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Abstract

This paper discusses the topics related to automating parameter, disturbance and state estimation analysis
of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex
systems, before implementing any state estimator, the system should be analyzed for structural observabil-
ity and the structural observability analysis can be automated using Modelica and Python. As a result of
structural observability analysis, the system may be decomposed into subsystems where some of them may
be observable — with respect to parameter, disturbances, and states — while some may not. The state
estimation process is carried out for those observable subsystems and the optimum number of additional
measurements are prescribed for unobservable subsystems to make them observable. In this paper, an
industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand,
Norway. The copper production process is a large-scale complex system. It is shown how to implement
various state estimators, in Python, to estimate parameters and disturbances, in addition to states, based
on available measurements.
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1 Introduction

Consider a class of nonlinear deterministic systems
given by eq.(1), where x ∈ Rnx , u ∈ Rnu , w ∈ Rnw ,
p ∈ Rnp , and y ∈ Rny are respectively state, in-
put, process noise, parameter, and output vectors and
C ∈ Rny×nx is a constant matrix and f(.) and g(.) are
known vector functions.1

ẋ = f (x, u, w, p)

ṗ = 0

y = h (x) = C · x (1)

u and y are known as well as their time derivatives.
x, w, and p are unknowns and the objective is to esti-

1x ≡ x(t), u ≡ u(t), etc.

mate them based on u-y information. The state space
is augmented with p via ṗ = 0. However, it is not
obvious how to augment w, since w is completely un-
known. One possibility is to assume w is a random
variable with a given probability characteristic. An
example Gelb (2001) is given in eq.(2), where wi ∈
[w1, w2, . . . , wnw

]
T

is a stationary random process with
the autocorrelation function γi(τ) =

(
σ2
i δi/2

)
· e−δi|τ |,

εi is a given white Gaussian process and δi, σi > 0.2

ẇi = −δiwi + σiδi · εi (2)

There are other alternatives for disturbance augmen-
tation Bona and Smay (1966) and the choice may de-
pend on whether the augmented system is observable

2σiδi · εi, in eq.(2), may be replaced by εi.
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or not — there is no point of augmenting parameters
and disturbances if the augmented system becomes un-
observable. The complete augmented system is given
in eq.(3) and corresponding state space representation
is in eq.(4), where g(.) is chosen appropriately by aug-
menting disturbances.3

ẋ = f (x, u, w, p)

ẇ = g (w) + ε

ṗ = 0

y = C · x+ v (3)

ẋẇ
ṗ


︸︷︷︸

˙̂x

=

f (x, u, w, p)
g (w)

0


︸ ︷︷ ︸

f̂(x̂,u)

+

0
1
0


︸︷︷︸

Γ

ε

ŷ =
[
C 0 0

]
·

xw
p


︸︷︷︸
x̂︸ ︷︷ ︸

ĥ(x̂)

+v (4)

The noise model related to eq.(1) is given by the
stochastic nonlinear system described by eq.( 5), where
ε and v (measurement noise) are vectors of white Gaus-
sian processes such that E{w} = 0 ∈ Rnw , E{v} =
0 ∈ Rny , E{wwT } = Q ∈ Rnw×nw , E{vvT } = R ∈
Rny×ny , E{wvT } = S ∈ Rnw×ny (S is a zero matrix if
w and v are independent), Γ ∈ Rnx×nw is a constant
matrix, and x0 is independent from w and v. Asso-
ciated discrete time version of eq.(5) is presented in
eq.(6).

˙̂x = f̂ (x̂, u) + Γ · ε

ŷ = ĥ(x̂) + v, (5)

x̂k+1 = f̂k (x̂k, uk) + Γ · wk+1; k = 0, 1, . . .

ŷk = ĥk(x̂k) + vk; k = 1, 2, . . . (6)

Where,

f̂k (x̂k, uk) = x̂k +

∫ tk+1

tk

[
f̂ (x̂(θ), u(θ))

]
dθ

and

wk+1 = Γ

∫ β(tk+1)

β(tk)

dβ.

3Note that the number of states of the augmented system could
be larger than nx+np+nw. For example, if wi is augmented
by ẅi = 0. Also 0’s and 1’s, in eq.(3) and eq.(4), represent
zero and unit matrices with appropriate dimensions.

β is a Brownian motion process such that ε·dt = dβ.4

Now, the system in eq.(1) is simulated for given p, {wk}
(wk with some added noise), {uk}, and x0. {xk} and
{yk} (a fictitious noise is added to yk) are stored for
k = 1, 2, 3, . . . , n.5 Then, based on the simulated data
{uk} and {yk}, {x̂k} is estimated, for k = 1, 2, . . . , n,
to verify the stability properties of state estimators.

The structure of the paper is as follows. Section 2:
a brief discussion on nonlinear observability, in partic-
ular giving more attention on structural observability.
Section 3: the process model. Section 4: Observabil-
ity analysis. Section 5: a brief introduction to filtering
theory. Section 6: structure of the Python code and
results. Section 7: conclusions and future work.

2 Nonlinear observability

In order to achieve the state observability of the
stochastic system given in eq.(5), it is a must that the
corresponding noise-free system is observable Margaria
et al. (2004). Hence, consider the noise-free version of
eq.(5):6

˙̂x = f̂ (x̂, u)

ŷ = ĥ(x̂) (7)

For nonlinear systems, local observability should be
concerned which is often tedious to handle for large-
scale complex systems. Let an initial state x̂i0, then
for a given bounded input trajectory u(t), assume

there exists a solution trajectory ŷi(t) = ĥ
(
x̂i(t)

)
for t ∈ [0, T ] and T < ∞, satisfying eq.(7). If the
points lie within the neighborhood of x̂i(0), satisfying

ĥ
(
x̂i(t)

)
6= ĥ

(
x̂j(t)

)
such that x̂i0 6= x̂j0, then x̂i0 and

x̂j0 are said to be (locally) distinguishable. Moreover,
the local distinguishability property has a one-to-one
correspondence with the local observability: local ob-
servability ⇔ local distinguishable. Loosely speaking,
different state trajectories starting from distinct ini-
tial states x̂i0 and x̂j0, will always generate distinct out-
put trajectories. If not local distinguishable, then it
is not possible to uniquely (locally) deduce xi(0) from
yi(t)-ui(t) information. A criterion for local observ-
ability/distinguishability or algebraic observability is
given using Lie derivatives and brackets Isidori (1995),

4There are many possibilities of approximating stochastic inte-

gral Γ
∫ β(tk+1)

β(tk)
dβ. See in Kloeden et al. (2012).

5{ak} ≡ {a1, a2, . . . , an} for k = 1, 2, 3, . . . , n. ak ≡ a(tk). a(.)
is a function of time.

6Margaria et al. (2004) consider affine systems. For more gen-
eral treatment, refer Hermann and Krener (1977), Isidori
(1995), Slotine et al. (1991).
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however algebraic observability analysis is not easy to
use for large-scale complex systems because the test re-
lated to searching for the rank of a matrix with higher
dimensions and algebraic variables. The best solution
is to use structural observability instead, preferably its
graph-theoretic associate, where structural dependen-
cies among output and state variables are used to define
a necessary condition for observability. Observability
is a structural property and by exploiting the system
structure, it is possible to extract much more informa-
tion than the rank test for the algebraic observability
check. The structural dependencies of the system given
in eq.(7) are mapped into a directed graph, so called
the system digraph. The system digraph G is created
as follows Reinschke (1988):

1. define nodes (or vertices) x1, x2, . . . ,xnx̂
, y1, y2,

. . . , ynŷ
,

2. there is a directed edge from xi to xj (xi → xj) if
∂f̂i
∂x̂j
6= 0, and

3. there is a directed edge from yj to xi (yj → xi) if
∂ĥj

∂x̂i
6= 0.

The system digraph may be decomposed into
strongly connected components (SCCs): a SCC is a
largest subgraph where there exists a directed path
from each node to every other node in it. A root SCC
is a subgraph such that there are no incoming edges to
its nodes. In order to achieve structural observability,
at least one node of each root SCC should be mea-
sured. Hence, number of sensor nodes must not be less
than number root SCCs Liu et al. (2013). On the other
hand, suppose that sensor nodes are given. Then, the
system is structurally observable if the system digraph
is spanned by cacti covering all nodes Lin (1974). Fig-
ure 1 shows a cactus. A cactus consists of a stem and
possibly one or more buds attach to the stem. Stem
is a directed path where starting node is the root and
end is the top. A root node is always a measurement.
A bud is an elementary closed path, which connects to
the stem via the distinguished edge. A bud should not
be connected either to the root or to the top node and
no two distinguished edges share the same node.

3 Process model

See Figure 2 for the process flow sheet. The process
consists of four sections: (i) the slurrification section
where powdered raw material containing mostly copper
oxide (CuO) is slurrified using recycled anolyte flow,
which containing sulfuric acid (H2SO4), taken from the
electrowinning section, (ii) the leaching section where

Figure 1: A cactus.

sulfuric acid is added to the slurry in order to leach
more copper (Cu) into the solution, (iii) the purifica-
tion section where the slurry is first filtered to extract
the solution, which contains copper sulphate (CuSO4),
followed by the cementation and fine filtering processes,
and (iv) the electrowinning section where the solution
containing (Cu2+) is electrolyzed to release solid cop-
per at the cathode.

Figure 2: Process flow sheet for the Copper electrowin-
ning process (electrowinning section is high-
lighted in red).

In the initial model Lie and Hauge (2008),7 tank-
level dynamics are neglected (i.e. static mass bal-
ances). However, level dynamics of several tanks are
included in the modified model. It is assumed that
the tanks in the slurrification and leaching sections as
well as the electrowinning tank have no level variations.
Level dynamics in the following tanks are included:
buffer tank 1, buffer tank 2, buffer tank 3, dilution
tank and mixing tank. System digraph is given in Fig-
ure 3 and it is seen that it is not possible to isolate
a spanning cacti covering all nodes, then the system
is not structurally observable and thereby, not observ-
able Perera et al. (2015). Since, it is already proved
in that the system is not structurally observable, only
a (structurally) observable subsystem — which is the

7In order to save space, the complete model is not given in this
paper. Refer Lie and Hauge (2008) for the detailed model.
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electrowinning section — is considered in the following
discussion.

Figure 3: System digraph.

Electrowinning section consists of three subsystems:
dilution tank, electrowinning tank, and mixing tank.
Model equations are given below, where ṁCu,o =
MCu

zCu·C · η̄ · Ī · 3600.

dVed
dt

= V̇p2e + V̇em2d − V̇ed2m − V̇ed2w (8)

dρed,CuSO4

dt
=
V̇p2e ·

(
ρ

(3)
pb,CuSO4

− ρed,CuSO4

)
Ved

+

V̇em2d ·
(
ρem,CuSO4

− ρed,CuSO4

)
Ved

(9)

dρed,H2SO4

dt
=
V̇p2e ·

(
ρ

(3)
pb,H2SO4

− ρed,H2SO4

)
Ved

+

V̇em2d ·
(
ρem,H2SO4

− ρed,H2SO4

)
Ved

(10)

dρew,CuSO4

dt
=
V̇ed2w ·

(
ρed,CuSO4

− ρew,CuSO4

)
Vew

+

V̇vap · ρew,CuSO4
− MCuSO4

MCu
· ṁCu,o

Vew
(11)

dρew,H2SO4

dt
=
V̇ed2w ·

(
ρed,H2SO4

− ρew,H2SO4

)
Vew

+

V̇vap · ρew,H2SO4
+

MH2SO4

MCu
· ṁCu,o

Vew
(12)

V̇ed2w = V̇ew2m + V̇vap (13)

dVem
dt

= V̇ed2m + V̇ew2m + V̇w2em−(
V̇e2s + V̇em2d + V̇em2bl

)
(14)

dρem,CuSO4

dt
=
V̇ed2m ·

(
ρed,CuSO4

− ρem,CuSO4

)
Vem

+

V̇ew2m ·
(
ρew,CuSO4

− ρem,CuSO4

)
Vem

−

V̇w2em · ρem,CuSO4

Vem
(15)

dρem,H2SO4

dt
=
V̇ed2m ·

(
ρed,H2SO4

− ρem,H2SO4

)
Vem

+

V̇ew2m ·
(
ρew,H2SO4

− ρem,H2SO4

)
Vem

−

V̇w2em · ρem,H2SO4

Vem
(16)

d

dt
η̄(t) = 0 (17)

d

dt
V̇ed2w = εV̇ed2w

(18)

d

dt
ρ

(3)
pb,CuSO4

= −β · ρ(3)
pb,CuSO4

+ ε
ρ
(3)
pb,CuSO4

(19)

d

dt
V̇ew2m = εV̇ew2m

(20)

Where β is a positive constant which should be spec-
ified. The last 4 equations are due to parameter-
disturbance augmentation.8 There are 4 measure-
ments:

• y1 = Ved,

• y2 = Vem,

• y3 = MCu

MCuSO4

· ρew,CuSO4
, and

• y4 = ρew,H2SO4
+

MH2SO4

MCuSO4

· ρew,CuSO4
.

8All the variables in the system model are defined according
to Lie and Hauge (2008).
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4 Observability analysis

Including augmented parameter η̄ and disturbances

V̇ed2w, V̇ew2m, and ρ
(3)
pb,H2SO4

, altogether there are 12

(nx = 12) states. This makes it hard to analyze for
algebraic observability. See Figure 4 for the system di-
graph. According to the digraph, it is always possible
to estimate V̇ed2w and V̇ew2m using y1 and y2. The rea-
son is that y1 → Ved → V̇ed2w and y2 → Vem → V̇ew2m

are two cacti (just two stems without buds). There
exists a spanning cacti covering all nodes, hence the
system is structurally observable. The spanning cacti
is as follows:

• y1 → Ved → V̇ed2w,

• y2 → Vem → V̇ew2m,

• y3 → ρew,CuSO4
→ ρed,CuSO4

→ ρem,CuSO4
with

the bud ρ
(3)
pb,CuSO4

→ ρ
(3)
pb,CuSO4

, and

• y4 → ρew,H2SO4
→ η with the bud ρem,H2SO4

↔
ρed,H2SO4

.

Consider eq.(19). If β = 0, then the self-loop

ρ
(3)
pb,CuSO4

→ ρ
(3)
pb,CuSO4

in the digraph, in Figure 4, will

disappear. Consequently, it is failed to have a span-

ning cacti. Therefore, dρ
(3)
pb,CuSO4

/dt = 0 is not a use-

ful augmentation. Similarly, it can also be shown that

d2ρ
(3)
pb,CuSO4

/dt2 = 0 fails to keep structural observabil-

ity. See the formulation below:

d

dt
ρ

(3)
pb,CuSO4

= ρ
(3)
pb,CuSO4

(21)

d

dt
ρ

(3)
pb,CuSO4

= ε
ρ
(3)
pb,CuSO4

(22)

Figure 4: System digraph for the electrowinning
section.

5 Filtering theory for discrete
systems

The objective of filtering/estimation is to estimate sys-
tem state from available noisy data Jazwinski (2007).
Consider the discrete stochastic dynamical system
given in eq.(6). Assume that system is observable.9

{wk, k = 1, 2, 3, ...} is a random sequence with given
probability distributions. Probability density function
of x̂0 is also given. The famous assumptions are {wk}
is white Gaussian sequence, wk ∼ N(0, Qk), and inde-
pendent of x̂0. Also, {vk, k = 1, 2, 3, ...} is a random
sequence with given probability distributions such as
vk ∼ N(0, Rk). A solution to the eq.(6) is the proba-
bility density function of xk. {wk} and {vk} may be
dependent. We may write:

E{
[
wk
vk

] [
wTl v

T
l

]
} =

[
Qk Sk
STk Rk

]
δkl (23)

Where δkl = 1 when k = l, else δkl = 0. Sk = 0
if {wk} and {vk} are independent. The two sequences
YN = {y1, y2, . . . , yN} and UN = {u0, u1, . . . , uN−1}
contain input-output data and {x̂1, x̂2, . . . , x̂N−1} to
be estimated for given YN and UN . There are several
ways to handle nonlinear filtering problems: extended
Kalman filtering (EKF) Strang and Borre (1997), un-
scented Kalman filtering (UKF) Simon (2006), particle
filtering (PF) Doucet et al. (2000), etc. Figure 5 gives a
comparison about different state estimation techniques
with respect to accuracy and computational effort.

Often, EKF could be the starting point for a non-
linear estimation problem, where linear Kalman filter-
ing theory is adapted based on first-order lineariza-
tion. The extended Kalman filter10 is as follows for
k = 1, . . . , n:

Figure 5: State estimation trade-offs (a scanned page
from Simon (2006)).

9If the continuous system is observable, the discrete system is
also observable Moraal and Grizzle (1995).

10For convergence characteristics of EKF, refer Ljung (1979) Cox
(1964) Fitzgerald (1971).
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• Qk−1, Rk−1, Sk−1 = 0, P+
k−1 and x̂+

k−1 are given;

• Ak−1 = ∂f̂(x̂,u)
∂x̂

∣∣∣∣
x̂+
k−1

, Ak−1 is invertible and

pair (Ak−1, Ck−1) is observable Song and Grizzle
(1992);

• P−k = Ak−1P
+
k−1A

T
k−1 + ΓQk−1ΓT ;

• x̂−k = f(x̂+
k−1, uk−1);

• Ck = ∂h(x̂)
∂x̂

∣∣∣∣
x̂−
k

;

• Kk = P−k C
T
k

(
CkP

−
k C

T
k +Rk

)−1
;

• x̂+
k = x̂−k +Kk

[
yk − Ckx̂−k

]
, and

• P+
k = (I −KkCk)P−k .

Where x̂+
k is the best estimate for xk. The main rea-

son for the divergence of EKF is the model fidelity.
This can be demonstrated easily using even a sim-
ple scalar system Fitzgerald (1971) Simon (2006). In
eq.(5), Γ ∈ Rnx×nw and nw ≤ nx. If nw < nx,
then there is at least one differential equation where
a process noise term does not appear. However, by
including a fictitious process noise to such equations,
it may be possible to compensate model inaccuracies
to some extent. For a constant parameter, ideally, we
have pk+1 = pk and however, a small fictitious noise is
added to get pk+1 = pk + εp. Now, we have a stochas-
tic system given in eq.(24), where Γx,Γw,Γp 6= 0

and [Γx,Γw,Γp]
T ∈ Rnx+nw+np×nx+nw+np and wk ∈

Rnx+nw+np . Also, in order to increase the stability-
convergence characteristics, fading-memory filters may
be used Simon (2006). Actually, it is not necessary
to include fictitious noises to all differential equations,
but it is enough to include for some of them. Fictitious
noises are inserted such that the stochastic system be-
comes state stabilizable with respect to process noise
vector Potter (1965). xk+1

wk+1

pk+1

 =

 f (xk, pk, uk)
gk(wk)
pk


+

 Γx
Γw
Γp

wk+1; k = 0, 1, . . . , n (24)

EKF is susceptible to linearization errors and if the
model is highly nonlinear then the EKF may not give
acceptable results. The unscented Kalman filter Julier
et al. (1995) Doucet et al. (2000) is a possible candi-
date to try with, if the EKF fails. Importantly, UKF
does not require to calculate Jacobian matrices. The

following steps are followed in UKF algorithm:

• Qk−1, Rk−1, P+
k−1 and x+

k−1 are given;

• Find sigma points x̂
(i)
k−1 such that x̂

(i)
k−1 = x+

k−1 +

x(i) and x(i) = (−1)i ·
(√

nx · P+
k−1

)T
i

for i =

1, 2, . . . , 2 · nx.
(√

nx · P+
k−1

)
i

is the < i >th row

of
√
nx · P+

k−1;

• x−k = 1
2·nx

Σ2·nx
i=1 x̂

(i)
k , where x̂

(i)
k = f(x̂

(i)
k−1, uk−1);

• P−k = 1
2·nx

Σ2·nx
i=1

[(
x̂

(i)
k − x

−
k

)(
x̂

(i)
k − x

−
k

)T]
+

ΓQk−1ΓT ;

• Find new set of sigma points x̂
(i)
k such that x̂

(i)
k =

x−k + x(i) and x(i) = (−1)i ·
(√

nx · P−k

)T
i

for i =

1, 2, . . . , 2 · nx.

(√
nx · P−k

)
i

is the < i >th row

of
√
nx · P−k ;

• y−k = 1
2·nx

Σ2·nx
i=1 ŷ

(i)
k , where ŷ

(i)
k = C · x̂(i)

k ;

• Py = 1
2·nx

Σ2·nx
i=1

[(
ŷ

(i)
k − y

−
k

)(
ŷ

(i)
k − y

−
k

)T]
+Rk

• Pxy = 1
2·nx

Σ2·nx
i=1

[(
x̂

(i)
k − x

−
k

)(
ŷ

(i)
k − y

−
k

)T]
+Rk

• Kk = PxyP
−1
y ;

• x+
k = x−k +Kk

[
yk − y−k

]
, and

• P+
k = P+

k −KkPyK
T
k .

6 Structure of the Python code
and results

Perera et al. (2015) discuss a procedure for automat-
ing structural observability analysis in Python using
JModelica.org-Casadi interface. Figure 3 and 4 are
generated based on above mentioned article. There are
several Python packages for state estimation: pyda,
filterpy, pykalman, KF, etc.11 First simulated noisy
data is created. See the Python script given below.
model(x,t,u,w,p) represents from eq.(8) to eq.(16)
and f(x,dt,u,w,p) is the discrete system. Simulated
data is obtained with known variations — see the for

11Pyda, filterpy, pykalman, and KF packages are available at the
Python package index. See in https://pypi.python.org/

pypi.

194

https://pypi.python.org/pypi
https://pypi.python.org/pypi


Perera et.al., “Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools”

loop below — in disturbances and inputs.

# Import packages
import numpy as np
from numpy import random
from numpy.random import randn
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import scipy.io as sio
< define necessary parameters >
def model(x,t,u,w,p):

"""
Continuous dynamic model:
dx/dt = model(x,t,u,w,p)
"""
< enter code here >
return np.array(dxdt)

def f(x,dt,u,w,p):
"""
State transition function:
x(t+dt) = f(x(t),dt,u(t))
"""
res = odeint(lambda X,T:\

model(X,T,u,w,p),x,np.linspace(0.0,dt,2))
return res[-1,:]

def h(x,v):
"""
Observation function:
y(t) = h(x(t))
"""
z0 = x[0] + v[0]
z1 = x[1] + v[1]
z2 = (M_Cu/M_CuSO4)*x[2] + v[2]
z3 = x[5] + (M_H2SO4/M_CuSO4)*x[2] + v[3]
z = [z0,z1,z2,z3]
return np.array(z)

# Define initial x,u,w and p
w = w0
x = x0
p = p0
u = u0
# Start simulation
for k in np.arange(1,N+1):

# calculate x and z using discrete model
x = f(x,dt,u,w,p)
z = h(x,v)
# log x and z
< enter code here >
# change disturbances
# change inputs
< enter code here >

# Save data
sio.savemat(’data.mat’,{’t’:t,< enter code here >)

Now state estimators are considered. First,
model(x,t,u,w,p) is updated as model(x,t,u,w)

with augmented sates from eq.(17) to eq.(20). In
order to implement EKF algorithm in Section 5,
it is necessary to calculate Jacobian matrices of
f and h: see methods ABL(x,u,w,dx = 1.e-5,du

= 1.e-5,dw = 1.e-5) and CM(x,v,dx = 1.e-5,dv =

1.e-5) below. Finally, two more methods are cre-
ated: predict(x,u,P,Q) and update(x,z,P,R) and
then EKF is simulated in a for loop. Fading-memory
EKF can be easily implemented in a similar way.

def model(x,t,u,w):
"""
Continuous augmented dynamic model:
dx/dt = model(x,t,u,w,p)
"""
< enter code here >
deta_ew_dt = 0. + w_eta_ew

dVd_ed2w_dt = 0. + w_Vd_ed2w
drho_pb3CuSO4_dt = -beta*rho_pb3CuSO4 + w_rho_pb3CuSO4
dVd_ew2m_dt = 0. + w_Vd_ew2m
return np.array(dxdt)

def ABL(x,u,w,dx = 1.e-5,du = 1.e-5,dw = 1.e-5):
"""
Calculate A = df/dx, B = df/du, and L = df/dw,
using finite (central) difference method.
"""
< enter code here >
return A,B,L

def CM(x,v,dx = 1.e-5,dv = 1.e-5):
"""
Calculate C = dh/dx and M = dh/dv,
using finite (central) difference method.
"""
< enter code here >
return C, M

def predict(x,u,P,Q):
< enter code here>
return x,P

def update(x,z,P,R):
< enter code here>
return x,P

# Simulate
for k in np.arange(1,N+1):

# predict state
x,P = predict(x,u,P,Q)
# update state
z = np.array([z0[k],z1[k],z2[k],z3[k]])
x,P = update(x,z,P,R)

# log data

For UKF estimation, filterpy Python is used. Use
following script to create UKP object:

from filterpy.kalman import UnscentedKalmanFilter as UKF
ukf = UKF(<enter code here>)
# Initialize UKF
ukf.x = x0
ukf.R = np.diag([0.01, 0.01,0.01, 0.01])
ukf.Q = 5*np.eye(dim_x)
ukf.P = 1.*np.eye(dim_x)
# Simulate
for k in np.arange(1,N+1):

# predict state
ukf.predict()
# measurment update
z = np.array([z0[k],z1[k],z2[k],z3[k]])
ukf.update(z)
x = ukf.x
# data logging

7 Conclusions and future work

We have demonstrated a way of automating parameter-
disturbance-state estimation process for large-scale
complex dynamic systems completely using free soft-
ware tools such as Modelica, Python, Casadi, etc.
A real world case study is considered and managed
to estimate 1 parameter, 3 disturbances and 8 states
with 4 measurements using extended Kalman filter
and unscented Kalman filter algorithms. Extended
Kalman filter, fading-memory Kalman filter and un-
scented Kalman filter have shown more or less similar
results. All three estimators converge. Note that in
this paper, only Gaussian process noises are concerned,
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Figure 6: Estimation of Ved and Vem.

Figure 7: Estimation of V̇ed2w and V̇ew2m.

Figure 8: Estimation of ρew,CuSO4
, ρed,CuSO4

and

ρem,CuSO4
.

Figure 9: Estimation of ρew,H2SO4
, ρed,H2SO4

and

ρem,H2SO4
.

Figure 10: Estimation of ρpb3,CuSO4
.

Figure 11: Estimation of ηew.
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Figure 12: Estimation of z0 and z1.

Figure 13: Estimation of z2 and z3.

often which is not the case in reality. Therefore, in or-
der to test the capabilities of various estimators, those
estimators should be applied with real process data
where process noises may not be Gaussian and there-
fore, parameter-disturbance-state estimation with real
process data is set as a future work. In particular,
it is expected to implement particle filter algorithms
with real process data, since particle filters can handle
non-Gaussian process noise as well as it works better
compared to EKF/UKF algorithms when the system
model is highly nonlinear.

Filtering parameters, such as Q, R, P , etc., are tun-
ing parameters, but filter tuning is not considered in
this paper. Those parameters directly link with filter-
response-time and filter sensitivity (propagation of the
error covariance matrix P ), therefore sensitivity anal-
ysis and filter tuning should be done as a future work.
As the full state of the electrowinning system can be re-
constructed from measurement data, it opens up many
possibilities, among others, implementing an optimal
control strategy. Also, estimating disturbances along-
side the states will help to improve control performance
— disturbance compensation. Finally, comparing the
performances among PID and Optimal control strate-
gies would be an interesting future work.
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