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Abstract

Simplified linearized discrete time dynamic state space models are developed for a 3-phase well-pipeline-
riser and tested together with a high fidelity dynamic model built in K-Spice and LedaFlow. In addition
the Meglio pipeline-riser model is used as an example process. These models are developed from a subspace
algorithm, i.e. Deterministic and Stochastic system identification and Realization (DSR), and implemented
in a Model Predictive Controller (MPC) for stabilizing the slugging regime. The MPC, LQR and PI control
strategies are tested.
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1. Introduction

Severe-slugging is a problem regarding well-pipeline-
riser processes in the offshore industry and is charac-
terized by significant flow rate and pressure oscillations
observed at the topside choke. This flow needs to be
stabilized or it might damage both downstream equip-
ment and personnel (Courbot (1996)).

One solution, which is regarded as the most cost-
effective, is to introduce active feedback where we de-
fine the topside choke valve as the manipulative vari-
able and some pressure, flow rate or density measure-
ments as the controlling variable. We may also define
the flow rate as the goal variable, as it is what we want
to maximize.

On this approach, Schmidt Z. (1979), may be viewed
as the first contribution, however this was a rather ex-
perimental approach where an upstream pressure mea-
surement together with the flow rate measurement, the
choke valve was automatically changed, by algorithm,
to counteract the slugging regime.

To maximize the goal variable a controller needs to

be designed to operate around an open-loop unstable
working point, here the largest possible choke opening
which stabilizes the system may be defined as a per-
formance measure of the controller.

Model-based control using mechanistic models is a
popular approach for designing controllers. Some of
these mechanistic models are presented in Storkaas and
Skogestad (2003b), Di Meglio et al. (2009), Jahanshahi
and Skogestad (2013) and compared in Jahanshahi and
Skogestad (2013).

Several active control strategies have been addressed
for stabilizing the slugging phenomena, some of them
are mentioned in Godhavn et al. (2005), Ogazi AI
(2010), Di Meglio et al. (2010a), Storkaas and Sko-
gestad (2003a) and Jahanshahi and Skogestad (2015),
Dalen et al. (2015).

In Dalen et al. (2015), a so called Model-Free Linear-
Quadratic Regulator (MFLQR) was demonstrated on
a well-pipeline-riser example integrated in the K-
Spice/LedaFlow simulator (K-Spice, LedaFlow). Dif-
ferent input-output cases were considered for solving
the slugging problem, where the most satisfying re-
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sults were when introducing gas-lift, however this is a
rather expensive solution, as large quantities of gas are
needed. It is less expensive to stabilize the flow regime,
or controlling the bottom riser pressure, by active chok-
ing of the topside choke valve also demonstrated in the
paper.

The concept of model free optimal control is not new
and was used in Favoreel et al. (1999) in order to iden-
tify a Linear-Quadratic-Gaussian (LQG) controller di-
rectly from closed loop subspace system identification.
The subspace method used was however/regardless bi-
ased and the controller has to be partly known.

In this paper we will define bottom-riser pressure
as the controlling variable and topside choke valve as
the manipulative variable. In particular, demonstra-
tions of Model-Free Predictive Control (MFPC) is per-
formed on the 3 state Di Meglio model (Di Meglio et al.
(2009)) and on the K-Spice/LedaFlow simulator (K-
Spice, LedaFlow).

The contributions of this paper can be itemized as
follows.

• MFPC and MFLQR of the Di Meglio model
(Di Meglio et al. (2009)).

• MFPC of the K-Spice/LedaFlow simulator.

The rest of the paper is organized as follows. In Sec.
2 we define the MFPC algorithm. In Sec. 3 we present
results of the MFPC algorithm on the Di Meglio model
(Di Meglio et al. (2009)) and the K-Spice/LedaFlow
simulator. In Sec. 4 we discuss and summarize the re-
sults. In Sec. 5 we present the concluding remarks. In
Appendix A we provide a complete model description
of the Di Meglio model (Di Meglio et al. (2009)).

2. Theory

Definition 2.1 (State observer)
Define the following Kalman filter on state deviation
form, i.e.

∆x̄k+1 = A∆x̄k +B∆uk +K(yk − yk−1 −D∆x̄k),

∆x̄0 = 0,
(1)

where k ∈ N is the discrete time, ∆x̄k ∈ Rn is the
predicted state deviation vector, ∆uk ∈ Rr is the input
deviation vector, yk ∈ Rm is the output vector and K is
the Kalman filter gain matrix. The observer matrices
A,B,D,K are identified as in Eq. (2).

Definition 2.2 (Optimal model)
The model matrices in Eq. (1) are found using the
following MATLAB function,[

A B D K
]

= dsr op(Y,U), (2)

where Y and U are identification matrices, containing
collected data from an experimental design.

Y =

y
T
1
...
yTN

 , U =

u
T
1
...
uTN

 . (3)

It is important to note that choosing the model based
on lowest Mean Square Error (MSE), calculated from
simulated output, as in Dalen et al. (2015), might
not give the optimal model order, and according to
Akaike (1974). The optimal model will be refereed to as
DSRJL, where J is the past horizon and L is the future
horizon (see Di Ruscio (1996) for a detailed descrip-
tion).

Definition 2.3 (MPC Algorithm)
We consider the simple MPC algorithm presented in
Di Ruscio (2013).

Given the pre-defined matrices, H,OLÃ, F
T
LQ, as

defined in Di Ruscio (2013), and the reference matrix,
rk+1|L, we have for each time-instant k that

x̃k =

[
∆x̄k
yk−1

]
,

pL = OLÃx̃k,

fk = FTLQ(pL − rk+1|L)

(4)

The optimal unconstrained predictive control is

∆u∗k|L = −H−1fk. (5)

The actual control is

uk = uk−1 + ∆u∗k|1. (6)

However, if the constrains are active, the problem
renders a general QP problem, i.e.

∆u∗k|L = arg min
A∆uk|L≤bk

Jk, (7)

where

Jk = ∆uTk|LH∆uk|L + 2fTk ∆uk|L + J0, (8)

and J0 is not used. The vector bk depends on the con-
straints.
As an example regarding the linear inequality in Eq.
(7), we consider the input rate of change constraints,

∆umink|L 6 ∆uk|L 6 ∆umaxk|L . (9)

Eq. (9) may be expressed as A∆uk|L ≤ bk, where

A =

[
ILrxLr
−I

]
,

bk =

[
∆umaxk‖L
−∆umink‖L

]
.

(10)
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A complete example which introduces the constraints
of both the input rate of change and the input ampli-
tude can be found in Section 3.2 and Appendix A in
Di Ruscio (2013).

MPC Process

State observer

ukrk yk−

yk−1 ∆x̄k xk

Abk

Figure 1: Block diagram illustrating MFPC.

3. Numerical Examples

3.1. Di Meglio model

We consider the 3 state model presented in Di Meglio
et al. (2009), which was calibrated in Di Meglio et al.
(2010b), for reproducing the slugging regime present in
a real oil well located in the North Sea. The model is
rather simple, but with an introduced virtual valve lo-
cated at the bottom of the riser the model proves suffi-
cient to investigate the physical aspects of the slugging
phenomenon.

This model may be formulated as a continuous non-
linear state space model, as

ẋ = f(x, u),

y = g(x),
(11)

where

x =

x1

x2

x3

 =

mg,cb

mg,r

ml,r

 . (12)

Here, in Eq. (12), mg,cb is the mass of gas in the
elongated bubble, mg,r is the mass of gas in the riser,
ml,r is the mass of liquid in the riser and the output y
is the pressure at the riser bottom. See Di Meglio et al.
(2009) for details. The main control u is the topside
choke. The complete model for direct implementation
is presented in Appendix A with parameters as in Tab.
6.

The continuous non-linear model may be linearized
around steady state operating points us and xs, which

leads to a discrete time linear model,

xk+1 = Axk +Buk + v,

yk = Dxk + w.
(13)

Now, we present results on the MFPC based upon
two different datasets with length, N = 2000 samples,
each excited around different choke openings, @0.15
and @0.20, illustrated in Figs. 2 and 7, respectively.
The sampling time is chosen equal to 100 sec.

We can define our two cases as

y ∈ R :=
{

Bottom-riser pressure, [bar] ,

u ∈ R :=
{

Topside choke @ {0.15, 0.20} [1]

Note that u > 0.205 is considered the bifurcation
point, i.e. the choke opening where the process be-
comes marginally stable.

We removed the first 200 samples. Now, the first
1301 were stored in input and output identification
vectors U ∈ RNid and Y ∈ RNid , respectively. The
validation vectors were made from all the data, stored
as U ∈ RNv and Y ∈ RNv , illustrated in Fig. 2.
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y: Bottom riser pressure [bar]
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u
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0.16
u: Topside choke [1]

VALIDATION

IDENTIFICATION

Figure 2: Raw data with length, N = 2000
samples. Identification and validation with
lengths, Nid = 1301 and Nv = 1800. Sam-
pling time is 100 sec. @0.15

The vectors U and Y were redefined with centered
data, i.e. subtracted by the mean values um = 0.151
and ym = 188.3 (Fig. 3).

Next, a 3rd order model was identified (Eq. 14) us-
ing dsr op as in Eq. (2), and Eqs. (15) and (17) for
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Figure 3: Identification data, Nid = 1301 samples.
Sampling time is 100 sec. @0.15

an observability canonical form version of DSR12
3 , for

@0.15 and @0.20 operating points, respectively. The
original DSR12

3 is shown in Eq. (16). Fig. 4 shows
three models; DSR9

3, PEM and LIN, simulated over
the validation data, where the best performing model
was the dsr with VDSR = 0.1912, VPEM = 0.2175 and
VLIN = 0.2182 (See Tab. 1). A well-known algorithm
in system identificaiton is the Prediction Error Method
(PEM), which can be found in the system identication
toolbox (Ljung (2007)).

A =

Identified model: DSR9
3︷ ︸︸ ︷ 0.9687 1.2029 −1.3586

−0.0115 0.9907 −2.6130
0.0001 −0.0001 0.5151

,
B =

48.6373
3.2090
−0.3945

 ,
D =

[
−0.5903 0.6984 0.4046

]
,

K =

−5.6098
−1.8145
0.0413

 .

(14)
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Figure 4: The identified models simulated and com-
pared to validation data gathered from the
real process (Di Meglio). We have the follow-
ing validation performances (measured with
MSE); VDSR9

3
= 0.1912, VPEM = 0.2175 and

VLIN = 0.2182.

A =

Observability canonical: DSR9
3︷ ︸︸ ︷ 0.0000 1.0000 0.0000

−0.0000 0.0000 1.0000
0.5012 −1.9827 2.4745

,
B =

−26.6303
−27.9387
−29.7707

 ,
D =

[
1.0000 0.0000 0.0000

]
.

(15)

Implementation of the MFPC is shown in Figs. 5 and
10. These figures shows how similar the LQR and MPC
strategies are.

A =

Identified model: DSR12
3︷ ︸︸ ︷ 0.9823 0.8806 −0.8337

−0.0338 0.9836 −2.0235
0.0000 0.0000 0.8481

,
B =

47.0290
4.6173
−0.0688

 ,
D =

[
−0.4944 0.6695 0.5089

]
,

K =

−8.9128
−3.3314
0.1692

 .

(16)
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Figure 5: Four controllers, based @0.15, are imple-
mented on the real process (Di Meglio)
turned on from starting point k = 200. We
are comparing LQR, MPC (L=10), MPC
(L=20) and PI. The PI controller is tuned
using MATLAB Tuner Application. The
weights for MPC and LQR are chosen to be
the same values. Sampling time is 100 sec.

Table 1: Summary: Comparing models from DSRJL,
PEM and Linearized (LIN). We have the pre-
diction error for simulated output, VMSE , the
steady state gain, Hd, and absolute eigenval-
ues, abs(eig(A)), for each of linear models,
Mod. @ means around working point.

MOD @ VMOD Hd abs(eig(A))

DSR9
3 0.15 0.1912 -299.2

0.9874, 0.9874
0.5140

PEM 0.15 0.2175 -283.0 0.9864, 0.9864

LIN 0.15 0.2182 -289.1
0.9876, 0.9876

0.0000

DSR12
3 0.20 0.0798 -126.8

0.9980, 0.9980
0.8481

PEM 0.20 0.1327 -122.1
0.9979, 0.9979
0.9625, 0.9625

LIN 0.20 0.1326 -131.6
0.9977, 0.9977
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Figure 6: The subfigure above illustrates how the MPC
converges to the LQR when the prediction
horizon, L increases. The subfigure below il-
lustrates the controller performances. MPC
(L=20) and the LQR based @0.15 are able
to stabilize the slugging regime up to choke
opening 0.37 (zoomed in on the first and last
part of Fig. 5.)

Table 2: Summary: Comparing controllers PI, MPC
and LQR by performance measures IAE and
TV, calculated from k = 200 to k = 800.
Maximum choke opening while stable is do-
nated by max u. Measures donated by *
should not be considered.

Cont. @ Param. IAE TV max u

PI 0.15
Kp = −0.04
Ti = 5000

448.1 1.44 0.37

MPC
L = 10

0.15
Q = 1

R = 106
168.5 * 0.38* 0.26

MPC
L = 20

0.15
Q = 1

R = 106
125.3 0.24 0.37

LQR 0.15
Q = 1

R = 106
167.6 0.23 0.37

PI 0.20
Kp = −0.05
Ti = 6000

442.6 1.12 0.39

MPC
L = 10

0.20
Q = 1

R = 106
239.2* 0.71* 0.29

MPC
L = 20

0.20
Q = 1

R = 106
134.6 0.27 0.39

LQR 0.20
Q = 1

R = 106
159.3 0.24 0.39
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Figure 7: Raw data with length, N = 2000 samples.
Identification and validation are chosen with
lengths, Nid = 1301 and Nv = 1800. Sam-
pling time, ∆t = 100 sec. @0.20
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Figure 8: Identification data, Nid = 1301 samples.
@0.20
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Figure 9: Identified dsr model simulated over the vali-
dation set. V DSR

12
3 = 0.0862. @0.20
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Figure 10: Four controllers, based @0.20, are imple-
mented on the real process (Di Meglio),
where each controller is turned on from
starting point k = 200. We are compar-
ing LQR, MPC (L=10), MPC (L=20) and
PI. The PI controller is tuned using MAT-
LAB Tuner Application. The weights for
MPC and LQR are chosen the same values.
Sampling time is 100 sec.
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Figure 11: The subfigure above illustrates how the
MPC converges to the LQR when the pre-
diction horizon, L increases. The sub-
figure below illustrates the controller per-
formances. The MPC (L=20) and the
LQR, based @0.20, are able to stabilize the
slugging regime up to choke opening 0.39.
(zoomed in on the first and last part of Fig.
10.

A =

Observability canonical: DSR12
3︷ ︸︸ ︷0.0000 1.0000 0.0000

0.0000 0.0000 1.0000
0.8447 −2.6632 2.8139

,
B =

−20.1942
−22.8393
−24.8593

 ,
D =

[
1.0000 0.0000 0.0000

]
.

(17)

3.1.1. Discussion

Interestingly, considering Tab. 1 , the dsr model is per-
forming better than the PEM and the linearized model in
both cases; 0.15 and 0.20.

Considering Tab. 2 the best performing controller seems
to be MPC(L=20) based at @0.20, stabilizing up to 0.39.
However, MPC(L=20) based at 0.15 is surprisingly achiev-
ing stabilizing up to 0.37. The LQR seems to be the runner-
up best candidate.

3.2. The K-Spice/LedaFlow simulator

We perform model-free anti-slug control on a well-pipeline-
riser (Fig. 12), integrated in the K-Spice/LedaFlow simu-
lator, high fidelity simulators developed by Kongsberg Oil
& Gas Technologies (K-Spice, LedaFlow).
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u

outflow

y

Separator
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Figure 12: Illustration of the 3-phase well-pipeline-riser
process integrated in the K-Spice/LedaFlow
simulator.
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We define following case as

y ∈ R :=
{
y: Bottom-riser pressure [bara] ,

u ∈ R :=
{
u: Topside choke [%] .

Note that bara is the absolute pressure expressed in bar,
where 0 bara is associated with total vacuum.

The simulator was run with simulation speed 50 times
real-time and the sample time was chosen to be 1 sec. Input
and output data were collected from an open loop input
experiment (Fig. 13). The samples from 600 to 2000 were
stored in identification matrices U ∈ RN and Y ∈ RN ,
where N = 1400. The samples from 600 to 2350 were stored
in validation matrices. The matrices were redefined with
centered data, i.e. subtracted by mean values um = 44.9
and ym = 58.3.
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y

50

55

60

65
y: Bottom-riser pressure [bara]

Samples
0 500 1000 1500 2000 2500

u

20

30

40

50

u: Topside choke [%]

Figure 13: Data collected from the K-Spice/LedaFlow
simulator. The data from 600 to 2000 Sam-
ples were used for identification, while the
data from 600 to 2350 were used for vali-
dation. The simulation speed was 50 times
real-time. The sampling time is equal to 1
sec.

An optimal model was identified (Eq. 18), i.e. the model
from DSRJ

L having the lowest prediction error using deter-
ministic output (as described in Eqs. (9)-(10) in Dalen
et al. (2015)) with L = J = 8, n = 4 and resulting in
VMSE = 0.3753. See Fig. 14 for illustration.

A =

Identified model: DSR8
8︷ ︸︸ ︷

0.9560 0.3942 −0.1276 −0.3756
−0.2238 0.9488 −0.7297 −0.4976
0.0006 0.0048 0.8530 1.4303
0.0008 −0.0013 −0.2119 0.7922

,

B =


0.0233
0.0968
−0.0664
0.0193

 ,
D =

[
−0.2129 0.5148 0.5587 −0.4677

]
,

K =


−1.4571
4.2669
−0.5973
0.5184

 .

(18)

We identified a similar 4th order model from the PEM
algorithm, Tab. 3 shows how closely related these mod-
els are. Both models were compared over the validation
set (Fig. 16), where dsr had the lowest prediction error,
VDSR = 0.3932.

Table 3: Comparing models identified from dsr and
pem.

Algorithm VMSE Hd abs(eig(A))

DSR 0.3932 -0.0265 1.0000 1.0000 0.9891 0.9891
PEM 0.5039 -0.0270 1.0000 1.0000 0.9986 0.9986
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Figure 14: Illustration of the identified model DSR8
8 in

Eq. (18) simulated over the identification
set resulting in VMSE = 0.3753.
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Figure 15: Identified model DSR8
8 (Eq. 18) simulated

over the identification set. This figure shows
simulation from 500 to 850 samples in Fig.
14.
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Figure 16: Illustration of the identified models simu-
lated over the unused part of the validation
set. We have VDSR8

8
= 0.3932 VPEM =

0.5039. See Fig. 13. for details.

Specified constrains:

umax
k = 55, umin

k = 15

∆umax
k = 10,∆umin

k = −10

An implementation of the MPC on the K-
Spice/LedaFlow simulator is shown in Fig. 17. A
prediction horizon, L = 20, and the following weights were
chosen; Q = 20 and R = 1 based on simulation on the
identified model.

It can be seen that both the controllers; MPC and LQR
have successfully stabilized the undesired oscillating flow,
up to 52 % choke opening, but the production/outlet flow
remains constant at 42.9 [kg/s]. Both strategies also have
quite similar performances, the difference is that the MPC
is predictive, as illustrated in Fig. 19.

The LQR matrices G1 and G2 in uk = uk−1 +G1∆x̄k +
G2(yk−1 − rk) are as in Eq. (19).

G1 =

LQ-optimal feedback matrices︷ ︸︸ ︷[
−5.9951 −4.2162 4.8841 16.6625

]
,

G2 =
[
2.3356

]
.

(19)
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Figure 17: Implementation of MFPC and MFLQR on
the K-Spice/LedaFlow simulator. Stabiliz-
ing up to 51.3 % choke opening. Simulation
speed is 50 times real time. Sampling time
is 1 sec.

4. Discussion and summary

Two examples are demonstrating the MFPC on the Di
Meglio model and the K-Spice/LedaFlow simulator, where
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Figure 18: Comparing MFPC to MFLQR using the
samples from 1 to 960 in Fig. 17.
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Figure 19: Comparing MFPC to MFLQR using the
samples from 1300 to 1860 in Fig. 17.

Table 4: Comparing MFPC vs MFLQ using perfor-
mance measures: Integrated Absolute Error
(IAE) and Total Value (TV). Associated with
Fig. 17.

Controller Tuning parameters IAE TV

LQR Q = 10, R = 1 856.0 796.4
MPC L = 20, Q = 10, R = 1 450.0 368.3
MPC L = 40, Q = 10, R = 1 312.4 327.8

the goal was to stabilize the outlet flow/bottom riser pres-
sure at highest possible choke opening.

For the Di Meglio model we have that the MPFC, based
@0.20 (marginally stable is defined at 0.205), was able to
stabilize up to 0.39, while the other one, based @0.15,
achieved 0.37. The runner-up candidate, i.e. the MFLQR,
did only differ from the MFPC in terms of performance in-
dices TV and IAE. Note that the PI controller could prob-
ably be tuned better for this case.

For the K-Spice/LedaFlow simulator we based the
MFPC around a marginally stable working point, i.e. @44.9
%, and it was able to stabilize up to 52%.

5. Concluding Remarks

Practical implementation of MFPC was successfully
demonstrated on a well-pipeline-riser process described by
a 3-state non-linear model, thereafter it was demonstrated
on the K-Spice/LedaFlow simulator.
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A. Complete model

The Di Meglio model may be formulated as a continues
non-linear state space model, as

ẋ = f(x, u),

y = g(x),
(20)
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where

x =

x1x2
x3

 =

mg,cb

mg,r

ml,r

 ,
f =

f1f2
f3

 .
(21)

f1 = (1− λ)wg0,in − Cgmax

(
0, x1

RT

MVeb

− x2RT

M(Vr − (x3 +ml,still)ρl)

− (x3 +ml,still)
gsin(θ)

A

)
,

f2 = λwg,in + Cgmax

(
0,

RT

MVeb

− x2RT

M(Vr − (x3 +ml,still)ρl)

− (x3 +ml,still
gsin(θ)

A

)

− Ccu

(√
ρl(

x2RT

M(Vr − (x3 +ml,still)ρl)
− Ps)

)
x2
x3
,

f3 = wl,in

− Ccu

√
ρl(

x2RT

M(Vr − (x3 +ml,still)ρl)
− Ps),

g =
x2RT

M(Vr − (x3 +ml,still)ρl)

+ (x3 +ml,still)
g0sin(θ)

A105
.

(22)

Table 5: Initial values for the simulations on Di Meglio
model. The ODE is solved each timestep with
MATLAB ode15s (sampling time, ∆t = 100
sec.)

Variable Value Unit

x0 1.0e+ 03

5.9075
0.3177
3.3867

 kg/s

y0 ym bar
u0 um 1
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