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Abstract

Some of the most widely recognized online parameter estimation techniques used in different servomech-
anism are the extended Kalman filter (EKF) and recursive least squares (RLS) methods. Without loss
of generality, these methods are based on a prior knowledge of the model structure of the system to be
identified, and thus, they can be regarded as parametric identification methods. This paper proposes
an on-line non-parametric frequency response identification routine that is based on a fixed-coefficient
Kalman filter, which is configured to perform like a Fourier transform. The approach exploits the knowl-
edge of the excitation signal by updating the Kalman filter gains with the known time-varying frequency of
chirp signal. The experimental results demonstrate the effectiveness of the proposed online identification
method to estimate a non-parametric model of the closed loop controlled servomechanism in a selected
band of frequencies.

Keywords: Kalman filter, Non-parametric estimation, Online identification, Short-time DFT, Two-mass
system

1 Introduction

System identification techniques for the diagnostics
and condition monitoring of a mechanical system are
key tools to enhance the reliability of electrical drives.
An adequate system identification technique is of great
importance in the process of acquiring a mathemati-
cal model that sufficiently represents the essential sys-
tem dynamics. In terms of how the collected in-
put output data are transformed into a mathemati-
cal model, the methods proposed for identification of
mechanical systems can be broadly speaking divided
into two main categories: parametric identification
(Ljung, 2010) and non-parametric identification tech-
niques (Heath, 2001). Moreover, the identification can
be performed in offline or in online mode by time- or
frequency-domain observations.

Different time-domain methods based on a least
squares criterion are commonly used in off-line identifi-
cation of mechanical systems in open-loop (Nevaranta
et al., 2014) or closed-loop control (Saarakkala and
Hinkkanen, 2015). Similarly, for online identification
purposes, some of these methods have been success-
fully applied to online parameter estimation by con-
sidering their recursive form (Nevaranta et al., 2015a).
One of the most widely recognized tools for estimat-
ing parameters of the mechanical system online is the
extended Kalman filter (EKF) method (Schutte et al.,
1997), (Perdomo et al., 2013). Basically this technique
is an extension of the recursive least squares parameter
(RLS) estimation method, which is also widely used for
online identification in different applications. Broadly
speaking, these methods can be regarded as paramet-
ric identification techniques, because they are usually
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based on fixed, a priori determined, structure of mathe-
matical relation, and thus, the parameters of structure
are fitted to the data. In the case of non-parametric
identification, typically no (or few) assumptions are
made with respect to the model structure. The well-
established non-parametric frequency-domain identi-
fication methods (Heath, 2001),(Villwock and Pacas,
2008), (Schoukens et al., 2012) are non-recursive, and
based on the availability of the whole data record re-
quired to perform the necessary calculations. This im-
plies that the identification must, in practice, be per-
formed using offline or batch data processing.

Despite the theoretical development of offline
frequency-domain identification methods, there are
only a few studies available on the issues related to
the use of non-parametric techniques for online iden-
tification purposes. In (Barkley and Santi, 2009) a
non-parametric cross-correlation identification method
is proposed for loop transfer function identification in
closed loop. The method provides accurate frequency
response estimates, but it requires a large amount
of data processing and memory storage space. In
(LaMaire et al., 1987) a less time-consuming identifi-
cation method has been presented that applies sliding
window to calculate Discrete Fourier Transformation
(DFT) to fit parametric model for identification for
control purposes, but in practice, the method is not
stable (Duda, 2010). In addition, frequency-domain
approaches that are based on adaptive neural net-
works have been proposed for adaptive control (Ku-
rita et al., 1999), (Yen, 1997). Furthermore, in (Holzel
and Morelli, 2011) a real-time equation error method
based on a finite Fourier transform in the frequency
domain has been suggested for linear model identifica-
tion. Another method has been introduced in (Olivier,
1994), where a Fourier-Laguerre series is proposed for
the open-loop identification of a linear system. How-
ever, these methods can be regarded as parametric
identification methods as they require initial selection
of the model complexity.

Motivated by the features of the Kalman-filter-based
short-time DFT identification routines proposed in
(Parker and Bitmead, 1987), (Nevaranta et al., 2015b)
for frequency response identification of open-loop and
closed-loop systems using a multi-sine excitation sig-
nal, the objective of this paper is to study the same
routine in the case of a swept chirp excitation signal.
In particular, the main idea of using the Kalman filter
for estimating time-varying signals in a complex form is
considered, but here the knowledge of the time-varying
frequency of the excitation signal is used to update
Kalman gains. This provides an opportunity to use a
simple state space realization for tracking a selected
band of frequencies of a swept excitation signal in-

stead of large block-diagonal form (Jenssen and Zarrop,
1994) for a selected set of frequencies of a multi-sine
signal. It is worth pointing out that in recent studies
by (Goubej, 2015), (Goubej et al., 2013), (Kshirsagar
et al., 2016) a similar type of identification routines
has been considered, but in practice, the method in
(Goubej, 2015) is different as considered in this paper,
because in (Goubej, 2015) the block-diagonal form is
used to estimate harmonic content of the swept exci-
tation signal. Moreover, (Kshirsagar et al., 2016) con-
siders Least Mean Squares (LMS) based adaptive filter
structure, and the persistent excitation signal is su-
perposed to the position reference of the closed-loop
system, whereas in this paper, the swept excitation is
added to the output of closed-loop controller and a
Kalman filter is used.

The method proposed in this paper can be regarded
as an online frequency response estimation routine
that is based on an instantaneous estimation of the
system response. The performance of the proposed
method is verified by an experimental closed-loop con-
trolled servomechanism, and the obtained online iden-
tification results are compared with the corresponding
offline post-processed spectral transfer function esti-
mates. While the main focus of this paper is on the
non-parametric online identification, the closed-loop
system diagnostic options with the proposed method
are also discussed in brief. The diagnostics is based
on the identified open-loop system model that is used
to calculate the loop transfer function with the known
controller.

The contents of the paper are organized as follows.
Section 2 discusses the problem statement and the
tracking of the chirp signal with the Kalman filter.
Section 3, the mechanical system under study is intro-
duced and the proposed non-parametric identification
method is studied by simulations. Section 4 shows ex-
perimental identification results, and the system mon-
itoring opportunities of the proposed method are dis-
cussed in short. Section 5 concludes the paper.

2 Problem Statement

In general, different systems can be identified either in
open loop or closed loop by considering transfer func-
tion estimates that are formed by the ratios of auto-
and cross-spectral estimates. This type of frequency-
domain identification is a well-established and common
approach for different systems under very general exci-
tation conditions (Heath, 2001). In the open-loop case,
the spectral transfer function estimate can be formed
by taking the ratio of the cross-spectral estimate be-
tween input and output Ŝuy(ejω) with the auto-spectral

estimate of the input Ŝuu(ejω); thus, the frequency re-
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sponse estimate becomes

Ĝ(ejω) =
Ŝuy(ejω)

Ŝuu(ejω)
(1)

The spectral estimates can be obtained in differ-
ent ways (Villwock and Pacas, 2008), but in general,
Eq. (1) gives a good approximation of the real system
G(ejω) based on the assumption that the measurement
noise n(k) and the input are uncorrelated, meaning that
Sun(ejω) = 0. This type of frequency response estima-
tor Eq. (1) has been successfully used in the identi-
fication of a closed-loop controlled system by setting
the controller bandwidth relatively low (Beineke et al.,
1998) (Villwock and Pacas, 2008). However, when
noise is affecting the system input u(k), the method can
give poor frequency response estimations if a separate
noise model estimation is not included in the estima-
tion routine.

In this paper, the closed-loop system shown in Fig-
ure 1 is considered, where G(z) is the unknown linear
transfer function of the system to be identified, and
C(z) is the known linear transfer function of the con-
troller. The closed-loop controlled system is considered
a stable linear time-invariant (LTI) system, which is
excited by a known excitation signal ru(k), and an un-
known noise signal n(k) affects the system output y(k).
The measured output y(k) can be expressed as

y(k) = G(z)u(k) + n(k) (2)

where u(k) is the measured input of the system. The
closed-loop system can be expressed, without a refer-
ence signal r(k), as follows

y(k) = G(z)S(z)ru(k) + S(z)n(k) (3)

u(k) = S(z)ru(k)− C(z)S(z)n(k),

where S(z) is the sensitivity transfer function

S(z) =
1

1 + C(z)G(z)
(4)

By using the following notation Gcl(z)=G(z)S(z) and
considering the relation between y(k) and ru(k) in Eq.
(3), the open-loop transfer function can be expressed
as

G(z) =
Gcl(z)

1−Gcl(z)C(z)
(5)

Thus, the open-loop transfer function can be in-
directly solved from the closed-loop spectral trans-
fer function estimate that is formed from the cross-
spectral estimate between output and excitation sig-
nals Ŝyru(ejω) and auto-spectral estimate of the exci-

tation signal Ŝruru(ejω)

C(z)

G(z)+ru(k) u(k) y(k)

n(k)

+

System

-

Controller

r(k)

Excitation signal

 

Figure 1: Closed-loop controlled system. The swept
excitation signal is superposed to the con-
troller output.

Ĝcl(e
jω) =

Ŝyru
(ejω)

Ŝruru(ejω)
(6)

The main advantage of the indirect identification
method is that the open-loop model Ĝ(ejω) can be
correctly estimated even without estimating any noise
model (Heath, 2001). The frequency-domain identifi-
cation schemes Eq. (1) and Eq. (6) are well established
and commonly applied to the identification of different
systems. The primary disadvantage of the frequency
domain analysis includes the required calculation of a
discrete Fourier transform of the measured data, which
is often performed offline. Basically, in the case of of-
fline data processing, the computation time do not im-
pose any limitations, since all the input-output data
are collected prior to analysis. These calculations are
not usually desirable features for online estimation pro-
cedures that deals with real-time updates when new
data is available during the operation. Therefore, the
issue of computational requirements for estimation be-
comes important. For online identification purposes,
the monitoring of the mechanical system at a selected
set or band of frequencies is a desirable feature. When
the behaviour of these frequencies has to be tracked
in real time, it is worth considering a non-parametric
identification algorithm that provides benefits in the
terms of computational efficiency and real-time per-
formance. This paper proposes a Kalman-filter-based
frequency domain identification method that is syn-
chronized to the instantaneous frequency of the chirp
excitation signal.

2.1 Time-Frequency Representation of
Signals using a Kalman Filter

For real-time implementation, a recursive Kalman filter
can be configured to perform like a sample-by-sample-
based Fourier transform (Bitmead et al., 1986). The
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short-time DFT can be obtained by considering the
following simplified state-space representation

x(k + 1) = Φ(k)x(k) + w(k) (7)

z(k) = Hx(k) + v(k)

where x(k) is the state vector, Φ(k) is the state tran-
sition matrix, and H(k) is the measurement matrix.
v(k) and w(k) are the measurement and model error
vectors. The following Kalman filter solution can be
written for the state estimation problem

x̂(k) = Φ(k)x̂(k − 1) + K(k)[z(k)−Hx̂(k − 1)] (8)

where K(k) is the Kalman gain vector

K(k) =
Φ(k)P-(k)H

T
(k)

H(k)P-(k)H
T

(k) + R(k)
, (9)

where R(k) is the measurement error covariance ma-
trix, and P-(k) is the state prediction covariance de-
fined as

P-(k) = Φ(k)P(k − 1)Φ(k)T + Q(k), (10)

where Q(k) is the model error covariance matrix, and
estimation error covariance P(k) is updated as

P(k) = [I−K(k)H(k)]P-(k) (11)

The following state vector is required to estimate a nth
frequency component ωn

x(k) =

[
xreal(k)
ximag(k)

]
(12)

where xreal(k) and ximag(k) are the real and imaginary
components of the signal that can be estimated by con-
sidering the following transition matrix

Φ(k) =

[
cos(Ts · ωn) sin(Ts · ωn)
-sin(Ts · ωn) cos(Ts · ωn)

]
(13)

where Ts is the sample time. Furthermore, the ampli-
tude of the tracked frequency can be directly calculated
at any time instant k from the estimated state variables
as follows

A(k) =
√

x2real(k) + x2imag(k) (14)

It is worth noticing that the first and second element
of the state vector Eq. (12) consist of a frequency com-
ponent and its derivative. Thus, the output z(k) of the
signal model Eq. (7) is formed from the real part of
the signal components by using measurement matrix
H(k) = [1 0]. Moreover, as the covariance matrix is
updated Eq. (11), the optimal Kalman gain K(k) has

a time-varying nature. As proposed in (Bitmead et al.,
1986), fixing the covariance matrix at P(k) = αI and
choosing R1x1 = r gives the steady-state values of the
Kalman gain vector

K(k) =
Φ(k)H

T
(k)

H(k)H
T

(k) + r
α

, (15)

This expression gives a filter expression that is a
fixed-coefficient state observer with predetermined sta-
bility characteristics (Kamwa et al., 2014), and the
states can be straightforwardly estimated by using Eq.
(8). Furthermore, this form provides a simple tuning
rule for the gain: the gain depends only on the ratio
r/α as the matrices Φ(k) and H(k) are known. Thus,
the choice of α directly influences the tracking and er-
ror covariance; for instance, a small value yields slow
tracking and a small error covariance. Setting λ = r/α
gives the opportunity to use only one design parameter
in the Kalman gain.

2.2 Chirp Excitation Signal

As discussed in (Jenssen and Zarrop, 1994) and
(Nevaranta et al., 2015b), in the case of a multi-sine ex-
citation signal the state-space realization Eq. (12)and
Eq. (13) can be modified so that more than one fre-
quency component can be estimated at the same time
by using the block-diagonal representation. However,
this modification increases the computational burden,
and the estimator is slightly slower as more states are
estimated simultaneously at the same time instant k.
When considering the chirp excitation signal, it can
be expressed as sinusoid so that the frequency is time
varying

ru(k) = A · cos(2 · π · f(t) · t + φ) (16)

The time-varying frequency f(t) can be expressed as

f(t) =
m

2
t+ f0 (17)

where f0 is the starting frequency of the chirp, and m
is the rate of frequency increase over duration T

m =
f1 − f0
T

(18)

Hence, the frequency is linearly swept from the start-
ing frequency f0 to the desired end frequency f1. When
considering the transition matrix Eq. (13) for tracking
a single frequency component, the Kalman gain Eq.
(15) is fixed. In the case of chirp, the swept sinusoid
can be tracked with proposed fixed Kalman gain filter
by updating Eq. (13) with the known time-varying fre-
quency Eq. (17). In this case, the Kalman gains behave

136



Nevaranta et al., “Online Identification of a Two-Mass System in Frequency Domain using a Kalman Filter”

sinusoidal as a function of frequency, because the tran-
sition matrix Φ(k) is frequency dependent. Thus, de-
pending of the frequency of the sinusoid to be tracked,
the fixed Kalman gains are different. As a conclusion,
depending on the Kalman filter configuration used, for
instance Eq. (9) or Eq. (15), the frequency to be
tracked must be considered in the Kalman gain up-
date routine. In practice, the frequency of the swept
sinusoid can also be estimated as proposed in (Bittanti
and Savaresi, 2000) and the time-varying Kalman gain
is updated with the estimated state instead of a priori
known value.

3 Monitoring and Identification of
a Mechanical System

From the viewpoint of system identification, the signal
component representation with Kalman filter provides
an opportunity to recursively estimate Fourier compo-
nents of the signals depicted in Figure 1 in the form
Ŷ(ejω,k), Û(ejω,k) and R̂u(ejω,k). Thus, by writing the
frequency response description

Ŷ (ejω, k) = Ĝ(ejω, k)Û(ejω, k) (19)

the non-parametric system model Ĝ(ejω,k) can be on-
line identified in a phasor form from the corresponding
states xreal(k) and ximag(k) of the estimated signals.
This allows to estimate the frequency response by a
magnitude and phase as

|Ĝ(ejω, k)| =
√

Re[Ĝ(ejω, k)]2 + Im[Ĝ(ejω, k)]2 (20)

φ̂(ejω, k) = tan−1

(
Im[Ĝ(ejω, k)]

Re[Ĝ(ejω, k)]

)
(21)

The magnitude Eq. (20) is generally expressed in dB
as 20 · log 10|Ĝ(ejω, k)|. As a conclusion, the proposed
method can be used to estimate frequency responses as
Bode or Nyquist (polar) plots on a sample-by-sample
basis. It should be noted, that the sample-by-sample
recursive calculations are basic properties or options
of other well-known online frequency domain iden-
tification methods, such as Sliding-DFT (Nevaranta
et al., 2016) or Fourier transform regression (Holzel
and Morelli, 2011). However, these methods are based
on the utilization of a moving window to store pre-
defined amount of samples, whereas the method pro-
posed in this paper, the frequency response is pro-
cessed online from the current values of the measured
input-output signals by synchronizing the Kalman fil-
ter to the instantaneous frequency of the excitation sig-
nal. In other words, the frequency response estimate
is obtained from the instantaneous states. However,

the main drawback is the rapid changes in the excita-
tion signal that can introduce transients to the system
which can distorts the frequency response measure-
ment, as the proposed Kalman filter method assumes
a steady state response to a constant frequency har-
monic signal from its definition (Goubej, 2015). Thus,
a longer duration of the identification experiment is es-
sential in order to obtain reliable results, and hence, a
slow frequency sweeping is required.

In order to show the feasibility of the method, in
this paper, the online-estimated frequency responses
are analysed and validated by comparing the obtained
magnitude and phase with the reference model. More-
over, the time-frequency presentation of signals with
Kalman filter yields a non-parametric model in the
form of G(jω) in the selected band of frequencies,
thereby leading to an option to directly use this re-
sult with the known controller C(jω) to calculate loop
transfer function L(jω) = C(jω)·G(jω). Thus the result
is also analysed with the Nyquist plot, and opportuni-
ties for loop-diagnostics purposes are discussed.

3.1 Two-Mass-System

In this paper, an experimental mechanical system with
different mechanical configurations is considered to ex-
perimentally verify the identification method. The pa-
rameters presented in Table 1 are regarded as the ref-
erence system values for the experimental coupled belt
drive system under study. First, the proposed identifi-
cation method is studied by simulations by considering
a closed-loop controlled two-mass system depicted in
Figure 2 with both reference system A and B param-
eters from Table 1. The dynamics of the mechanical
system in Figure 2 can be described by the following
set of equations:

J1
dΩ1

dt
= T1 − Tfr1 + r1F (22)

J2
dΩ2

dt
= T2 − Tfr2 − r2F (23)

F = K(r2Ω2 − r1Ω1) +D(r2Ω̇2 − r1Ω̇1) (24)

Equations (22) and (23) are the elementary dynamic
equations for rotation, where J1 = J11 + J12 and J2

Table 1: Parameters of reference systems

Parameters Ref. system A Ref. system B

K[N/m] 5.75·104 7.00·104
D[Ns/m] 120 100
J1[kgm

2] 0.032 0.018
J2[kgm

2] 0.032 0.032
fres[Hz] 15.1 20.4
fares[Hz] 10.7 16.6
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K, D

J21

T1Ω1

J12

T2Ω2

J22

J11

Belt tensioner

F
F

r1

r2

Nip roller 2Nip roller 1

Figure 2: Coupled belt system consisting of nip rollers
coupled by a flexible belt. A belt tensioner
is used to set the tension in the system. The
inertia ratio of the system can be adjusted
by removing the upper rollers.

= J21 + J22 represents the total moment of inertias
of the nip rollers 1 and 2, Ω1 and Ω2 are the angular
velocities of the rollers, T is the torque, Tfr is the fric-
tional torque component, r is the roller radius, and F
represents the tension force. The dynamics of the cou-
pling is expressed by Eq. (24), where K is the spring
constant, and D is the damping constant of the belt
material. A more detailed discussion on the mechan-
ical system considered in this paper can be found in
(Nevaranta et al., 2015b).

The identification experiments are carried out so
that the nip roller 2 is treated as a driven one, and
the nip roller 1 is used as a load to set the tension of
the belt. The angular velocity Ω2 of the nip roller 2 is
controlled with a PI-controller, whereas the nip roller 1
is controlled by a torque controller. Thus, the system
is operated at the desired constant nonzero velocity,
and the identification is carried out so that the exci-
tation signal is added to the torque reference signal of
nip roller 2 after the system has been stabilized to the
desired velocity. The signals used in the identification
are the torque input u(k) = T2 and angular velocity
y(k) = Ω2.

3.2 Frequency Response Estimation

The identification tests are performed so that a con-
stant velocity profile 10 rad/s is used, and persistent
excitation is superposed to the torque reference. A
chirp signal is considered as an excitation signal, which
is swept from 35 to 1.5 Hz during 17 s and the ampli-
tude is chosen as 1 Nm. The controller C(z) of the
system is a low-bandwidth PI-controller with a pro-
portional gain Kp = 10 1/s and integration time Ti =
0.1 s. The feedback delay of 4 ms is considered in the
simulations and assumed to be known in the estimation
routine, and the Kalman filter tuning parameter is set
λ = 8. In the simulations, white noise, zero mean, with

a standard deviation 0.1 is added to the output signal
y(k). A direct identification method Eqs. (19)–(21) is
considered, where input u(k) and output y(k) signals
are used in the identification process. Obviously, the
inherent problem of direct identification schemes arises
as a result of correlation between the input and out-
put signals used in the identification experiment, but
as the low bandwidth controller is considered the di-
rect identification is applicable for frequency response
estimation (Villwock and Pacas, 2008). It is also re-
marked that, in practical applications several noise and
disturbances sources can be found which influences the
frequency response estimation. In this paper, the pro-
posed identification method is further validated with
an experimental test setup when disturbance sources
such as field-bus delays, encoder noise, torque control
of the frequency converters and friction influences to
the estimation.

In Figure 3 a)–b) the directly online estimated fre-
quency responses are shown for both reference systems
A and B when noise is affecting the system output
and also in the noise-free case. Moreover, in Figure 3
c)–e) the signals used in the identification experiment
are evaluated by the residual ε(k) = z(k)−H(k)x̂, and
the Figure 3 f) shows the frequency contents of the
swept excitation signal. It can be seen that the on-
line estimated frequency response is in a satisfactory
agreement with the reference systems. Especially when
noise-free case is considered, the online-estimated re-
sults agree well with the reference systems, and only
a small difference can be seen in the low-frequency
band. For the noisy cases, the identified magnitude
and phase responses are in a good correspondence with
reference models, and the characteristics of the two-
mass system are evident. It is pointed out that the
noise included in the simulation is chosen so that it
over-emphasizes disturbance in the anti-resonance re-
gion. Even assuming measurement disturbances, the
resonance and anti-resonance frequencies are clearly
visible from the online estimated frequency responses.
Moreover, when evaluating the tracking properties of
the proposed Kalman filter it can be noticed in Fig-
ure 3 c) that a good estimation accuracy is obtained
as the residual between the excitation signal and esti-
mation is low. In the noise-free case in Figure 3 d)–e),
the residual remains low during the sweep, but as can
be expected, the residuals are higher especially in the
frequency region around the resonance frequencies. It
should be noted that the quality of the obtained fre-
quency response estimate depends on the amplitude
chosen for the excitation signal, which is related to the
signal-to-noise ratio similarly as in the case of other
identification studies considering persistent excitation
(Schoukens et al., 2012),(Schoukens et al., 2000).
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Figure 3: Online directly estimated open loop frequency responses for reference systems A and B a) in the case
of a noise-free system and b) when noise is affecting the system output. The tracking properties of
the Kalman filter are evaluated with residuals of the signals used in the identification: c) Residual of
the excitation signal and estimation. d) Residual of the input signal and estimation. e) Residual of
the output signal and estimation. f) Frequency contents of the excitation signal

The duration of the sweep and the selection of the
Kalman gain is directly related to the tradeoff of the
filter tracking and error properties. It is evident that
the duration of the identification experiment related
to the selection of the Kalman filter tuning parameter
has an influence to the accuracy of the frequency re-
sponse estimation. In Figure 4 the directly identified
frequency responses are shown in the case of reference
system A when the Kalman filter tuning parameter λ,
the excitation signal amplitude A and duration T of
the identification experiment (length of sweep) is var-

ied. Figure 4 clearly shows that the accuracy of the
estimated frequency response depends on the length of
sweep chosen for the excitation signal, and obviously,
the excitation signal amplitude should be chosen be as
large as possible in order to achieve a good signal-to-
noise ratio. Especially, it can be noticed in Figure 4
that when the sweep is fast, T = 5s, the identified re-
sponses deviates from the reference system even though
the tuning parameter is varied. Moreover, this shows
the the main disadvantage of the proposed identifica-
tion method as a slow sweeping is required for precise
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Figure 4: Online identified open loop frequency responses when the Kalman filter tuning parameter λ and
amplitude A of the excitation signal and duration T of the identification experiment is varied. The
red solid line represents the reference system A.

measurement in order to reduce errors and obtain ac-
curate results, which prolongs the duration of the ex-
periment. The proposed method for online frequency
response estimation is further validated and discussed
in the case of experimental results in Section 4.

3.3 Loop-transfer Function

When considering classical robustness margins or per-
formance indicators, the controller design usually in-
volves determination of parameters such as modulus
Mm, gain Gm and phase Pm margins and cross-over
frequency ωc. In practical applications, it is usually
desirable to determine the frequencies at which a given
closed-loop system achieves a certain magnitude or
phase. In particular, methods such as relay-experiment
(de Arruda and Barros, 2003) can be regarded as a kind
of frequency domain identification for control methods
that utilizes only a few points of the frequency response
of the loop transfer function to design, for instance,
PID controllers. Similarly, the desired open-loop dy-
namics can be online shaped by considering for instance
an adaptive structure (Balchen and Lie, 1987).

The open-loop transfer function G(jω) can be es-
timated with the proposed method on a sample-by-
sample basis, which makes it possible to use the pro-
posed method to calculate the loop transfer function
in a real-time by using the known controller C(jω) to
obtain L(jω). As the online identification method esti-
mates instantaneous non-parametric model frequency-
by-frequency, it also allows to determine rough esti-
mates of Mm, Pm and ωc during the identification
experiment by considering different distances in the
Nyquist plot. In this paper, the regions inside the unit

circle of the Nyquist plot are determined as regions I,
II, III and IV. Region I is located in the plane defined
by the negative imaginary and real axes, and thus, this
region determines the behaviour at low frequencies.

If the sweep starts exciting low frequencies, and thus
at first, the critical frequency ωc can be determined by
calculating the distance of Nyquist curve to the origin
frequency-by-frequency as follows

d1(ω)= |L(jω)|=
√

(0− Re[L(jω)])2 + (0− Im[L(jω)])2

(25)

and finding the frequency at which the curve intersects
the unit circle, thus |L(jωc)| = 1. After the estimated
Nyquist curve has intersected the unit circle and the
curve lies in the region I, the modulus and the phase
margin can be roughly determined by estimating the
distance of the curve to the critical point (-1,0j) by

d2(ω)=|1+L(jω)|=
√

(−1−Re[L(jω)])2+(0−Im[L(jω)])2

(26)

By using the first value of this distance metric, d2(ωc),
the phase margin can be obtained as

Pm = cos−1

(
d2(ωc)− 2

−2

)
(27)

The modulus margin can be estimated by finding the
minimum distance of the curve in region I to the crit-
ical point, thus Mm = min

ω
|1 + L(jω)|. Moreover, as

the system under study is a controlled two-mass sys-
tem, the estimation routine can be further extended
to obtain mechanical parameters in region II, which is
located in the plane defined by the negative imaginary
and positive real axes. By considering the distance
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Figure 5: Frequency-by-frequency online-estimated Nyquist curves compared with the reference curve in the
case of noise-free system and when the noise is affecting the system output. Equations (25)-(27) are
used to determine controller performance parameters Mm, Pm and ωc in region I. Moreover, the system
parameters ωares and ωres in region II are determined by calculating the corresponding distances Eqs.
(25)–(26). The critical point (-1, j·0) is indicated by a red cross.

metrics Eqs. (25)–(26) the anti-resonance ωares and
resonance ωres frequencies can be determined in region
II similarly as the margins. Hence, the anti-resonance
frequency can be estimated in region II by finding the
minimum distance to the origin d3(ωares) = min

ω
|L(jω)|

calculating the distance of the curve similarly as in Eq.
(25). Correspondingly, the resonance frequency can
be estimated by finding the maximum distance of the
curve to the critical point d4(ωres) = max

ω
|1 + L(jω)|

similarly as in Eq. (26).
In the Figure 5 the sample-by-sample online-

estimated Nyquist curve is shown with the distance
metrics Eqs. (26)–(25) that are used to calculate con-
troller performance- and system-related parameters in
the case of reference system A. The closed-loop con-
troller has been designed so that Pm = 63.5◦ and
fc = 2.7 Hz. Evidently, in the noise-free case the
online-identified Nyquist curve is in a good correspon-
dence with the reference loop transfer function, al-
though small discrepancies can be noticed. The be-
haviour of the low frequencies is similar with the results
in the Figure 3, which further shows that the largest
estimation error is in the low frequency band, as ex-
pected. It is clear that this is partially due to the start
of the chirp excitation, which causes a transient that
can also be noticed from the Figure 3 at t = 5 s af-
ter the initialization. Naturally, the duration of the
sweep and the selection of the Kalman gain have an
effect on the frequency response estimation. For this
purpose, the known limitation of Kalman filter is the
tracking and error tradeoff based on the choice of the
Kalman filter tuning parameter λ. Thus, choosing a
value of the tuning parameter λ for the Kalman filter
is a case-specific compromise, similarly as reported in
(Kshirsagar et al., 2016).

In this paper, the rough control performance esti-
mates in region I are only considered for illustrative

purposes and to further demonstrate the possibilities
of the identification method. It can be seen that the on-
line estimated controller-behaviour-related parameters
are close to the actual ones; nevertheless, it is pointed
out that especially an erroneous estimate of the cross-
point fc directly influences to the estimate of Pm as can
be noticed in the noisy case. It is clear that the em-
phasized estimation error in the low-frequency region
influences these estimates. When considering the dis-
tances in region II, the estimated system parameters
fares and fres correspond well with the ones of reference
model A illustrated in Table 1 in the case of both sim-
ulations. The estimation of these values are further
discussed in Section 4.

For actual performance monitoring purposes, it
could be more preferable to use a separate soft con-
troller to perform the identification experiments in
order to analyse the desired controller performance
in region I. In practice, the proposed online distance
metrics can be used for diagnostics purposes for in-
stance by considering a predetermined safety limits in
region I. Moreover, the loop-transfer function could
be estimated directly from the closed-loop experiment
(Barkley and Santi, 2009), (Bhardwaj et al., 2016).
These issues will be considered in the future research,
and thus not further discussed in this work, where the
main focus is to analyse and validate the feasibility of
the proposed method for frequency response estima-
tion.

4 Experimental Results

The proposed online identification routine is vali-
dated with the experimental two-mass-system used in
(Nevaranta et al., 2015b) and depicted in Figure 6. The
rollers are driven by frequency-converter-supplied per-
manent magnet synchronous motors (PMSM), and a

141



Modeling, Identification and Control

programmable logic controller (PLC) is used for data
acquisition and to implement the excitation signals,
PI controller, and references. It is pointed out that
now the experimental system includes a belt-tensioner,
which, in practice, changes the system dynamics over
to a three-mass-system. However, in this paper, the
frequency region around the dominant resonance fre-
quency is considered in the online identification, which
usually sufficiently reflects dominant behaviour of the
real system. The tests are performed so that the same
PI-controller parameters are considered as in the sim-
ulations, and also the chirp excitation signal is kept
same, thus swept from 35 Hz to 1.5 Hz during s 17 s
interval. In addition, to further verify the online iden-
tification method, the system dynamics of the experi-
mental test setup is varied by changing the belt mate-
rial and the inertia ratio of the system from 1 to 0.56.
The results in Figure 8 have been obtained by using an
experimentally chosen Kalman filter tuning parameter
λ = 8.

Moreover, in order to validate the rough online es-
timates of the anti-resonance fares and resonance fres
the experimental system is offline identified by consid-
ering the open-loop identification method proposed in
(Villwock and Pacas, 2008). A PRBS is used to excite
the system, and the experimental frequency response
estimate Ge(jω) is obtained by Welch method. Then,
the calculation of the mechanical parameters of the an-
alytical frequency response function Gmodel(jω) of the
reference two-mass system is accomplished on the ba-
sis of the M frequency response data points, and the
best fit is iteratively searched by minimizing the error
function

J (ϑ) =

M∑
i=1

|Ge(jωi)−Gmodel(jωi ,ϑ)|2 (28)

where Ge(jωi) are the experimental frequency re-
sponse data and Gmodel(jωi ,ϑ) is the analytical model
function with the parameter vector ϑ = [J1, J2,K,D].
In the parameter estimation, the reference model pa-
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Figure 6: Electromechanical system used for experi-
mental verification.

rameters of Table 1 are used in the initialization, thus
in the first iteration.

The offline identification experiments are carried out
so that the PRBS is generated by a seventeen-cell shift
register with values 2.1 Nm and -2.1 Nm (the rated
torque being 11.55 Nm). The sampling of the data
acquisition is set to 2 ms. In Figure 7, the online-
estimated frequency responses are compared with the
offline post-processed ones for both system configura-
tions: a) reference system A and b) reference system B,
respectively. Moreover, the offline post-processed fre-
quency responses are compared to the ones calculated
by using the identified parameters Eq. (28).

The characteristics of the three-mass-system are
clearly visible in the offline frequency responses, and
when the mechanical configuration is changed over
from reference system A to B, the change of the first
resonance is evident. This change can also be seen in
the online-estimated frequency response results. The
obtained results clearly show a similar behaviour, and
the dynamics of two-mass system are seen in the online-
estimated amplitude and phase responses in the se-
lected band of frequencies. Again, it is worth remark-
ing that the offline post-processed frequency response
is estimated applying the whole data of the identifi-
cation experiment using the PRBS excitation signal,
and correspondingly, the online ones are obtained on a
sample-by-sample basis from the swept excitation; and
thus, these results are not directly comparable. Nev-
ertheless, the offline- and online estimated frequency
responses are in a good agreement, which clearly in-
dicates that the proposed identification method yields
accurate results.

With the results of the parameter-fitting for the cor-
responding mechanical parameters, the resonance and
the anti-resonance frequencies of the two-mass system
approximation can be calculated. In Table 2, the es-
timated mechanical parameters for the both experi-
mental system configurations are shown. The system
change can also be seen in the estimated parameters,
and especially, the effect of the change in the inertia ra-
tio as the resonance and anti-resonance of the system
changes. It should be noted that a two-mass-system
parameter-fitting is considered for the offline identified
frequency responses that have three-mass system char-
acteristics, and thus, the mechanical parameter esti-
mation results cannot be directly compared to the ini-
tial assumption of the system dynamics. However, the
offline-estimated resonances f̂res and anti-resonances
f̂ares are used as benchmark values to validate online
estimated ones.

In Figure 8, the frequency-by-frequency online-
estimated Nyquist curves are compared with the offline
post-processed ones, and the proposed online distance
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configuration correspond to reference system A and b) reference system B, respectively.
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metrics are used to calculate the controller performance
and system parameters. Evidently, the offline- and
online-identified Nyquist curves are in a good corre-
spondence although small discrepancies can be noticed.
Moreover, the system change can be clearly noticed as
the size of the resonance loop changes. It should be
noted, that the distance metrics in region I are prob-
lematic as the largest estimation error is expected in
the low frequency region, and the estimated values can
be only used as rough estimates of the controller perfor-
mance during the identification experiment. Again, it
is pointed out that these values are considered for illus-
trative purposes only in order to further demonstrate
the prospects of the proposed identification method.
When focusing on the online-estimated resonance and
anti-resonance values in Figure 8, it can be noticed
that these values are close to the offline-estimated ones
shown in Table 2, thus indicating that instantaneous
estimates give reasonable results.

In Figure 8 it is clear that, the duration of the sweep
and the selection of the Kalman gain has an effect on
the frequency response estimation. In order to further
validate the online-estimated results, the experimental
system configuration B is identified using three differ-
ent experimental data sets, and the proposed distance
metrics are tested by varying the Kalman filter tun-
ing parameter. In Figure 9, the estimated values ob-
tained from the identification experiments are shown
as a function α. It can be seen that similar values of
fres and fares can be estimated by using different val-
ues in the Kalman filter gain. Obviously, this result
also depends on the amplitude chosen for the excita-
tion signal, which is related to the signal-to-noise ratio,
but it clearly shows instantaneous values can be used
to obtain reasonable estimates. This can be also no-
ticed from the minimum distance estimation to critical
point. Thus, these results indicate that the proposed
online identification method can be used for diagnostics
purposes for instance by considering different fault clas-
sifiers and/or combination rules. Moreover, the results
show the problem of the low-frequency region identifi-
cation as a larger deviation in the estimated Pm and fc
parameters can be noticed. These values do not explic-

Table 2: Offline-estimated parameters for different sys-
tem configurations

Parameters System conf. A System conf. B

K̂[N/m] 7.51·104 8.70·104

D̂[Ns/m] 140.1 92.7

Ĵ1[kgm
2] 0.036 0.037

Ĵ2[kgm
2] 0.033 0.016

f̂res[Hz] 17.5 20.1

f̂ares[Hz] 12.7 16.7
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Figure 9: Estimated system and performance parame-
ters as a function of the Kalman filter tuning
parameter α (r = 1). Data sets 1–2 include
chirp with f0 = 35 Hz to f0 = 1.5 Hz and a
data set 3 f0 = 50 Hz to f0 = 1.5 Hz during
17 s.

itly describe controller-performance-related behaviour.
However, as shown in (Ferretti et al., 2003), a rough
estimate of fc can be obtained similarly during the com-
missioning state of a PID-controlled two-mass system
by using a chirp excitation signal, and successfully used
for controller design validation.

4.1 Supporting results and discussion

The main objective of this paper is to propose a
nonparametric online frequency response estimation
method that is suitable for tracking of a selected band
of frequencies, with a specific objective to identify a
predefined frequency band around the first resonance
frequency of the system. Figure 7 shows that the
offline-identified frequency response clearly indicates a
three-mass system dynamics.

To further validate this observation, in Figure 10,
the experimental system configuration A is also identi-
fied with a chirp excitation signal, which is swept from
100 Hz to 1.5 Hz (during 17 s) and compared with
the results shown in Figure 7 a). When the frequency
band of the chirp excitation signal is extended, the dy-
namics of three-mass system is clearly noticeable in the
online-estimated frequency response. This result fur-
ther indicates the feasibility of the proposed identifica-
tion approach, but also shows that the Kalman filter
tuning parameter should be preferably chosen differ-
ently for different frequency regions. This issue is also
considered in the future research.
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Figure 10: Online-estimated frequency responses com-
pared with the offline post-processed fre-
quency response. The Kalman filter tuning
parameter is set λ = 8.

As discussed in Section 2, the open-loop transfer
function can be estimated indirectly from a closed-loop
identification experiment by using the excitation sig-
nal and the output signal in the identification routine
and by considering the relation of the signals Eq. (5).
In Figure 11, the indirectly estimated open-loop of-
fline and online frequency responses are shown. The
results confirm the remarks in previous results about
the good correspondence between the off-line and on-
line estimated frequency responses. More importantly,
by comparing the directly and indirectly obtained re-
sults in Figures 11, it can be seen that the obtained
open-loop models are rather similar with only minor
noticeable differences. These results clearly indicate
that the proposed non-parametric online identification
routine supports the well-established frequency domain
closed-loop identification theories (Heath, 2001), and
thus, can be applied accordingly to determine the open-
loop frequency response from closed-loop experiments.
Furthermore, in the case of indirect identification, the
proposed method gives more design freedom in the
parametrization of Kalman filter as the excitation sig-
nal used in the identification is known in advance.

In this paper, the experimental results clearly val-
idate the proposed methodology and effectiveness of
using online Kalman filters for frequency response anal-
ysis. The known limitation of the Kalman filter is its
convergence time and tracking tradeoff with respect
on the choice of tuning parameters. This limitation
requires the frequency sweep to be slow. However,
usually in the case of chirp-excitation-based identifi-
cation, the duration of the sweep must be designed
long in order to reduce errors and obtain accurate re-
sults (Östring et al., 2001). A second drawback can be
found when considering identification of systems with
nonlinear dynamics. The chirp signal can have a dis-
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Figure 11: Indirectly estimated online frequency re-
sponse compared to the offline post-
processed frequency response Eq. (6) by
using the signals ru(k) and y(k) and known
controller G(z) in the identification. The di-
rectly online-estimated frequency response
is also shown.

turbing effect, because a number of other spectral lines
are also excited with the frequency lines of interest. De-
spite these limitations, the chirp-excitation-based of-
fline identification is widely applied for instance to the
identification of the flexibilities of nonlinear industrial
robot manipulators (Östring et al., 2003), (Saupe and
Knoblach, 2015).

5 Conclusions

This paper presented an online non-parametric ap-
proach that is based on a time-frequency presentation
of signals in order to estimate a frequency response of
a closed-loop controlled servomechanism in a compu-
tationally efficient manner. The method is based on
a fixed-coefficient non-parametric Kalman filter, which
is updated with the known frequency of the chirp exci-
tation signal. The results from the simulations and ex-
perimental tests show that the approach can be used to
achieve reasonable estimates of the frequency responses
in real time on a sample-by-sample basis. The online
estimated frequency responses during operation were
compared with the corresponding frequency responses
obtained by off-line identification using the whole data
of the identification experiment collected prior to the
estimation. The results show acceptable agreement,
thus indicating that the proposed method is suitable
for the online frequency-domain nonparametric iden-
tification of a mechanical system. Moreover, it was
experimentally validated that the method is feasible to
detect system changes for diagnostics purposes.

As the deterioration of mechanical parts over time
or other unexpected changes in the system dynam-
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ics may lead to the degradation of the control perfor-
mance or cause unexpected interruptions, it is impor-
tant to detect the system changes as proactive main-
tenance before they lead to performance degradation.
The future work will focus on the performance assess-
ment and diagnostics opportunities of the identification
method and the option to diagnose mechanical faults
e.g. changes in the resonances resulting from deterio-
ration.
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