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Abstract

In this paper we develop a method for loading parts onto a swinging target using an industrial robot. The
orientation of the target is estimated by a particle filter using camera images as measurements. Robust
and accurate tracking is achieved by using an accurate dynamic model of the target. The dynamical model
is also used to compensate for the time delay between the acquisition of images and the motion response of
the robot. The target dynamics is modeled as a spherical pendulum. To ensure robust visual tracking the
position of the target mass center is estimated. The method is experimentally validated in a laboratory
loading station with a swinging conveyor trolley as target, which is commonly used in industry.
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1 Introduction

Robot vision in industrial applications is typically used
where work objects are static or moving at constant ve-
locity, such as when picking from a conveyor belt. A
more demanding task is the loading of objects on a
swinging conveyor trolley, which is illustrated in Fig-
ure 1. In the usual industrial solution objects are
loaded on the trolleys manually because they are swing-
ing freely. They are swinging freely to avoid excessive
forces and accelerations. This paper presents a method
to perform this task automatically, by real-time control
of an industrial robot manipulator using an estimate of
the trolley orientation computed from camera images
with a particle filter.

The controller interfaces of industrial robots are de-
signed to operate at fixed update rates, which can
range from 125 Hz (Universal Robots), 250 Hz (KUKA)
and up to the kHz level. However, cameras that are
used in computer vision applications typically have
lower update rates. They are limited by the camera
hardware itself and the bandwidth available for image
transfer. The images are often transferred using Eth-

ernet or USB, which provides no guarantees of real-
time performance by default. These limitations are
described in Corke and others (1996) as the “dynamics
of visual sensing”. Clearly, for a fixed-rate robot con-
troller to work with the varying frame rates provided
by cameras, some method must be employed to com-
pensate for delays and interpolate between images. An
approach to compensate for these effects was proposed
in Wang et al. (2013), using a dual-rate Kalman filter.
A dynamic model was used to predict the target mo-
tion at the time instants required for robot control. In
Wang et al. (2015) and Lin et al. (2013) it was proposed
to identify the parameters of the dynamical model us-
ing Expectation-Maximization.

Since the work Isard and Blake (1998) many authors
have explored the use of particle filters for visual object
tracking. For robotic visual servoing it is specially in-
teresting to look at the work on tracking of rigid bodies
in Cartesian space. Particle filter based tracking on the
SE(3) group has been investigated using different as-
sumptions on the underlying dynamical model in Kwon
et al. (2007), Choi et al. (2011) and Choi and Chris-
tensen (2012). In particular, the particle filters were
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Figure 1: Manual loading of objects onto a swinging
conveyor trolley is a common task in indus-
try. The proposed automatic solution is to
control the trajectory of the robot manipu-
lator in real-time using an estimate of the
trolley motion. An estimate of the trolley
motion is found using particle filter based vi-
sual tracking.

designed to account for the properties of SE(3). The
kinetics were modeled as random walk or with an au-
toregressive dynamic model. To develop this further,
we belive that it may be an advantage to use a ki-
netic model based on the physical equations of motion.
This was done in our previous work Myhre and Ege-
land (2015) where the dynamics of a spherical pendu-
lum was used. A potential benefit of a physical model
is that the assumed noise level in the particle filter can
be significantly reduced. One of the challenges in visual
tracking is to achieve accuracy despite occlusions and
cluttered scenes. A possible solution is to use multiple
cameras as in Lippiello et al. (2007) and Kermorgant
and Chaumette (2011).

In recent years researchers have demonstrated that
particle filter based visual tracking can be used in the
robot feedback loop Ibarguren et al. (2014), Chitchian
et al. (2013), even though it is considered as a computa-
tionally heavy method. The parallel nature of the filter
makes it possible to run them on commodity Graphical
Processing Units (GPUs) to achieve good performance
Choi and Christensen (2013), Concha et al. (2014) and
Pauwels et al. (2013).

A dynamical model based on physical principles
needs to have accurate parameters in order to be use-
ful. This can be done with parameter estimation. An
overview of methods for parameter estimation based on
particle filtering can be found in Kantas et al. (2009).
The two main on-line approaches are Expectation-

Maximization Schön et al. (2011) and gradient ascent
Poyiadjis et al. (2011). We used the approach Poyi-
adjis et al. (2011) in our previous work Myhre and
Egeland (2015) to find accurate parameters of a spher-
ical pendulum during visual tracking. This is further
developed in the following.

In this paper we propose a method to perform the
task illustrated in Figure 1, namely to control a robot
manipulator tracking a swinging target using computer
vision. The proposed method uses a model based on
physical principles with estimated parameters, namely
the center of mass position, which enables the robot
to accurately track the target even as it accelerates.
This is experimentally demonstrated in Section 5. The
method proposed in this paper has the same goal as
in Lin et al. (2013), which is to compensate for vi-
sual sensing dynamics using a model of the motion of
the target object. The method presented in Lin et al.
(2013) uses a general dynamic model, while we propose
to use a physically based dynamical model of a spheri-
cal pendulum in order to achieve high performance for
the specific application.

In this paper XYZ Euler angles was chosen for the
kinematic representation of rotation. The main moti-
vation for this is to simplify and improve the param-
eter estimation algorithm. The benefits of a coordi-
nate invariant representation with the particle filter
was thoroughly discussed in Kwon et al. (2007). In
the use case that is presented in this paper, it is un-
realistic to consider swinging motions with amplitudes
larger than 10◦, so the benefits of using a coordinate
invariant representation is not as great as in the gen-
eral case. However, the kinematic convention chosen
in this paper has the benefit that the center of mass
position naturally can be described using two angular
offsets and one linear offset. This enables the parame-
ter estimator to identify the accurate value of the two
angular offsets, even when the target is hanging with
no velocity (stationary), in which case it is impossible
to identify the correct value of the linear offset. In the
case of a stationary target, only the two angular off-
sets are required for visual servoing. A coordinate-free
version may be the topic of future research.

This paper presents a novel method for accurate
tracking of a swinging target with an industrial robot.

1. The proposed method can handle both stationary
and moving targets.

2. A two stage control system is proposed, where one
part is running at the rate at which the cameras
can deliver images, while the other part is running
at the rate required by the robot motion controller.
The two stages are connected using a prediction
module based on an accurate dynamical model of
the swinging target.
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3. Experiments are performed to demonstrate that
the method can be used for automatic loading of
parts onto the swinging target, using a laboratory
version of a loading station found in industry.

4. The experiments are performed using standard
commercial equipment.

The structure of the paper is as follows: In Section 2
we discuss the preliminaries of particle filtering and pa-
rameter estimation, in Section 3 we present a dynamic
model and observation model used for tracking, in Sec-
tion 4 we propose a method for using the state estimate
to control an industrial robot manipulator in real-time.
Experiments that validate the proposed method are
presented in Section 5.

2 Preliminaries

In this paper we consider a non-linear system with ad-
ditive Gaussian noise

xk = Fd(xk−1,θ) + vk (1)

where xk ∈ Rn is the state vector at time step k, θ
is a vector of static parameters and vk ∼ N (0,Σ) is a
noise vector. The probability density of (1) is known
as the transition density and can in the case of additive
Gaussian noise be written as

f(xk|xk−1) = N (xk − Fd(xk−1,θ),Σ). (2)

An observation is made at each time step k by a camera
taking an image, denoted by Ik. The relation between
Ik and xk is given by the observation density g(Ik|xk),
which is given in Section 3.2. In this section we first
present a particle filter for estimation of the state xk,
then a method for estimating the vector of static pa-
rameters θ, based on the sequence of camera images.

2.1 Particle Filter

Inferences about the state vector at timestep k can be
made using the prediction equation

p(xk|I1:k−1) =

∫
f(xk|xk−1)p(xk−1|I1:k−1)dxk−1

(3)
and the update equation

p(xk|I1:k) =
g(Ik|xk)p(xk|I1:k−1)∫
g(Ik|xk)p(xk|I1:k−1)dxk

. (4)

These equations are intractable in general, but parti-
cle filters are efficient methods for computing numerical
approximations

p(xk|I1:k) ≈
N∑
i=1

w
(i)
k δ(xk − x(i)

k ), (5)

where δ(·) is the Dirac delta function, w
(i)
k are scalar

weights and x
(i)
k ∈ Rn.

The specific particle filter used in this paper is known
as Sequential Importance Sampling with Resampling
which is described in detail in e.g. Cappé et al. (2007)
and Doucet and Johansen (2011).

A numerical approximation to the expected value of
p(xk|I1:k) can be found as∫

xkp(xk|I1:k)dxk ≈
N∑
i=1

w
(i)
k x

(i)
k . (6)

2.2 Estimation of Static Parameters

Methods for sequential estimation of static parameters
using particle filters have recently been developed Kan-
tas et al. (2014). An online gradient ascent method is
used here,

θk+1 = θk + Γ∇θ log p(Ik|I1:k−1), (7)

where
Γ ∈ R3×3. (8)

Using the approach presented in Poyiadjis et al.

(2011) a set of vectors α
(i)
k is found such that

∇θ log p(Ik|I1:k−1) ≈
N∑
i=1

w
(i)
k α

(i)
k −

N∑
i=1

w
(i)
k−1α

(i)
k−1.

(9)

The vectors α
(i)
k are given by the recursive expression

α
(i)
k =

N∑
j=1

w
(j)
k−1f(x

(i)
k |x

(j)
k−1)

N∑
k=1

w
(j)
k−1f(x

(i)
k |x

(j)
k−1)

×
(
α

(j)
k−1+

∇θ log f(x
(i)
k |x

(j)
k−1) +∇θ log g(Ik|x(i)

k )
) (10)

where ∇θ log f(xk|xk−1) and ∇θ log g(Ik|xk) are gra-
dients of the transition (2) and observation (29) densi-
ties respectively, as developed in the next section.

3 Modeling

3.1 Kinematic and Dynamic Modeling

The dynamics of the system is modeled as a spherical
pendulum with one additional degree of freedom de-
scribing the rotation about the pendulum axis. The
configuration can then be described by the XYZ Eu-
ler angles φx, φy and φz. When a workpiece is at-
tached to the hanger, the center of mass will be shifted,
and the equilibrium position of the hanger will have
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Figure 2: The body reference frame B is rotating rela-
tive to the inertial reference frame W. The
geometric trolley model is described by a list
of line segments in R3.

an unknown offset. To account for this uncertainty,
we include offset angles θ1 and θ2 about the x and y
axes, so that the Euler angles become Φx = φx + θ1,
Φy = φy + θ2 and φz. Here θ1 and θ2 are constant
unknown parameters to be identified.

As shown in Figure 2 the world frame is denotedW,
and the body-fixed frame is denoted B. The rotation
matrix from W to B is then given by

RWB = Rx(φx + θ1)Ry(φy + θ2)Rz(φz). (11)

In the stationary position of the pendulum we have
that φx + θ1 = 0 and φy + θ2 = 0.

The equations of motion are derived using the Euler-
Lagrange equations applied to the Lagrangian

L =
1

2
mθ23ṙ

T
3 ṙ3 −mgθ3

[
0 0 1

]
r3 (12)

where θ3 is the unknown constant distance from the
pendulum attachment point to the center of mass, and
r3 is the last column in RWB =

[
r1 r2 r3

]
. The dis-

tance θ3 is the third unknown parameter to be identi-
fied.

The resulting equations of motion are

φ̈x =
2φ̇xφ̇yθ3 sin 2Φy + 2g sin Φx cos Φy

θ3 cos 2Φy + θ3

φ̈y =
g

θ3
sin Φy cos Φx −

1

2
φ̇2x sin 2Φy

φ̈z =0

(13)

where g = 9.81 m s−2 is the acceleration of gravity.
The state vector of the system (1) is

x =
[
φx φy φz φ̇x φ̇y φ̇z

]T
(14)

while the vector of unknown parameters is

θ =
[
θ1 θ2 θ3

]T
. (15)

The velocity components in (14) are affected by ad-
ditive noise, modeled by

vk =
[
0 0 0 v1k v2k v3k

]T
,

where the components

v1k ∼ N (0, σ2
1), v2k ∼ N (0, σ2

2), v3k ∼ N (0, σ2
3) (16)

are samples from Gaussian distributions.
A continuous state space model is found from equa-

tions (13), (14) and (15) as

ẋ = F (x,θ). (17)

The model is discretized in time using the first order
Euler method giving Fd(xk−1,θ) in the system (1).

The gradient ∇θ log f(xk|xk−1) is required for pa-
rameter estimation in Section 2.2. Let

Ξ = diag(0, 0, 0, 1/σ2
1 , 1/σ

2
2 , 0), (18)

then since the transition density is Gaussian,

∇θ log f(xk|xk−1) =

(xk − Fd(xk−1,θ))TΞ∇θFd(xk−1,θ),
(19)

where ∇θFd(xk−1,θ) is the sensitivity with respect to
the parameters θ. The sensitivity is an estimate of the
effect variations in the parameter θ has on Fd(xk−1,θ).
From Khalil (2002) the sensitivity is computed by tak-
ing derivatives of (17) with respect to the parameters
θ and solving this ode

∇θFd(xk−1,θ) =

∫ tk

tk−1

∂F (x,θ)

∂x

∂x

∂θ
+
∂F (x,θ)

∂θ
dt.

(20)

3.2 Image Model

It is assumed that the object is a rigid body with orien-
tation given by the rotation matrix RWB , as illustrated
in Fig. 2. A point pW ∈ R3 in frame W is given in
frame B using

pW = RWB p
B. (21)

The transformation from the frame W to C is given by

pC = RCWp
W + tCW . (22)

The image is a two dimensional array of pixel inten-

sities I(p) where p =
[
u v

]T
and u and v are pixel
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coordinates in the image plane. The camera calibration
matrix is

K =

kx 0 ku
0 ky kv
0 0 1

 (23)

where kx, ky, ku and kv are intrinsic camera calibration

parameters. Given a point pC =
[
px py pz

]T
, the

coordinates of the point in the image plane is given by

pz

uv
1

 =

kx 0 ku
0 ky kv
0 0 1

pxpy
pz

 (24)

or
pzp̃ = KpC (25)

in vector form.
The methods used to find the intrinsic camera pa-

rameters kx, ky, ku and kv and the extrinsic camera
parameters RCW and tCW are described in Section 5.

3.2.1 Trolley Frame Visual Model

The visual model of the trolley is given by Ng line
segments. Each line segment j is specified by its end-
points pBj and qBj . For each particle i the rotation

matrix RWB is computed using the state vector x
(i)
k .

The two points in the image plane corresponding to pBj
and qBj are found in homogeneous pixel coordinates as

p̃j = K(RCWR
W
B p
B
j + tWC ) (26)

q̃j = K(RCWR
W
B q
B
j + tWC ). (27)

The line segment defined by pBj and qBj is found
in pixel coordinates as the line segment from p̃j to
q̃j , and can be described as the homogeneous vector
˜̀
j =

[
a b c

]T
, which is found from the cross prod-

uct Hartley and Zisserman (2003)

˜̀
j = γS(q̃j)p̃j (28)

where S(q̃j) is the skew symmetric form of q̃j . A scal-
ing factor γ is used to ensure that the two dimensional

vector nj =
[
a b

]T
is a unit vector. It is noted that

in this description the vector nj is the normal vector
to the line segment in image coordinates.

The following observation density is proposed for the
particle filter:

g(Ik|xk) =

Ng∑
i=0

(I(pj)− I(pj + λnj))
2 (29)

where pj is the two-dimensional version of the homoge-
neous vector p̃j , nj is the normal vector to line segment
j, and λ is a parameter which was set to λ = 5, which

State and
parameter
estimator

Predictor

Robot Program
and Motion
Compensation

Reflexxes
and Inverse
Kinematics

x̂k

x̂(t)

EW
d

θ
Ik

qd

Figure 3: The modules comprising the control system.
The modules in the blue box are running at
the frame rate determined by the cameras.
The modules in the red box are running at
the fixed rate required by the robot manipu-
lator (125 Hz for UR5).

gives a distance between the points of approximately 5
pixels.

The parameter vector θ does not enter into the ob-
servation density, which means that

∇θ log gθ(Ik|xk) = 0. (30)

4 Control System

In this section we describe a control system used for
automatic loading of parts on the swinging trolley. The
control system structure is visualized in Figure 3. The
content of the block containing “State and parameter
estimator” was described in Section 2.1 and 2.2. The
mean of the state estimate is computed at each time
step k

x̂k =

∫
xkp(xk|I1:k)dxk (31)

using (6). The contents of the remaining blocks are
described in the following.

4.1 Visual Sensing Dynamics
Compensation

The control system illustrated in Figure 3 is logically
divided into two parts running at different rates. The
modules inside the red dotted polygon are running at
the fixed rate required by the robot controller, while
the modules inside the blue dotted rectangle are run-
ning at the camera rate. As cameras typically come
without real-time guarantees, and the frame rate is
typically lower than of the robot motion control sys-
tem, there is a mismatch between the robot controller
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rate and the camera rate. In order to bridge the gap be-
tween the modules running at different rates, the “Pre-
dictor” module uses the most recent state-estimate x̂k
and parameter estimate θ, to predict the trolley state
x̂(t) at the time instants required to compute set-points
for the robot motion controller. The predictor module
predicts the trolley state by integrating the system in
(17)

x̂(t) =

∫ t

tk

F (x,θ)dt. (32)

The result is the predicted transform TWB based on the
predicted state x̂(t).

4.2 Robot Program and Motion
Compensation

In order to move the end-effector smoothly between two
reference frames T B1 = (RB1 , t

B
1 ) and T B2 = (RB2 , t

B
2 ) we

define the end-effector reference trajectory

EBd (T B1 ,T
B
2 , s) =

(
RB1 exp

(
log
(
R1
BR
B
2

)
β(s)

)
,

(tB2 − tB1 )β(s) + tB1
)

(33)
where exp(·) is the exponential map so(3) → SO(3)
and log(·) is the inverse as defined in Murray et al.
(1994). A monotonic function β(s) ∈ [0, 1] is used for
interpolation of frames such that excessive acceleration
is avoided. We use a linear function of the Logistic
function

β(s) = a
1

1 + exp (−ks) − b. (34)

where a and b are choosen so that β(0) = 0 and β(1) =
1. The motion of the end-effector is computed using
the predicted transform TWB

EWd = TWB EBd . (35)

4.3 Reflexxes and Inverse Kinematics

The Reflexxes motion libraries Kröger (2011) was used
in Cartesian space to filter low amplitude high fre-
quency noise that is part of the particle filter estimate.
Set-points for the robot joint controller was thereafter
computed using an inverse kinematics procedure.

5 Experiments

5.1 Laboratory set-up

As shown in Figure 1 a laboratory set-up was built
to perform the experiments described in this section.
The set-up consisted of two Prosilica GC 1020 Eth-
ernet cameras streaming images to a computer at ap-
proximately 35 Hz, which is the fastest they can de-
liver images at full resolution (1024 × 768 pixels).

x̂k x̂k+1 x̂k+2

Ik Ik+1 Ik+2

. . . . . .

. . . qj qj+1 qj+2 qj+3 qj+4 qj+5 . . .

x̂(t)

Figure 4: Timing of state estimates xk in the camera
rate (blue box) and the desired joint variables
qj in the robot controller rate (red box).

The computer had a Intel i7-3820 CPU, 16 Gb RAM
and a Nvidia Titan graphics card, running Ubuntu
Linux 14.10. The Precision Time Protocol was used
to achieve synchronization between the clock on the
two cameras and the clock on the computer controlling
the robot.

A chessboard was mounted on the robot end-effector
in order to find the camera calibration parameters re-
quired in Section 3.2. For each camera 26 pictures were
taken of the chessboard with the robot end-effector in
different poses. The intrinsic camera parameters kx,
ky, ku and kv were found using standard camera cali-
bration methods provided by the OpenCV library de-
scribed in Bradski and Kaehler (2008). The extrinsic
camera parameters RCW and tCW were found using the
method described in Park and Martin (1994). The dis-
tance from each of the cameras to the trolley frame was
approximately 2.2 m.

The differential equations (13) and (20) were dis-
cretized using the Euler method. To achieve an accu-
rate estimate of the parameter vector θ it is important
that the sensitivity estimate in (20) is accurate. There-
fore the step-size for integration was set to 0.0002 s.
The two most computationally intensive parts of the
particle filter are the observation model and the dy-
namical model, which therefore were implemented in
CUDA in order to run them on the GPU of the Nvidia
Titan graphics card.

5.2 Visual Sensing Dynamics
Compensation

The experiment in this section was performed to val-
idate the performance of the visual dynamics sensing
compensation described in Section 4.1. A 5 s sequence
of the state estimate was recorded while the target was
swinging, and the resulting φx component is shown in
Figure 5. The graphs show that the output from the
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Figure 5: The figure shows the discrete-time state esti-
mate of φx (in blue), which is updated at the
camera rate, and the predicted state (in red),
which is in the faster robot rate of 125 Hz.

predictor module provide a smoother and more accu-
rate estimate of the target state, than the estimate
coming directly from the state estimator.

5.3 Case Study: Part Loading

In this section we present the experimental validation
of the proposed method. We decided to do this by
synchronizing the motion of the robot and the trolley,
and then using the robot to place a hollow cylinder
in loading position. Instead of releasing the grip on
the cylinder, the robot then removed the cylinder from
the loading position. The idea was then that if the
robot could do this without the cylinder coming into
contact with the trolley, the synchronization would be
accurate within the difference in dimension of the hole
in the cylinder and the size of the attachment hook
on the trolley. In this case the documented accuracy
would be 6 mm.

The target was a trolley hanging from an overhead
conveyor, which is used in industrial loading stations
commonly operated with manual labour. The experi-
ment was designed to demonstrate that the proposed
method also can handle the situations where the posi-
tion of the mass center changes as objects are attached
to the trolley, and that this can be achieved both with
moving and stationary targets. To this end, an object
was loaded on the trolley so that the center of mass
changed to an unknown position, which was estimated
by the parameter estimation algorithm. Then the syn-
chronization of robot and trolley motion was demon-
strated by letting the robot move the hollow cylinder
into loading position and back again without touching
the trolley. In this motion the cylinder is very close to
the trolley, and a synchronization of 6 mm is validated
if the cylinder does not touch the trolley.

The motions that were performed in the experiments
are shown in Figure 7. The cylindrical object carried
by the robot had inner diameter 22 mm. The trolley
frame was welded from steel bars with a square cross
section (8 mm×8 mm). The robot program is described
in Figure 6.

Step 1) Estimate the parameter vector θ.

Step 2) Set the time variable t = 0 and start track-
ing using the found parameter vector θ.

Step 3) Move the end-effector from the initial posi-
tion to the pose T B1 when t ∈ [0, 15).

Step 4) Move the end-effector according to
EBd (T B1 ,T

B
2 , s(t)), where

s(t) =


(t− 15)/5 if 15 ≤ t < 20

1 if 20 ≤ t < 25
(25−t)

5 if 25 ≤ t < 30

(36)

Figure 6: Robot program.

The program was first executed with a stationary
target. The results are shown in Figure 8a. In Step
1 the values of the parameters θ1 and θ2 converged
after 20 s. The parameter θ3 did not converge because
there was no excitation that could be used to identify
its value in (7). Estimation was cut off after 25 s. In
Step 4 the robot moved the cylindrical object to the
loading position on the trolley and back. The states in
Figure 8a show that the target was stationary without
coming in contact with the robot.

The program was then executed with a moving tar-
get. The results are shown in Figure 8b. In Step 1 the
values of parameters θ1, θ2 and θ3 converged after 20 s.
Estimation was cut off after 25 s. In Step 4 the robot
moved the cylindrical object to the loading position on
the trolley and back. The states in Figure 8b show
that the target motion was smooth without coming in
contact with the robot.

5.4 Discussion

The results from the experiment in Section 5.3 shows
that

• The mean values of φx and φy were −θ1 and −θ2,
which is consistent with (11).

• The estimated distance to the mass center θ3 con-
verged when the target was in motion, but not
when it was stationary. This was the motivation
for choosing the kinematic convention.
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(a) Illustration of the experiment performed in Figure 8a.

(b) Illustration of the experiment performed in Figure 8b.

Figure 7: The same experiment is performed twice,
first with a heavy load, then without a heavy
load. During the experiment the end-effector
moves from the pose on the left (T B1 ), to the
pose on the right (T B2 ) and finally back (to
T B1 ).

• The state vector was not interrupted by exter-
nal forces during the loading sequence in Step 4,
which means that there was no collision between
the robot and the target.

• The proposed method for visual servoing worked
both with a stationary and a moving target, which
is one of the main contributions of this paper.

6 Conclusion

This paper presented a method for accurate tracking of
a swinging target using an industrial robot. A dynami-
cal model of the swinging target was used and a method
for estimating the parameters describing the mass cen-
ter position was presented. The model was used to pre-
dict the motion of the swinging target, both for com-
pensation of visual sensing dynamics and in the particle
filter. The experiments in Section 5 demonstrate that
the proposed method can be used to achieve accurate
tracking of a swinging target with a robot manipulator.
The method was demonstrated on the industrial task
of part loading on swinging conveyor trolleys, where
the tolerance was less than 6 mm. The method was
demonstrated on moving and stationary targets.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

φ x
[d
e
g
]

−
θ 1
[d
e
g
]

−1

0

1

2

3

4

φ y
[d
e
g
]

−
θ 2
[d
e
g
]

0 5 10 15 20 25 30
Time [s]

178

180

182

184

186

188

190

φ z
[d
e
g
]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

θ 3
[m
]
(D
is
t
c
e
n
te
r
o
f
m
a
s
s
)

(a) Part loading experiment with stationary target. An ad-
ditional load was placed on the upper right loading po-
sition in order to shift the center of mass as shown in
Figure 7a.
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(b) Part loading experiment with moving target. The ad-
ditional load was removed as illustrated in Figure 7b.

Figure 8: The graphs illustrates the result of the robot
program (Figure 6). The results from Step
1 are shown as the green graphs, which dis-
play the evolution of the parameter vector θ.
The final values are shown as the horizontal
black dashed lines. In Step 4 the end-effector
was controlled according to (36), and in the
interval (15 s to 30 s) the cylinder was put
on the loading position on the trolley. The
state vector was recorded and is shown here
in blue. It is noted that the states in both
Figure 8a and 8b are smooth and show no
sign of collision.
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