC and
MPC are proposed in (Neelakantan, 2005). The first
one applies direct optimization of a cost function crite-
rion with respect to the equivalent control. The second
control method splits the controller into the equivalent
control part, ensuring the system to stay on sliding sur-

face once reached, and the reaching control part that
guides the system towards the sliding surface. The cost
function is optimized with respect to the latter control
term.

In (Incremona et al., 2015; Benattia et al., 2015) hi-
erarchical control schemes, consisting of a high level
MPC and a low level SMC (Rubagotti et al., 2011),
are considered. The role of the SMC component is to
reject the matched disturbances acting the plant, and
to reduce uncertainty for the MPC design in that way.

The accurate calculation of the tube widths is com-
plicated even when using linear state feedback. A set
of states needs to be calculated, inside which the auxil-
iary controller is able to keep the states of the real sys-
tem. Once this set is calculated, the corresponding set
inside which the input from the auxiliary control will
remain has to be calculated. To avoid restricting the
nominal MPC unnecessarily, the calculated set should
be as small as possible, i.e, we wish to calculate the so-
called minimal robustly positive invariant set (mRPI)
for the system under the auxiliary control. Unfortu-
nately, the mRPI will typically be excessively complex
and demanding to calculate, but good outer approxi-
mations can usually be found when linear state feed-
back is used as an auxiliary controller (Raković et al.,
2005).

To the authors’ knowledge, there is no previous work
on calculating robustly positively invariant sets for sys-
tems under SMC control with a finite sampling fre-
quency for the SMC. However, we will also take an al-
ternative approach: following an idea in Rawlings and
Mayne (2009), the robustly positively invariant set will
not be calculated directly. Instead, we will show how
to calculate, for each constraint, how far in the direc-
tion of the constraint the true system can be driven by
the model uncertainty. This will give a direct measure
of how much each constraint will need to be tightened.

Tube MPC was originally proposed with the MPC
handling the nominal system only, and the auxiliary
controller handling the deviations from nominal behav-
ior. Alternative formulations have been proposed later,
where feedback is introduced also into the MPC part
of Tube MPC. In this paper, including the example, we
have chosen to use a nominal Tube MPC as in the orig-
inal Tube MPC formulation, in order to highlight the
robustness improvement from the auxiliary controller.
However, the SMC-based auxiliary controller proposed
in the paper would be equally applicable to a Tube
MPC formulation where feedback is used also in the
MPC part of the Tube MPC.

The paper is organized as follows. In Section 2,
the control problem is introduced. Section 3 briefly
describes two proposed digital sliding mode control
approaches. The algorithms for calculating the con-
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straints tightening is presented in Section 4. The pro-
posed Tube MPC with an auxiliary SMC has been
applied to the real DC servo system (Inteco, 2011),
and the digital simulation and experimental results are
given in Section 5. Section 6 contains some concluding
remarks.

2. Problem description

Consider the discrete time system described by the
model

xk+1 = Axk +Buk + Ewk, (1)

with the system state x ∈ Rnx , the input u ∈ Rnu , and
the disturbance w ∈ Rnw . There are also constraints
on the allowable state

x ∈ X = {x|Fx ≤ f}, (2)

constraints on the allowable input

u ∈ U = {u|Γu ≤ γ}, (3)

and constraints on the possible range of disturbances

w ∈W = {w|Hw ≤ h}. (4)

It follows from the description above that the sets X,U,
and W are polyhedral; we will also assume that they
are bounded (and thus that the sets are polytopic), of
full dimension, and contain the origin in their interior.

In the following, the system state is split into two
components, a nominal component z and a deviation
from nominal ε

x = z + ε. (5)

Similarly, the input is split into the input from the
nominal MPC v, and the input ν from the auxiliary
controller

u = v + ν. (6)

The dynamics, described by eq. (1), may therefore be
split into the nominal dynamics and the deviation from
nominal

zk+1 = Azk +Bvk (7)

εk+1 = Aεk +Bνk + Ewk (8)

Clearly, eqs. (7) and (8) add to eq. (1). The control
scheme is illustrated in Figure 1.

At each timestep, the nominal MPC solves the prob-
lem

min
z,v

J(z,v) (9)

subject to

zk+i ∈ {zk+i|Fzk+i ≤ f − δzi } i ∈ {0, 1, . . . , N},
vk+i ∈ {vk+i|Γvk+i ≤ γ − δvi } i ∈ {0, 1, . . . , N}.
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Figure 1: Control scheme

Here, J(z,v) is the MPC cost function1, N is the
length of the prediction horizon for the MPC, z is
the vector of present and future nominal states in
the prediction horizon, zT =

[
zTk zTk+1 . . . z

T
k+N

]
, and

v is the vector of present and future inputs from
the nominal MPC in the prediction horizon, vT =[
vTk v

T
k+1 . . . v

T
k+N

]
. The vector δzi quantifies how

much the nominal state constraints have to be re-
stricted at time k + i in order to ensure that the true
state adheres to the original constraints, while the vec-
tor δvi quantifies how much the constraints on the nom-
inal MPC input have to be restricted at time k + i in
order to ensure that the total input adheres to the orig-
inal constraints. The simplest Tube MPC formulations
treat δzi and δvi as constants over the prediction hori-
zon, whereas other formulations allow these to vary
to account for the fact that the disturbance will typ-
ically be able to drive the true state further from the
nominal state (also under the action of the auxiliary
control) over a time period of several timesteps than
over a single timestep.

Remark. A special terminal set for the state is a
common ingredient in MPC formulations guaranteeing
closed loop stability. Such a terminal set is ignored
in eq. (9) for reasons of notational simplicity, but it
adding such a terminal set would be straight forward.

From eq. (9), it is clear that δzi and δvi have to be
found in order to be able to formulate the nominal
MPC. This will be addressed in Section 4.

3. Digital Sliding Mode Control

To design the auxiliary digital SMC, we consider the
deviated system dynamics described by eq. (8). Two

1The cost function will not be specified at present, but we do
naturally assume a sensible cost function ensuring that the
control of the nominal system is stable, and one which allows
the optimization problem to be solved efficiently.
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control algorithms are implemented herein. The first
one is a traditional relay based sliding mode control
defined by

νk = −(KB)−1(KAεk − gk + ∆usign(gk)) (10)

where
gk = Kεk (11)

denotes switching function and

gk = 0 (12)

is the equation for the sliding surface or the intersection
of sliding surfaces if nu > 1 . Notice that Kεk is usually
selected as an auxiliary control in Tube MPC and a
matrix K has dimension nu × nx. Here sign(gk) is
understood to be a vector with elements ±1, and ∆u

is a diagonal matrix with constants representing the
relay outputs. The sliding surface, i.e. K, should be
selected so that the system (Furuta, 1990)

εk+1 = (A−B(KB)−1K(A− I))εk (13)

Kεk = 0 (14)

is stable. Eqs. (13) and (14), describing system dy-
namics in sliding mode, are obtained by implementing
the well-known equivalent control

νeqck = −(KB)−1(KAεk − gk) (15)

in eq. (8). Substituting eq. (10) in eqs. (8) and (11)
yields

gk+1 = gk −∆usign(gk) +KEwk (16)

defining the switching function dynamics at time in-
stant k, whereas in the prediction horizon it is deter-
mined by

gk+i+1 = gk+i −∆usign(gk+i) +KEwk+i, (17)

i ∈ {0, 1, . . . , N}

In order to provide stable switching function dynam-
ics, ∆u should be calculated according to the following
theorem.

Theorem 3.1. If ∆u is chosen to satisfy the following
inequality

∆u1 > Ω > max |KEwk|, (18)

where Ω is a positive real vector and 1 is a vector of 1’s,
then, for every initial state gk, there exists a positive
integer number k0 = k0(gk) < N , such that the sys-
tem phase trajectory, described by eqs. (17) and (18),
enters the domain defined by

G = {gk+i : |gk+i| < ∆u1 + Ω}, (19)

after k0 time steps and remains in this domain for all
i > k0.

Proof. See Appendix A. �

The second auxiliary digital SMC, used in this paper,
is so-called robust discrete-time chattering free sliding
mode control (Golo and Milosavljević, 2000)

νk = − (KB)−1
(
KAεk − gk (20)

+ min(I|gk|,∆u)sign(gk)
)

Implementing eq. (20) in eq. (8), the switching func-
tion dynamics becomes

gk+1 = gk −min(I|gk|,∆u)sign(gk) +KEwk (21)

and, inside the prediction horizon, we have

gk+i+1 = gk+i −min(I|gk+i|,∆u)sign(gk+i)

+ KEwk+i, i ∈ {0, 1, . . . , N} (22)

The next theorem gives sufficient conditions for stable
sliding motion in prediction horizon.

Theorem 3.2. The system phase trajectory, described
by eqs. (22) and (18), reaches the domain G defined
by eq. (19) in k0 = k0(gk) < N time steps for every
initial gk, and remains in it for all i > k0.

Proof. See Appendix B. �

4. Calculating the required
constraint tightening with
SMC-based auxiliary controllers

We will first describe how to calculate the required con-
straint tightening with control defined by eq. (10).
However, relay feedback is known to often result in
very fast switching, which for some applications will
not be desirable. A common remedy is then to replace
the ’infinite gain’ at the switching surface with a steep
linear function, leading to a chattering free SMC de-
scribed by eq. (20). The second subsection will address
the constraint tightening for this type of auxiliary con-
troller.

It is noted above that an auxiliary controller with
low calculation requirements may operate at a higher
sampling rate (shorter timestep) than the MPC. How-
ever, we will use the same sampling frequency both for
MPC and SMC.

With the simple SMC-inspired auxiliary controllers
considered here, the determination of δvi is trivial,
which will become apparent below. However, the cal-
culation of δzi is more challenging.

184
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4.1. Constraint tightening for traditional
SMC

Denote the relay term in eq. (10) as

ϑk = ∆usign(Kεk), (23)

To proceed, we define for each element ϑj of ϑ a
binary variable sj , such that ϑj > 0 ⇒ sj = 1, and
sj = 0 otherwise. Also needed are upper and lower
bounds on each component of the vector Kε. From eqs.
(2) and (5), it is clearly safe to assume Fε ≤ f , and
the lower bounds mj and upper bounds µj on element
j of Kε can be found from the LPs

mj = min
Fε≤f

Kjε (24)

and
µj = max

Fε≤f
Kjε (25)

where Kj is row j of K. Let 1 denote a vector of 1’s.
Equation (23) is then implied by Mignone (2001)

ϑk = ∆uS −∆u(1− s) = ∆u(2s− 1), (26)

where the value of the binary variables s follow from
the constraints

mj(1− sj) < Kjε (27)

−µjsj < −Kjε (28)

Note that numerical optimization solvers cannot dis-
tinguish between strict and non-strict inequalities. The
formulation above will leave the value of sj undecided
if Kjε = 0. It will then be left for the optimization
routine to choose the optimal value.

The furthest from the origin the disturbance se-
quence {wk} may drive the deviation state εk in the
direction of the state constraint Flxk ≤ fl over a hori-
zon of N timesteps can then be found by solving

δfj,N = maxwk,sk,εk FlεN (29)

subject to

ε0 = 0

Hwk ≤ h; k = 0, . . . , N − 1

εk+1 = Aεk +B∆u(2sk − 1) + Ewk;

k = 0, . . . , N − 1

A = A−B(KB)−1K(A− I)

B = −B(KB)−1

diag{mj}(1− sk) < Kεk; k = 0, . . . , N − 1

−diag{µj}sk < −Kεk; k = 0, . . . , N − 1

sk ∈ {0, 1}nu

For each state constraint j, this optimization should
be solved for a number of horizon lengths N . For each
timestep i, the elements of δzi are given by δfj,i. If the
system under the relay feedback is stable, δfj,N will
approach an upper bound as N grows large.

4.2. Constraint tightening for chattering
free SMC

Instead of eq. (23) we now use

ϑj = min(|Kjε|,∆uj)sign(Kjε) (30)

where ∆uj denotes the j’th element on the main diago-
nal of the diagonal matrix ∆u, and Kj as before refers
to row j of K. We rewrite eq. (30) as

ϑj = sat(Kjx) =

 ∆uj if Kjε ≥ ∆uj

Kjε if −∆uj ≤ Kjε ≤ ∆uj

−∆uj if Kjε ≤ −∆uj

(31)
To capture this behavior, we need two binary variables,
sj and tj for each auxiliary input ϑj , such that

Kjε < −∆uj → sj = 0 (32)

Kjε > −∆uj → sj = 1 (33)

Kjε < ∆uj → tj = 0 (34)

Kjε > ∆uj → tj = 1 (35)

Define
qj = Kjε−mj (36)

where mj is calculated as in eq. (24). We note that
qj is non-negative in the domain of interest. The ac-
tual input from the auxiliary controller may then be
calculated from the expression

ϑj = −(1− sj)∆uj + (sj − tj)(qj +mj) + tj∆uj (37)

where we note that sj ≥ tj . The difficulty in the
above equation lies in the bilinear terms sjqj and tjqj ,
both being the product of a binary variable and a non-
negative real. To proceed, we introduce the auxiliary
variables σj = sjqj and τj = tjqj . From (Bemporad
and Morari, 1999), we have that the set

R = {(qj , sj , σj) : σj = sjqj , 0 ≤ qj ≤ aj , sj ∈ {0, 1}}
(38)

can equivalently be expressed as

M = {(qj , sj , σj) : 0 ≤ σj ≤ ajsj , (39)

qj + ajsj − aj ≤ σj ≤ qj , sj ∈ {0, 1}}

and similarly for (qj , tj , τj). Recognizing that in this
case aj = µj −mj , and introducing

m1j = mj + ∆uj (40)

µ1j = µj + ∆uj (41)

m2j = mj −∆uj (42)

µ2j = µj −∆uj (43)
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Defining the diagonal matrices Λ = diag(aj), M1 =
diag(m1j), M̄1 = diag(µ1j), M2 = diag(m2j), and
M̄2 = diag(µ2j), and forming the column vectors m =
vec(mj), sk = vec(skj), tk = vec(tkj), σk = vec(σkj),
and τk = vec(τkj), we obtain the optimization formu-
lation

δfl,N = maxwk,ϑk,σk,τk,sk,tk,εkFlεN (44)

subject to (45)

ε0 = 0 (46)

Hwk ≤ h; k = 0, . . . , N − 1 (47)

εk+1 = Aεk +Bϑk + Ewk; k = 0, . . . , N − 1 (48)

ϑk = −∆u(1− sk) +M(sk − tk) + σk − τk (49)

+∆utk; k = 0, . . . , N − 1

M1(1− sk) < Kεk + ∆u1; k = 0, . . . , N − 1 (50)

−M̄1sk < −Kεk −∆u1; k = 0, . . . , N − 1 (51)

M2(1− tk) < Kεk −∆u1; k = 0, . . . , N − 1 (52)

−M̄2tk < −Kεk + ∆u1; k = 0, . . . , N − 1 (53)

σk > 0; k = 0, . . . , N − 1 (54)

τk > 0; k = 0, . . . , N − 1 (55)

σ1k < Λsk; k = 0, . . . , N − 1 (56)

τk < Λtk; k = 0, . . . , N − 1 (57)

σk < Kεk −m; k = 0, . . . , N − 1 (58)

τk < Kxk −m; k = 0, . . . , N − 1 (59)

Kεk + Λsk − Λ1−m < σk; k = 0, . . . , N − 1 (60)

Kεk + Λtk − Λ1−m < τk; k = 0, . . . , N − 1 (61)

sk ∈ {0, 1}nu , tk ∈ {0, 1}nu (62)

Clearly, with νk as in eqs. (10) and (20) taking into
account Fε ≤ f as specified above, we have

δvi = max(νk) ∀i. (63)

5. Digital simulation and
experimental results

The validation of the proposed control methods is per-
formed by using the modular servo system (Inteco,
2011) shown in Figure 2. The objective is to control the
angular position of the DC motor shaft. The system
consists of the following components: a tachogenerator,
a DC motor, an encoder and an inertia load. This mod-
ular experimental setup supports real-time design and
implementation of advanced control algorithms, and is
interfaced with the MATLAB/Simulink using specific
RT-DAC4/USB board for transferring the measured
signals from the tachogenerator and encoder, and the
control signals to the power interface unit. The angu-
lar position θ of the DC motor shaft is measured by
the incremental encoder, and the angular velocity ω is

Figure 2: DC servo system setup

proportional to the voltage produced by the tachogen-
erator. The DC motor is controlled by a PWM signal
with the scaled input voltage

U(t) = V (t)/Vmax (64)

where |U(t)| ≤ 1 and Vmax = 12[V ].
In order to identify the model of the system, the iden-

tification tool within Modular Servo Toolbox, which
operates directly in the MATLAB/Simulink environ-
ment, is used. The identification procedure is also
given in (Inteco, 2011). The following transfer func-
tion is obtained

G(s) =
θ(s)

u(s)
=

Ks

s(Tss+ 1)
(65)

where Ks = 184.73 and Ts = 1.3s.
By denoting x1 = θ and x2 = ω, the state space

model of servo system is

ẋ1 = x2 (66)

ẋ2 = ax2 + bu+ w

where a = −1/Ts and b = Ks/Ts, and w represents the
Coulomb friction defined by

w = Fcsign(x2) (67)

treated as the unmodeled disturbance.
The sampling period is set to T = 0.01s, and the

discrete-time state space model is given by

xk+1 = Axk +Buk + Ewk (68)

yk = Cxk

with

A =

[
1 0.01
0 0.9923

]
(69)

B =

[
0.0071
1.4155

]
E =

[
0
1

]
C =

[
1 0

]
.
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The weight matrices are chosen as

Q =

[
50 0
0 1

]
(70)

R = 1000 (71)

and the prediction horizon of N = 20 is considered.
The dynamics described by eq. (68) is split into

the nominal one, eq. (7), and the deviation from the
nominal, eq. (8).

Three sets of the digital simulations and real-time
experiments are conducted in order to validate the pro-
posed Tube MPC control methods. The reference sig-
nal is defined by

r =

 0 if Time steps < 50
40 if 50 ≤ Time steps ≤ 500
0 if Time steps > 500

(72)

In all three sets, the nominal MPC, v, is calcu-
lated by the nominal model only, and SMC, ν, is used
as the auxiliary controller to eliminate the disturbance.

A. Nominal MPC

In order to show the system response, when only
the nominal MPC is applied, the first set of the digital
simulation and real-time experiment is conducted. The
following control

−1 ≤ u ≤ 1 (73)

and the state

−50 ≤ x1 ≤ 50 (74)

−34 ≤ x2 ≤ 34
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Figure 3: The angular position z1 of the nominal
model, and x1 of the real plant for the nom-
inal MPC
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model, and x2 of the real plant for the nom-
inal MPC

0 200 400 600 800 1000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time steps

N
om

in
al

 M
P

C
 [−

1,
1]

 

 

v

vmax

vmin

Figure 5: Nominal MPC signal

constraints are defined.
Initially, the nominal MPC, shown in Figure 5, is

applied to the nominal model. The digital simulation
results, together with the corresponding experimental
results, are depicted in Figures 3 and 4.

It is shown that both nominal and real states
respect the constraints defined by eq. (74), but there
is discrepancy between the responses of the nominal
model and real plant. This demonstrates the lack of
robustness of the nominal MPC when it is applied
to the real-time DC servo system in the presence of
disturbance.

B. Tube MPC with traditional SMC

The traditional SMC defined by eq. (10), as an aux-
iliary controller of Tube MPC, is applied to cope with
the disturbance. The two control components are now
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constrained separately.
The constraints for the nominal MPC and SMC are

defined by

−0.7 ≤ vk ≤ 0.7 (75)

−0.3 ≤ νk ≤ 0.3 (76)

which satisfy eq. (73), i.e. −1 ≤ v + ν ≤ 1. The new
state constraints are calculated by using the tighten-
ing procedure described in Section 4. The tightened
state constraints used for the nominal system are now
defined by

−45 ≤ z1 ≤ 45 (77)

−25 ≤ z2 ≤ 25
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Figure 6: The angular position z1 of the nominal model
for the nominal MPC, and x1 of the real plant
for the proposed control
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Figure 7: The angular velocity z2 of the nominal model
for the nominal MPC , and x2 of the real
plant for the proposed control

and the real system has to satisfy constraints defined
by eq. (74). First, the digital simulation is performed,
where nominal MPC signal is applied to the nominal
model. Obtained results are shown in Figures 6 and
7. It can be seen that the nominal states respect
constraints defined by eq. (77). The nominal MPC
signal also respects the constraints defined by eq.
(75), which is illustrated in Figure 8. Then, the
Tube MPC with the traditional auxiliary SMC is
applied to the real-time DC servo system in order to
eliminate the disturbance. The parameters of the SMC
component are ∆u = 0.3 and K = [−0.0118− 0.0071].
The real-time system responses are also presented in
Figures 6 and 7. In Figure 9 is presented the SMC
component of the Tube MPC. Comparing the previous
two experimental results, it is shown that the distur-
bance is rejected, but there is a little chattering in the
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Figure 8: Nominal MPC component of the proposed
control
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Figure 9: Traditional SMC component of the proposed
control
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output signal. The next experiment demonstrates how
to eliminate the chattering phenomenon.

C. Tube MPC with chattering free SMC

The same control and state constraints, defined by
eqs. (75), (76) and (77), respectively, are used herein.
The nominal MPC is applied to the nominal model
first. The obtained nominal and real-time system re-
sponses are illustrated in Figures 10 and 11. After
that, the Tube based MPC with the chattering free
SMC is applied to the real DC servo system. The SMC
component is defined by eq. (20) and the parameters
are ∆u = 0.3 and K = [−0.0118 − 0.0071]. Figure
10 shows that the chattering is eliminated. The os-
cillations in SMC component between 0 and 200, as
well as 500 and 700 time steps in Figure 13 origi-
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Figure 10: The angular position z1 of the nominal
model for the nominal MPC, and x1 of the
real plant for the proposed control
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Figure 11: The angular velocity z2 of the nominal
model for the nominal MPC, and x2 of the
real plant for the proposed control
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Figure 12: Nominal MPC component of the proposed
control
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Figure 13: Chattering free SMC component of the pro-
posed control

nate from noise existing in angular velocity signal taken
from tachogenerator (Figure 11 ). Therefore, they are
not caused by chattering phenomenon. As in the previ-
ous experiments, all states and control signals respect
the defined constraints.

6. Conclusion

In this paper, the Tube MPC with a SMC as an aux-
iliary controller is studied in order to improve the ro-
bustness of the overall system. Due to the presence
of the SMC component, it is necessary to tighten the
constraints of the nominal MPC part. The online cal-
culations for SMC are not time consuming and this
is also true for the nominal MPC, handling only the
nominal model, which results in lower online calcula-
tion requirements. The traditional and chattering-free
SMC algorithms are introduced in Tube MPC in or-
der to reject disturbances and to achieve better perfor-

189



Modeling, Identification and Control

mances of the real system. Therefore, the procedures
for calculating the required constraints tightening are
derived for the both cases. The good characteristics
of the proposed control algorithms are demonstrated
by conducting several digital simulations and real-time
experiments on the DC servo system.
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Appendix A
Proof of Theorem 3.1

The vector sequence (gk, gk+1, . . . , gk+i, . . .) , denoted
by (gk+i), converges point-wise to the limit g ∈ Rnu

if each element of gk+i converges to the corresponding
element in g. In other words, (gk+i) is convergent if
lim gk+i = g, i.e. if for every real vector ε > 0 there
exists the natural number Nu(ε), such that

|gk+i − g| < ε, ∀i > Nu(ε) (A.1)

(gk+i) is the positive (negative) vector sequence if
gk+i ≥ 0 (gk+i ≤ 0) for i = 0, 1, 2, . . .. For multiple-
input systems, it is probable that the elements of vector
gk have different signs, as they represent the switching
functions of SMC inputs. After splitting the vector gk
onto two sub vectors g+k and g−k with separated posi-
tive and negative elements of gk, respectively, eq. (17)
can be rewritten as

g+k+i+1 = g+k+i −∆+
u sign(g+k+i) + (KE)+w+

k+i (A.2)

g−k+i+1 = g−k+i −∆−u sign(g−k+i) + (KE)−w−k+i (A.3)

where ∆+
u , ∆−u ,(KE)+ ,(KE)− , w+

k+i and w−k+i are
diagonal matrices and sub vectors obtained from ∆u ,
KE and wk+i by extraction. Similarly, the theorem’s
condition given in eq. (18) can be expressed by

∆+
u 1 > Ω+ > max|(KE)+w+

k | (A.4)

∆−u 1 > Ω− > max|(KE)−w−k | (A.5)

and the domain G defined by eq. (19) as

G = G+ ∪G− (A.6)

with

G+ = {g+k+i : |g+k+i| < ∆+
u 1 + Ω+} (A.7)

G− = {g−k+i : |g−k+i| < ∆−u 1 + Ω−} (A.8)

It is obvious that (g+k+i) and (g−k+i), defined by eq.
(A.2), are positive and negative sequences, respectively.

Let us prove now that (g+k+i) enters the domain G+

in finite time for k0 ≤ i ≤ N and remains in that area.
The proof is similar in the case of (g−k+i) with respect
to G−. If eq. (A.4) is true, then

g+k+i+1 − g
+
k+i = −∆+

u sign(g+k+i) + (KE)+w+
k+i

< −∆+
u 1 + Ω+ < 0 (A.9)

and g+k+i+1 < g+k+i so there exists a positive di-

agonal matrix Qk+i = diag{q1k+i q2k+i . . . q
n+
u

k+i},
(0 < qjk+i < 1, j = 1, 2, . . . , n+

u , n
+
u + n−u = nu) such

that

g+k+i+1 = Qk+ig
+
k+i, Qk+i < I (A.10)

where g+k+i and g−k+i+p (p ∈ N) can be written as

g+k+i =

(
k+i−1∏
j=k

Qj

)
g+k (A.11)

g+k+i+p =

(
k+i+p−1∏
j=k

Qj

)
g+k (A.12)

giving the following inequality (ε > 0)

|g+k+i+p − g
+
k+i|

=

∣∣∣∣∣
(
k+i−1∏
j=k

Qj

)((
k+i+p−1∏
l=k+i

Ql

)
− I

)
g+k

∣∣∣∣∣ < ε

(A.13)

According to Cauchy‘s theorem, the convergence of
vector sequence (gk+i), satisfying eq. (A.13), is proved.
Its convergence domain is

G
+

= {g+k+i : |g+k+i| > ∆+
u 1 + Ω+} (A.14)

directly satisfying eq. (A.10).
Let us now show that system trajectory enters

the domain G+ in finite time. The sequence (g+k+i)

converges inside domain G
+

, so it is limited and
lim
i→∞

g+k+i = g+∞ . Assume that g+k > ∆+
u 1 + Ω+ .

According to eq. (A.2)

g+k+i = g+k −
k+i−1∑
j=0

(∆+
u 1− (KE)+w+

k+j). (A.15)

Suppose that g+k+i never enters the domain G+. For
i→∞ , we obtain

∞∑
j=0

(∆+
u 1− (KE)+w+

k+j) < g+k −∆+
u 1− Ω+. (A.16)
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Spasić et.al, ”Tube Model Predictive Control with an Auxiliary Sliding Mode Controller”

Equation (A.16) implies that the vector series

∞∑
j=0

(∆+
u 1− (KE)+w+

k+j)

is convergent, and its general element ∆+
u 1 −

(KE)+w+
k+j converges to zero as j →∞ , i.e.

∆+
u 1 = lim

j→∞

(
(KE)+w+

k+j

)
(A.17)

that contradicts eq. (A.4), and the initial assumption
that g+k+i never enters the domain G+ is false. More-

over, g+k+i enters the domain G+ at time instant k0
which is bounded by the maximal element of vector

k0 = int

((
(∆+

u 1− Ω+)I
)−1(|g+k | −∆+

u 1− Ω+
))

+ 1

(A.18)

It is obvious that the length of the prediction horizon
N should be greater than k0 and selected in accordance
with eq. (A.18).

We will now show that for every k0 < i < N , g+k+i
remains in the domain G+. Let sk+k0 ∈ G+

+ = {g+k+i :

0 < g+k+i < ∆+
u 1 + Ω+}. Then, according to eq. (A.2),

we have

−∆+
u 1− Ω+ <

(A.4)
−∆+

u 1 + (KE)+w+
k+k0

(A.19)

<
(A.4)

g+k+k0 −∆+
u 1 + (KE)+w+

k+k0

= g+k+k0+1 <
(A.4)

2Ω+ < ∆+
u 1 + Ω+

and thus g+k+i does not leave the domain G+. This is

also true when g+k+k0 ∈ G
+
− = {g+k+i : −∆+

u 1 − Ω+ <

g+k+i < 0} since

−∆+
u 1− Ω+ <

(A.4)
−2Ω+ (A.20)

<
(A.4)

−Ω+ + (KE)+w+
k+k0

<
(A.4)

−∆+
u 1− Ω+ + ∆+

u 1

+ (KE)+w+
k+k0

<
(A.4)

g+k+k0+1 = g+k+k0 + ∆+
u 1

+ (KE)+w+
k+k0

<
(A.4)

∆+
u 1 + Ω+

The case g+k+k0+1 < 0 and g+k+k0+1 /∈ G+ for g+k ,

g+k+k0 > ∆+
u 1 + Ω+ is not possible since

g+k+k0+1 = g+k+k0 −∆+
u 1 (A.21)

+ (KE)+w+
k+k0

> Ω+ + (KE)+w+
k+k0

> 0.

Similarly, the case g+k+k0+1 > 0 and g+k+k0+1 /∈ G+

for g+k , g+k+k0 < −∆+
u 1− Ω+ cannot happen as

g+k+k0+1 = g+k+k0 + ∆+
u 1 (A.22)

+ (KE)+w+
k+k0

< −Ω+ + (KE)+w+
k+k0

< 0.

Therefore, we have proven that g+k+k0+1 ∈ G+ and, by
induction, the latter can be generalized to

g+k+k0+m ∈ G
+, (A.23)

for every m > 0. The sign of gk may change at each
time step, causing the chattering in that way, but gk
will stay in G+. Having demonstrated that eq. (A.23)
is satisfied if eq. (A.4) is valid, the proof ends.

Appendix B
Proof of Theorem 3.2

Assume that gk /∈ G. Then, eq. (22) becomes eq.
(17) and the proof is similar to the one discussed in
Appendix A. This means that gk+k0 ∈ G where k0
is determined by eq. (A.18). Let gjk be the jth el-
ement of gk and assume that corresponding element
(KEwk+k0)j < 0 . Then

gjk+k0+1 = gjk+k0 − δ
j
u − |(KEwk+k0)j | (B.1)

< Ωj − |(KEwk+k0)j |
< δju − |(KEwk+k0)j |
< δju

where δju and Ωj are the jth elements in the diagonal
of ∆u and in vector Ω, respectively . Then, from eqs.
(B.1) and (22) we have

gjk+k0+1 = (KEwk+k0)j ∈ Gj (B.2)

If (KEwk+k0)j > 0, gjk+i will continue to decrease
and, after k1 time instants

k1 = int
(
(δju + Ωj

)−1
(δju − Ωj)

)
+ 1 (B.3)

gjk+k0+k1 ∈ {g
j
k+i : −δju − Ωj < gjk+i < 0} and

gjk+k0+k1+1 = gjk+k0+k1 + δju (B.4)

+ |(KEwk+k0+k1)j |
> −Ωj + |(KEwk+k0+k1)j |
> −δju + |(KEwk+k0+k1)j |
> −δju
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Meanwhile, if KEwi < 0 for some i > k+ k0 then eqs.
(B.1) and (B.2) stand. It is implied by eqs. (B.4) and
(22) that, from i = k0 + k1

gjk+k0+k1+1 = (KEwk+k0+k1)j ∈ Gj (B.5)

From eqs. (B.2) and (B.5) we have that once gk enters
G, it will stay in it, i.e.

gk+i+1 = KEwk+i ∈ G (B.6)

and, therefore, there is no chattering in sliding
mode.
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Milosavljević, C. General conditions for the existence
of a quasisliding mode on the switching hyperplane
in discrete variable structure systems. Automation
and Remote Control, 1985. 46(3):307–314.
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