
Modeling, Identification and Control, Vol. 37, No. 3, 2016, pp. 171–180, ISSN 1890–1328

Structural observability analysis and EKF based
parameter estimation of building heating models

D. Wathsala U. Perera M. Anushka S. Perera Carlos F. Pfeiffer Nils-Olav Skeie

Faculty of Technology, University College of Southeast Norway, Postboks 203, N-3901, Porsgrunn, Norway. E-mail:
wathsala.perera@hit.no

Abstract

Research for enhanced energy-efficient buildings has been given much recognition in the recent years owing
to their high energy consumptions. Increasing energy needs can be precisely controlled by practicing
advanced controllers for building Heating, Ventilation, and Air-Conditioning (HVAC) systems. Advanced
controllers require a mathematical building heating model to operate, and these models need to be accurate
and computationally efficient. One main concern associated with such models is the accurate estimation
of the unknown model parameters.

This paper presents the feasibility of implementing a simplified building heating model and the com-
putation of physical parameters using an off-line approach. Structural observability analysis is conducted
using graph-theoretic techniques to analyze the observability of the developed system model. Then Ex-
tended Kalman Filter (EKF) algorithm is utilized for parameter estimates using the real measurements of a
single-zone building. The simulation-based results confirm that even with a simple model, the EKF follows
the state variables accurately. The predicted parameters vary depending on the inputs and disturbances.

Keywords: Extended Kalman Filter, Mathematical models, Parameter estimation, Single-zone building,
Structural observability

1 Introduction

Buildings use 40% of the primary energy supply in the
world, and the same figures apply to the European
Union [Perez-Lombard et al. (2008)]. Out of that,
Heating, Ventilation and Air-Conditioning (HVAC)
systems are responsible for the majority of the over-
all energy consumed in buildings. Increasing energy
demands can be reduced by upgrading the relevant
building components and by using advanced controllers
for the operation of the HVAC systems. Advanced
controllers require a building heating model to oper-
ate [Dounis and Caraiscos (2009)]. Identification of a
suitable model for the control system is essential for
better use of energy in buildings. The model can be
used to control indoor climate, estimate building heat-
ing and cooling times, forecast energy consumption

and describe the energy performance of the building.
These models usually need to be accurate and com-
putationally efficient. However, obtaining such mod-
els for buildings is difficult due to highly time-varying
and non-linear nature of the weather conditions and
building dynamics. Further, model-based controllers,
often need information of all state variables, while not
all state variables in a building model are measurable
[Maasoumy et al. (2013)]. According to Maasoumy
et al. (2013), it is also challenging to estimate the ther-
mal parameters accurately.

Buildings have uncertain and time-varying heat
transfer characteristics. They are profoundly depen-
dent on the ambient weather conditions and occupant
behaviours. The thermal parameters of a building such
as heat transfer coefficients are highly reliant on the
outside weather conditions. Owing to the continuous
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ambient changes, the mathematical model describing
the dynamics of the building has uncertain parame-
ters. Therefore, the algorithms used for evaluation of
these parameters should be time-varying and hence be
adaptive [Maasoumy et al. (2013)]. However, first prin-
ciples models for the heating of buildings may present
a rather large number of parameters. The complexity
of the parameter identification depends on the com-
plexity of the model. If the building has several zones
at different temperatures, identification becomes even
more challenging. Further, practical difficulties such
as outdoor air exchange, energy inputs, moisture and
occupant behaviours can make the system more com-
plicated. Concurrently, the parameter identification of
building models can be important for the development
of simplified models, like application in Building En-
ergy Management Systems (BEMS), optimal control,
energy audits and characterization of building compo-
nents.

When physical insight is used to propose a model
for the building heat dynamics with differential equa-
tions, Maximum Likelihood method [Madsen and Holst
(1995), Bacher and Madsen (2011)] and Maximum
a posteriori estimation [Kristensen et al. (2004)] and
Kalman Filtering [Maasoumy et al. (2013), Fux et al.
(2014), Martincevic et al. (2014), Radecki and Hencey
(2012)] have been used for parameter identification.
They are called hybrid or grey box modelling ap-
proaches that blend the two extremes (white box and
black box) in various degrees. Grey-box approaches
were used by Walker (2005), Bacher and Madsen (2011)
to estimate state variables and unknown thermal pa-
rameters for buildings.

2 Physical models of buildings

Physical models of dynamical systems such as build-
ings can be formulated with ordinary differential equa-
tions. They are typically developed by using the laws of
physics such as conservation of mass and energy. Lin-
ear and non-linear dynamic models for buildings can
be developed using different techniques. Non-linear
models provide a better prediction of building ther-
mal dynamics while they are computationally inten-
sive. Linear models are obtained following the sim-
plification of non-linear models and tend to have lim-
ited computational intensity while restrained to the
operating zones they are tuned for [Maasoumy et al.
(2013)]. Sometimes, it is quite tricky to assess the
accuracy of the linear models owing to the inevitable
idealisations and simplifications according to Madsen
and Holst (1995). However, Maasoumy et al. (2013)
have stated that these linear models can be adjusted
by using an adaptive parameter estimation technique

such that the building parameters are updated as the
inside and outside environment changes. The combi-
nation is a hybrid model and an upgraded version of
the linear physical model of the building. Grey-box
modelling can also be applied to non-linear models si-
multaneously with linear models.

A mechanistic model is developed for a single-zone
experimental construction built in 2014 and located at
the University College of Southeast Norway in Pors-
grunn, Norway. The building has an inside volume of
9.4m3, and it is completely sealed such that no venti-
lation is provided from outside. A view of the building
and the floor plan are presented in Figures 1 and 2.

Figure 1: The experimental single-zone building from
east direction.

Solid Wall Standard Wall 

Sustainable Wall 

Figure 2: Plan of the test building. Measurements are
in mm.

There are three distinctive walls in the building.
Each wall, roof and floor has entirely different com-
position based on the materials used for construction.
Therefore, each component of the building envelope has
separate heat transfer characteristics. The test build-
ing is constructed on support structures made out of
concrete, and, therefore, the floor of the building is not
in contact with the ground. Hence, all building com-
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ponents interact with outside air. The building has
three windows of each 60×90cm2 into the south, west
and east directions. The door is on the north wall of
the building and has a dimension of 90×120cm2. An
electrical heater with a maximum capacity of 370W is
used inside the building for heating with a thermostat
controller. Also, a computer is used inside the build-
ing for data logging which contributes to use a power
in between 100W-120W. The interior humidity of the
test building is controlled using a humidifier.

There is a measurement system inside the experi-
mental setup which consists of a weather station and a
DAQ device (NI USB-6218) connected to temperature
sensors (TMP36), humidity sensors (Honeywell 4000)
and a power consumption sensor. Power consumption,
inside temperature, inside humidity, outside temper-
ature, three wall temperatures, roof temperature and
floor temperature are the interested measurements for
this study.

A linear physical model is developed for the above-
mentioned test building, and it is inherited from the
models presented in Perera et al. (2014a) and Perera
et al. (2014b). The energy balance equation for inside
air is derived and presented by the equation (1). To
obtain a simple model for control purposes, we lessen
the number of independent parameters by considering
a common overall heat transfer coefficient (Uo) and a
common thermal diffusivity (α) for all components of
the building envelope. The symbols used in the model
equations are explained in Table 2.

dTi
dt

=
−MiAtotUo

ρiVi (Micpi −R)
Ti +

Mi

ρiVi (Micpi −R)
Q̇h

+
MiAtotUo

ρiVi (Micpi −R)
To

(1)

The next step is to formulate the equations for three
walls, roof and floor to depict their heat transfer char-
acteristics. These equations are derived after discretiz-
ing the one-dimensional heat equation using finite dif-
ference method.

dTmw
dt

=
2αmw
zmw2

Ti −
4αmw
zmw2

Tmw +
2αmw
zmw2

To (2)

dTbw
dt

=
2αbw
zbw2

Ti −
4αbw
zbw2

Tbw +
2αbw
zbw2

To (3)

dTsw
dt

=
2αsw
zsw2

Ti −
4αsw
zsw2

Tsw +
2αsw
zsw2

To (4)

dTr
dt

=
2αr
zr2

Ti −
4αr
zr2

Tr +
2αr
zr2

To (5)

dTf
dt

=
2αf
zf 2

Ti −
4αf
zf 2

Tf +
2αf
zf 2

To (6)

In matrix notation, a system of coupled ordinary
differential equations can be concatenated in the de-
terministic linear state space model in continuous time
as given in equation (7). Here, X denotes the state
vector, and U is the input vector. A is the system
matrix which characterizes the dynamical behaviour of
the system and B is the system input matrix which
stipulates how the input signals enter the system.

dX

dt
= AX +BU (7)

However, often, equation (7) is not able to exactly
predict the future behaviour of the state of the system.
An additive noise term is introduced to the model to
simulate random variation of the state variables. Intro-
ducing a noise term is important because it accounts
for:

• modelling approximations such as completely
mixed air, ideal gas assumption and lumped states
and parameters.

• unrecognized and unmodelled inputs such as wind
speed and solar irradiation.

• noise-corrupted measurements.

Then the new model of system dynamics is described
by equation 8 and it describes all states in the system.
ω(t) is assumed to be a stochastic process with a zero
mean and a given covariance.

dX = AXdt+BUdt+ dω(t) (8)

Another equation is introduced to represent the mea-
sured states of the system which is called the measure-
ment equation and presented in equation (9). The term
v(t) is the measurement error which accounts for the
noise affected output signals from different sensors. In
this equation, it is assumed that only a linear combina-
tion of the states is measured. C is a constant matrix,
which specifies the measured states. D is also a con-
stant matrix, and it accounts for the input variables
directly affecting the output.

Y (t) = CX(t) +DU(t) + v(t) (9)

The physical model developed for the single-zone
building unit can now be concatenated to obtain
a stochastic linear state space model in continuous
time corresponding to the equations (8) and (9). We
reduced the number of independent parameters by
assuming αmw = αbw = αsw = αr = αf = α, in order
to obtain a simple model for parameter estimation.
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The matrices X, A, B, U, Y and C are given below.
The process noise matrix is W and measurement noise
matrix is V.

X =
[
Ti Tmw Tbw Tsw Tr Tf

]T

A =



−MiAtotUo

ρiVi(Micpi−R)
0 0 0 0 0

2α
zmw

2
−4α
zmw

2 0 0 0 0
2α
zbw2 0 −4α

zbw2 0 0 0
2α
zsw2 0 0 −4α

zsw2 0 0
2α
zr2 0 0 0 −4α

zr2 0
2α
zf 2 0 0 0 0 −4α

zf 2



B =



Mi

ρiVi(Micpi−R)
MiAtotUo

ρiVi(Micpi−R)
0 2α

zmw
2

0 2α
zbw2

0 2α
zsw2

0 2α
zr2

0 2α
zf 2


U =

[
Q̇h To

]T
Y =

[
y1 y2 y3 y4 y5 y6

]T

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


W =

[
ω1 ω2 ω3 ω4 ω5 ω6

]T
V =

[
v1 v2 v3 v4 v5 v6

]T
3 Parameter estimation

The goal of the Extended Kalman Filter is to estimate
the unmeasured state variables and actual if they are
observable, and reduce the noise on the measured pro-
cess outputs. It involves two step predictor-corrector
algorithms. In the first step, the most recent state es-
timate and an estimation of the error covariance are
presented. These predictions are used to estimate othe
state variables at the current time. In the second step,
the predicted state estimate in the first step is corrected
to generate an updated state estimate by incorporat-
ing the latest process measurements. For a detailed
description of the Kalman Filter, please consult Simon
(2006). The unknown parameters of a the model are

estimated using the Extended Kalman Filter (EKF) by
augmenting the state with the parameters. This pro-
cess may transform a linear system of equations to a
non-linear system. Since EKF can equally be applied
to linear and non-linear systems, the parameterization
problem can be solved depending on the system ob-
servability. Implementation steps of the discrete time
EKF are summarized in Table 1.

3.1 Structural observability analysis

Observability of a dynamic system determines how well
the states can be inferred from input-output data. The
concept of observability characterizes whether a given
set of measurements is adequate to estimate the state
of the system [Simon (2006)]. Structural observabil-
ity analyzes the observability of a system based on
the system structure. It gives a necessary condition
for observability which means that if a system is not
structurally observable, then it is not observable [Per-
era et al. (2015)]. A method for verifying the struc-
tural observability of a dynamic system is presented
in detail in Perera et al. (2015) using graph-theoretic
techniques. It offers a visual means to pinpoint mea-
surements needed to estimate state, disturbances and
parameters or to detect which cannot be estimated at
all in the augmented system. When estimating the un-
known parameters of a system, Kalman filtering can
be used by augmenting the system with them as state
variables. This necessitates a check up of the observ-
ability of the augmented system.

To analyze the structural observability, a digraph of
the augmented system was created first. Definitions
of some important terms given in Perera et al. (2015)
that are used to interpret the graph are given below
to assist the reader to understand the theory behind
structural observability.

• Nodes of the graph represents augmented states,
inputs, and output variables.

• An edge connects two nodes in the system. In a
directed graph (digraph) nodes are connected
with directed lines.

• A path has an initial node and a final node. The
number of edges in a path is called the length of
it. A Path can be a simple/elementary path (path
contains no node appearing more than once) or
a closed path (path with initial and final nodes
are identical). In our system, no closed paths are
observed.

• If the closed path has no node appearing more
than once except the initial and final nodes, then
it is a cycle. Cycles having a length of one, are
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Table 1: Extended Kalman Filter algorithm

1. System equation: xk = fk−1(xk−1, uk−1, ωk−1) and measurement equation: yk = hk(xk, ωk) are known.

2. Specify the process noise matrix Qk−1, and measurement noise matrix Rk−1.

3.
Initialize the filter with state estimates x̂+k−1, and state estimation covariance P̂+

k−1.

4. Compute the partial derivative matrices Fk−1 = ∂fk−1

∂x |x̂+
k−1

and Lk−1 = ∂fk−1

∂ω |x̂+
k−1

.

5. Perform the time update of the state estimate x̂−k = fk−1(x̂+k−1, uk−1, 0), and estimation error

covariance Pk
− = Fk−1Pk−1F

T
k−1 + Lk−1Qk−1L

T
k−1.

6. Compute the partial derivative matrices Hk = ∂hk

∂x |x̂−
k

and Mk = ∂hk

∂v |x̂−
k

.

7.
Compute the Kalman filter gain matrix Kk = Pk

−HT
k (HkPk

−HT
k +MkRkM

T
k )−1.

8. Perform the measurement update of the state estimate x̂+k = x̂−k +Kk[yk − hk(x̂−k , 0)], and estimation
error covariance Pk = (I −KkHk)Pk.

9. To implement EKF, the matrix Fk−1 should be invertible and the pair Fk−1 and Hk−1 should be
observable.

called self-cycles or loops. In the system, six loops
can be observed around each state variable.

• A directed cactus (figure 3) is made out of a stem
and buds connected in a special way.

A distinguished edge 

The top
A bud

The root

Figure 3: A cactus with two buds. The initial node
and final node of the stem is called root
and top [Perera et al. (2015)].

The digraph of the augmented system is presented
in figure 4. The system is said to be structurally ob-
servable if and only if cacti 1 span the digraph as de-
scribed by Perera et al. (2015). That is for the model
to be structurally observable, the graph with root node
must be directed in the forward path and terminates

1The plural of ”cactus” is ”cacti”

at the final node. If the graph contains any buds, then
these buds need to be in the cycle. The initial node
should be output measurements, and the final node can
be unknown parameters, disturbances or outputs. To
check the structural observability of the given building
heating model, each cactus from the digraph presented
in figure 4 needs to be analyzed. In this case, cac-
tus 1 starts with output measurement y1 directed in
the forward direction path and connected to the state
Ti. Then Ti is joined with the unknown parameter Uo.
Cactus 2 starts with the measurement y5 and directed
in the forward path to connect with state Tr. Finally
Tr directs towards the unknown parameter α. Several
other cacti can be observed from the figure connecting
α, such as y2 → Tmw → α, y3 → Tbw → α, y4 → Tsw
→ α and y6 → Tf → α.

Based on the observations, root nodes of the graph
are connected to the final nodes in a forward path,
and there are no buds in the system. Therefore, the
model is structurally observable and satisfies the pri-
mary condition to be observable. The observability
matrix which is constructed using system matrix A and
constant matrix C has full rank. Hence, the system is
observable, and the unknown parameters can be esti-
mated based on the output measurements.

The figure 5 is presented to illustrate the idea behind
the structurally un-observable systems. Consider the
same building heating model having individual overall
heat transfer coefficients and individual thermal dif-
fusivities to characterize the heat flow through walls,
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Cactus 1

Cactus 2

Figure 4: Digraph of the augmented system.

roof and floor. The digraph is developed for the new
scenario to analyze the model structure. In this case,
cactus 3 starts with output measurement y1 and di-
rected in the forward direction path to state Ti. Ti
is connected with the five unknown parameters Umw,
Ubw, Usw, Ur and Uf . Hence, cactus 3 has five un-
known augmented states as final nodes which makes
the new model structurally not observable. Therefore,
the new model does not satisfy the necessary condition
to be observable, and the individual parameters cannot
be estimated using the Extended Kalman filter.

Cactus 3
Cactus 4

Figure 5: Digraph of the system with individual over-
all heat transfer coefficients and individual
thermal diffiusivities.

4 Results

The presented model is implemented in the Extended
Kalman Filter algorithm to estimate the two unknown
parameters U0 and α. An off-line approach is used
for the identification. The properties ρi and Mi are
assumed to vary depending on the state variable (in-
door temperature) and, cpi is considered as a constant
throughout the model execution. However, it will not
make a considerable effect on the results if the prop-
erties are assumed to be constant because they are re-
lated to air and do not have a high variability based
on the temperature.

Two data sets were used describing the cooling and
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Figure 6: Total power supply to the building during
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tion of the test building [0C].
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heating of the test building. The cooling data set was
recorded from 02-01-2016 to 10-01-2016, and the heat-
ing data set was recorded from 11-01-2016 to 27-01-
2016. Each data set consists of 362 and 769 samples re-
spectively with 0.5-hour sampling interval. Data used
for external conditions such as outside temperature are
also collected at the building location. Input power
consumption from the on-off controlled heater is also
measured. The quality of the parameterization largely
depends on the quality of the data used for identifica-
tion. The collected data ensures the excitation of most
of the system conditions depending on the climate of
the building location. Power consumption representing
the system input and the outside temperatures describ-
ing the system disturbance are illustrated in figure 6
and figure 7.

The power consumption of the building depends on a
heater and a computer. The computer is placed inside
for data logging. The low limit of the power consump-
tion is approximately 95-100 W, which is the power
used by the computer. During cooling the heater is
completely off and the average power consumption of
the computer is 105 W. According to the heater dy-
namics seen in figure 6 during heating, the heater is
automatically turned on and off several times during
the experimental period. The outdoor temperatures
obtained for the two cases show a significant variabil-
ity throughout the period.
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Figure 8: Estimated value of the overall heat transfer
coefficient, U0 and thermal diffusivity, α us-
ing EKF for cooling.

The EKF and the system model manage to tune the
parameters and lead to a very good temperature track-
ing for the six state variables (inside, three walls, roof,
and floor temperatures). Figure 8 and figure 9 show
the evolution of the two parameters (U0 and α) over
time for both cooling and heating. For the cooling
experiment, the parameters do not reach stable values

0 50 100 150 200 250 300 350
-40

-20

0

20

Time [hrs]

U
 [
W

/(
m

2
K

)]

 

 

0 50 100 150 200 250 300 350
-5

0

5

10

15
x 10

-4

Time [hrs]


 [
m

2
/s

]

 

 

Figure 9: Estimated value of the overall heat transfer
coefficient, U0 and thermal diffusivity, α us-
ing EKF for heatling.

during the experimental period. However, during heat-
ing, the overall heat transfer coefficient reaches steady
state while thermal diffusivity does not. Both param-
eters take negative values at some points which is not
physically interpretable. Therefore, they rather seem
to follow the building dynamics based on the inputs
and disturbances.

The predicted and measured values of each state
variable for both cooling, and heating are illustrated
in figures 10 and 11 respectively.

5 Discussion

The model is found to be stable and observable for all
the experiments. The state estimations follow the mea-
surements closely. However, the estimated parameters
do not converge to a single value but reflect the heat
dynamics of the building. One main limitation asso-
ciated with this method is the loss of physical inter-
pretability of the parameters. Both estimated param-
eters take negative values at some points which do not
have physical meaning. Also, it is challenging to obtain
real values for the parameters because they depend on
the thermal properties of the construction materials,
inputs to the system and disturbances. The thermal
diffusivity of each component can be computed theo-
retically if thermal conductivity, density and specific
heat capacity of each material are known.

There are several disturbances present in the system
that have not been modelled. The EKF can be im-
proved by measuring the contribution of each distur-
bance such as solar irradiation and wind speed. How-
ever, this will increase the model complexity and hence
result in high simulation times. Therefore, there is a
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Figure 10: Measured and predicted temperatures of the six state variables using EKF for cooling.
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Figure 11: Measured and predicted temperatures of the six state variables using EKF for heating.
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trade-off between the system complexity and required
precision.

The computational time of the system is around 1
hour for the simulated period using a laptop computer
with a CORE i5 processor having Windows 7 operat-
ing system and 8 GB memory. For one day period,
the simulation time is around 2 minutes and hence the
computational time seems acceptable. The EKF esti-
mator has relatively less number of state variables and
comparatively less computational time that makes it
worthwhile to implement an on-line controller with on-
line parameter estimation for the mentioned building.

6 Conclusion

Advanced control algorithms require a mathematical
building heating model to tailor the controller towards
building dynamics. As buildings are complex and non-
linear dynamic systems, the development of the pre-
cise and reliable building heating model is a challeng-
ing task. However, non-linear and reliable models tend
to be computationally intensive for the application of
on-line building control systems. A dynamic model is
developed for the specified single-zone building which
consists of six state variables, one input, one distur-
bance and two unknown parameters. The state vari-
ables are augmented with the two unknown parameters
which transform the model to a non-linear system. The
suggested model is declared to be sufficient to capture
the essential dynamics of the building. Procedure for
estimation of unknown model parameters in the de-
veloped continuous time model based on the measured
building performance data in discrete time is presented
in this report. The proposed methodology is based on
the Extended Kalman Filter, which requires the ex-
amination of the observability of the system. The ob-
servability of the model is interpreted using structural
observability analysis using graph theory. The applica-
tion of the EKF algorithm to the system estimates the
unknown parameters of the model. The EKF is found
to be a promising algorithm as it yields accurate in-
door temperature estimations as well as wall, roof and
floor temperatures. However, predicted parameres lose
their physical interpretability and can result in nega-
tive value estimations. This can probably be caused by
unmodelled dynamics or process disturbances Compu-
tational time of the proposed model with EKF is low
and thus suitable for real-time implementation.

7 Future work

The parameters of the model are estimated using an
off-line approach. A framework for on-line estimation

of unknown parameters of the building needs to be
studied. On-line approach concurrently tunes the pa-
rameters of the model and provides future state esti-
mates based on the predicted inputs and disturbances.
Such strategies are important for the on-line control in
Building Energy Management Systems. Further, other
techniques such as Unscented Kalman Filter, Ensem-
ble Kalman Filter and Particle Filters can be applied
to check their performance in parameter estimation.
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