
Modeling, Identification and Control, Vol. 36, No. 1, 2015, pp. 53–65, ISSN 1890–1328

Structural Observability Analysis of Large Scale
Systems Using Modelica and Python

M. Anushka S. Perera Bernt Lie Carlos Fernando Pfeiffer

Telemark University College, Kjølnes ring 56, P.O. Box 203, N-3901 Porsgrunn, Norway. E-mail:
{from,Bernt.Lie,Carlos.Pfeiffer}@hit.no

Abstract

State observability of dynamic systems is a notion which determines how well the states can be inferred
from input-output data. For small-scale systems, observability analysis can be done manually, while for
large-scale systems an automated systematic approach is advantageous. Here we present an approach based
on the concept of structural observability analysis, using graph theory. This approach can be automated
and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are
imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for
graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the
structural observability of the systems. The method is demonstrated with a Modelica model created for
the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has
39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and
parameters in addition to estimating the states are also discussed from the graph-theory point of view.
All the software tools used on the analysis are freely available.

Keywords: structural observability, Modelica, large-scale systems, CasADi, Python, graph-theory, JMod-
elica.org, NetworkX, PyGraphviz

1. Introduction

Knowing the internal state of a dynamic system is im-
portant in many applications such as state feedback.
However, measuring all state variables is usually im-
possible or impractical. What is more realistic is to
estimate the state variables based on a finite set of
measurements. The notion of observability character-
izes whether a given set of measurements is adequate
to estimate the state of the system. For linear time
invariant systems, if the rank of the observability ma-
trix is equal to the dimension of the state space, then
the system is observable Simon (2006). For nonlin-
ear dynamic systems diverse local observability defini-
tions can be considered, for example using Lie deriva-
tives Liu et al. (2012). In addition to analyzing ob-
servability for a given set of measurements, it would

also be useful (especially for large-scale complex sys-
tems) to systematically find the minimum set of mea-
surements which makes the system observable. By ex-
ploiting the model structure (algebraic dependencies
among state and output variables), we can infer the
minimum number of measurements and the possible
choices to select from. Structural (or algebraic) observ-
ability is a fundamental property that provides a neces-
sary condition for observability, and often it may also
be sufficient for many systems Reinschke (1988), Liu
et al. (2012). Structural observability analysis can be
done using graph-theoretic techniques. Under some as-
sumptions, unknown disturbances/parameters can be
estimated (for example using Kalman filtering tech-
niques Simon (2006)) by augmenting the system with
them as state variables, making it necessary to check
the observability of the augmented system. Struc-

doi:10.4173/mic.2015.1.4 c© 2015 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2015.1.4

Modeling, Identification and Control

tural observability analysis via graph theory offers a
visual means to pinpoint measurements needed to es-
timate states/disturbances/parameters, or to detect
which cannot be estimated at all in the augmented sys-
tem.
JModelica.org is a Modelica-based simulation tool that
makes possible to make Modelica models available as
symbolic model objects in Python with the help of the
JModelica.org-CasADi interface. The symbolic models
can then be used in structural analysis using Networkx,
Pygraphviz, and Python packages.1

This paper demonstrates the usefulness of using
Python and relevant Python packages in analyzing
structural observability for large-scale systems via
graph theory. As a case study, the Copper production
plant at Glencore Nikkelverk AS, Kristiansand, Nor-
way is considered. The Copper plant model contains
39 states, 11 disturbances, and 5 uncertain parameters.
The possibility of estimating disturbances and param-
eters additionally to the states will be discussed in a
graph-theocratic point of view.
Section 2 gives a basic description about graph-theo-
retic concepts which are needed in the subsequent sec-
tions. Section 3 discusses structural observability in
graph-theoretic point of view. A way of automating
structural observability analysis in Python is given in
Section 4. A demonstration of our development is done
based on a real process and it is given in Section 5.

2. Graph-theoretic concepts

A graph G is denoted by G = (V,E) where V is a set
of nodes (or vertices) and E is a set of edges.2 An
edge connects two nodes vi and vj (where vi, vj ∈ V)
and denoted by (vi, vj). The node vi and vj are in-
cident to (vi, vj) and vi and vj are said to be adja-
cent nodes. A graph may be directed or undirected.
In undirected graphs, edges are marked with directed
lines while in undirected graphs it is not. For undi-
rected graphs, (vi, vj) and (vj , vi) are identical. A
directed/undirected graph may allow multiple edges
among nodes. In short, digraph stands for directed
graph. Let an edge ei = (vi, vj) ∈ E, then vi is the ini-
tial-vertex and vj is the final-vertex. As a shorthand
notation for a directed edge, let (vi, vj) ≡ vi → vj .
A path is a sequence of edges connected one after an-
other. A path has an initial node and a final node.

1Alternatively, it is possible to create symbolic mathematical
models using the Python package SymPy which is a CAS
— CAS stands for Computer Algebra System — tool and
then use Networkx and PyGrapViz. However, this method
is more limited since it does not support the modeling power
available in Modelica.

2Refer Bondy and Murty (2008) for graph theory.

Figure 1: (a) Undirected and without self-cycles/loops
and multiple edges. (b) Undirected and with
self-cylcles/loops and multiple edges. (c) Di-
rected and without self-cycles/loops and mul-
tiple edges. (d) A directed and with self-cy-
cles/loops and multiple edges.

Number of edges in a path is called the length of it. If
a path contains no node appearing more than once,
then it is a simple path. A path where the initial
and final nodes are identical is called a close path .
A cycle is a closed path with no node appearing more
than once except the initial and the final nodes. Cy-
cles with length 1 are self-cycles/loops. A set of cycles
such that no two cycles have at least once common
nodes are called a cycle family. A cycle family which
covers all the nodes in a graph is called a spanning cy-
cle family. vi and vj are strongly connected if paths
from vi to vj and from vj to vi exist. A strongly con-
nected component (SCC) is a sub-graph (of a directed
graph) where each vertex in SCC is strongly connected
with all other vertices in SCC. A digraph is said to be
strongly connected if any two nodes in it are strongly
connected. See figures 1 for several examples. Con-
sider figure 1-d. {(v1, v2), (v2, v4), (v4, v4)} is a path
and its length is 3. {(v1, v2), (v2, v3)} is a simple path.
{(v2, v3), (v3, v2)} is a closed path and it is a cycle as
well. {(v2, v2)} and {(v4, v4)} are self-cycles. Nodes v2
and v3 are strongly connected. {{(v2, v2)} , {(v4, v4)}}
and {{(v4, v4)} , {(v2, v3), (v3, v2)}} are two cycle fam-
ilies.
Instead of using the term “simple path”, we use “ele-

54

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

mentary path” for digraphs. Similarly, instead of “sim-
ple cycle”, “elementary cycle” is used. A stem is an
elementary path. The initial and final nodes are re-
spectively called the “root” and the “top” of the stem.
A root is also called a driver node. A bud is an ele-
mentary cycle with an additional directed edge where
its final node is one of the nodes in the cycle. This
additional edge is called the distinguished edge of the
bud. A directed cactus is made out of a stem and buds
connected in a special way. The initial node of the
distinguished edge of a bud is connected to any node
in the stem except the top or it may be connected to
a node of another bud. See figure 2. A cactus has a
driver node which is the root of the stem in the cactus.
If there are vertex disjoint cacti covering all nodes in a
given digraph, then they are called spanning cacti and
cacti have more than one driver nodes.3 See supple-
mentary information to Liu et al. (2011)) for further
details.
Consider a subset of edges M in an undirected graph
where no two edges share common nodes. Nodes in M
are said to be matched. M is a maximum matching if
there exists no edge set M ′ such that |M ′| > |M |.4 M
is perfect if each node in the graph is in M . See figure 3
and note that thick color lines are matched edges. A
path with edges alternating between E \M5 and M
is an M -alternating path. M -alternating path is M -
alternating path with odd number of edges where the
starting and the final edges are not in M . According
to figure 3, {(v4, v3), (v3, v8), (v8, v1), (v1, v7), (v7, v6)}
is an M -augmenting path. For digraphs, a matching
is a subset of edges where no two edges share common
nodes and a node is said to be matched if that node is
the ending node of a matched edge Liu et al. (2011).
See figure 4 where M = {(v6, v7), (v1, v8), (v3, v4)} and
v7, v8, and v4 are matched nodes.

Figure 2: A cactus with two buds.

By formulating a bipartite graph (in short a bigraph)

3The plural of “cactus” is “cacti”.
4|M | is the cardinality of M .
5E \M = {e|e ∈ E & e /∈M}.

Figure 3: To the left - a maximum matching (M =
{(v4, v3), (v8, v1), (v6, v7)}). To the right - a
perfect matching.

Figure 4: A matching for a digraph.

appropriately, a maximum matching for digraphs can
be efficiently found. In a bipartite, there are two dis-
joint sets of nodes VA and VB such that edges only exist
between VA and VB . See figure 5.

3. Structural observability

Consider the linear time invariant (LTI) state space
model

ẋ = A · x+B · u, (1)

y = C · x+D · u,

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , D ∈
Rny×nu , x = [x1, x2, . . . , xnx]

T
, u = [u1, u2, . . . , unu]

T
,

and y =
[
y1, y2, . . . , yny

]T
. Once the output vector

y ∈ Rny and the input vector u ∈ Rnu are known,
then the state vector x ∈ Rnx can be estimated if the
system is observable. Analyzing observability based
on the system structure is called structural (algebraic)
observability analysis. Note that structural observabil-
ity gives a necessary condition for observability, which
means that if a system is not structural observable then
it is not observable. A detailed discussion on structural
observability analysis of linear systems is given in Rein-
schke (1988). The system structure can be represented

55

Modeling, Identification and Control

Figure 5: A bigraph. There are two sets of disjoint
vertices (white and black colored). No edges
among white nodes as well as black nodes.

graphically (using diagraph) and hence, graph-theo-
retic techniques can be used to analyze structural ob-
servability.
The system diagraph G is created in the following way.
There are nx + ny number of nodes representing state
and output variables. If < i, j >-th element of A is not
zero then there exists a directed edge from xi to xj .
Similarly, the edges (xi, yj) are created by consider-
ing non-zero elements in C. The definition 1 gives the
condition for output connectivity and the definition 2
defines the conditions to be satisfied for structural ob-
servability.

Definition 1 A class of systems is said to be output-
connectable6 (or reachable) if in the digraph G there is
a path from at least one of the output-vertices to every
state-vertex. Reinschke (1988)

Definition 2 A class of systems is s-observable if and
only if the digraph G meets the following condition:

• G is spanned by cacti. Lin (1974)7, Reinschke
(1988)

Violation in the definition 2 will make the system not s-
observable, hence not observable. To find the minimum
number of driver nodes to achieve s-observability, the
minimum input theorem is used Liu et al. (2011). The
first step is to create the corresponding bipartite graph

6Also called Y-topped Boukhobza and Hemlin (2007).
7Though Lin (1974) considered s-controllability, the concepts

can be easily adapted to s-observability.

of the digraph. Let G(V,E) be a digraph where V =
{v1, v2, . . . , vnv} and E = {e1, e2, . . . , ene}. Define two
disjoint sets of nodes such that V + = {v+1 , v

+
2 , . . . , v

+
nv
}

and V − = {v−1 , v
−
2 , . . . , v

−
nv
}. Then create a bigraph

with V + and V −. If (vi, vj) ∈ E, then (v+i , v
−
j) is an

edge of the bigraph. A maximum (or perfect) match-
ing in the bigraph also gives a maximum (or perfect)
matching in the digraph. The minimum number of
driver nodes needed to achieve the s-observability is
equal to the number of unmatched v+i ’s in the bigraph
and the driver nodes are corresponding vi’s. Note that
if there is a perfect matching then there is a single
driver node. Matching algorithms for bipartite graphs
are already implemented in NetworkX so that the min-
imum input theorem can be easily implemented in
Python. Also refer the supplementary section to Liu
et al. (2011) for more details.
Practical systems are often nonlinear, but interestingly
it is possibly to apply the graph-theoretic approach
discussed above for LTI systems directly to nonlin-
ear systems Reinschke (1988), Daoutidis and Kravaris
(1992), Liu et al. (2012), Boukhobza and Hemlin (2007)
and Liu et al. (2011). Consider the nonlinear state
space model

ẋ = f (t, x, u) , (2)

y = g (t, x, u) ,

where f = [f1, f2, . . . , fnx
]
T

, and g =[
g1, g2, . . . , gny

]T
. The digraph (G) containing

nx + ny number of nodes. If ∂fi
∂xj
6= 0 then xi → xj

exists and similarly, if ∂gi
∂xj

6= 0 then yi → xj ex-

ists. Note that partial derivatives should be found
symbolically Perera (2014), Perera et al. (2014), not
numerically. The reason is that, for example even
though xj occurs in fi, still it is possible to have

numerically ∂fi
∂xj

= 0.

State estimation techniques — for example extended
Kalman filtering — may be used to estimate unknown
disturbances and unknown/uncertain parameters Si-
mon (2006), Jazwinski (2007), Åström (2006). Let the
nonlinear state space model

ẋ = f (t, x, u, w, p) , (3)

y = g (t, x, u, w, p) ,

where w = [w1, w2, . . . , wnw
]
T

is the disturbance vector

and p =
[
p1, p2, . . . , pnp

]T
is the parameter vector. As-

sume w and p are unknown disturbances and uncertain
parameters to estimated. One possibility is to write

ẇ = 0, (4)

ṗ = 0,

56

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

and then to augment w and p to the current state x.
I.e. x̃ = [x,w, p]

T
. Now the augmented state space

model is

˙̃x = f̃ (t, x̃, u) , (5)

y = g̃ (t, x̃, u) .

f̃ and g̃ are then used in s-observability analysis as
already explained using graph-theoretic techniques.

4. Python implementation

4.1. Modelica, JModelica.org and CasADi
options

Modelica is becoming a standard tool for modeling
large-scale complex physical systems. CasADi is a
symbolic framework — a CAS tool — for numerical
optimization and it is available to use it within
Python. Modelica models — which result in differ-
ential algebraic equations, DAEs — can be imported
to Python via CasADi and make symbolic DAEs
available for general use in Python. See Perera et al.
(2014) and Perera (2014). CasADi comes with JMod-
elica.org and it may be the easiest way of accessing
CasADi in Python.
JModelica.org provides three Python packages:
pymodelica, pyfmi and pyjmi. pymodelica is for
compiling (or model export) Modelica models while
other two packages are for model import. pyfmi is for
creating model objects according to FMI (Functional
Mock-Up Interface) standards which is not at our
interest here in this paper. pyjmi is for JModelica.org
platform specific model importing. The relevant
choices for exporting and importing are: the compiler
compile fmux (from pymodelica) for compiling and
CasadiModel (from pyjmi) for importing.8

4.2. Structure of the Python script

The skeleton of the Python script is depicted in fig-
ure 6. First, the system model is encoded as a Model-
ica model. The Modelica model is then compiled and
imported back to Python as a CasadiModel model ob-
ject. The imported model is a symbolic flat represen-
tation of the Modelica model. Now using the CasADi
Python package, necessary symbolic Jacobian matri-
ces — which appeared in section 3 — are found. Once

8Often index of DAEs is greater than one (i.e. higher index
problems.). In such cases, index should be reduced zero using
Pantelides algorithm before applying the concept discussed
in this paper. See Pantelides (1988) and Cellier and Kofman
(2006).

the Jacobian matrices are available, corresponding di-
graphs can be easily generated by means of NetworkX
and PyGraphViz Python packages.9 NetworkX sup-
ports to create four types of graph objects: Graph,
DiGraph, MultiGraph, and MultiDiGraph.10 In Net-
workX, Graph and DiGraph graph objects are used
only for graphs without multiple edges. To create
graphs with multiple edges MultiGraph/MultiDiGraph
graph objects should be used. It is clear that for s-ob-
servability analysis MultiDiGraph graph objects must
be used. NetworkX provides many network algorithms
related to: matching, bipartite graph related, strongly
connectivity, cycles, tree, etc. The PyGraphviz Python
package can be used as the layout tool.11 The Mat-
plotpib Python package may also be used for network
drawing. The NetworkX and PyGraphviz network ob-
jects are convertible to each other.

Figure 6: Structure of the Python script.

Let the Modelica model be stored in the file “My-
Model.mo” and the model name is “mymodel”. The
compilation is done using the Python code given be-
low:12

Import compiler compile_fmux

from pymodelica import compile_fmux

Compile Modelica model

file_name = ’MyModel.mo’

model_name = ’mymodel’

compile_fmux(model_name,file_name)

The compiled model object is a “.fmux” file with the
name “mymodel” and the model object is imported as
a CasadiModel object. The code is given below:

from pyjmi import CasadiModel

casadiModelObject = \

CasadiModel(’mymodel.fmux’)

9See in http://networkx.github.io/ and http://pygraphviz.

github.io/.
10“Multi” indicates that the graph object support multiple

edges.
11See in http://pygraphviz.github.io/.
12The complete Python code will be available on request.

57

http://networkx.github.io/
http://pygraphviz.github.io/
http://pygraphviz.github.io/
http://pygraphviz.github.io/

Modeling, Identification and Control

Get flat ocp representation

ocp = casadiModelObject.ocp

Also, in order to use the CasADi package, it is imported
as given below:

from casadi import *

from casadi.tools import *

ocp contains the information about the flattened sym-
bolic model. For example ocp.x, ocp.z, ocp.pi,
ocp.pd, ocp.pf, ocp.t, ocp.u, ocp.ode, and ocp.alg
give respectively dynamic vector, algebraic state, inde-
pendent parameter vector, dependent parameter vec-
tor, free parameter vector, time, input vector, vec-
tor of ODEs and vector of algebraic equations. Also
casadiModelObject.dx gives dynamic state derivative
vector. The main ingredient for generating a MultiDi-
Graph object is to have functions f and g which are
given in equation 3 or f̃ and g̃ in equation 5. f is de-
fined as an SXFunction class instance, say ffun. See
below for the Python code:

Define ODEs

f = ocp.ode

Create an SXFunction for f

ffun = SXFunction([t,vertcat(xDot),vertcat(x),\

vertcat(u)],[f])

ffun.init()

Now, consider how to create a MultiDiGraph. The Ja-

cobian matrix ∂f
∂x , which is given by ffun.jac(1), con-

tains the information about the dependencies among
state variables. In a similar way, g is defined as an
SXFunction. Then ∂g

∂x gives information to construct
the dependencies among state and output variables.
the NetworkX and PyGraphViz packages are imported
in the following way:

import networkx as nx

import pygraphviz as pgv

G = nx.MultiDiGraph() creates the MultiDiaGraph
object with no edges and nodes. In order to add nodes
for state, input and output variables use the following
code:

G = nx.MultiDiGraph()

Create state vertices

for i in x:

G.add_node(’{0}’.format(x[i]))

Create input vertices

for j in u:

G.add_node(’{0}’.format(u[j]))

Create output vertices

for k in y:

G.add_node(’{0}’.format(y[k]))

In order to add edges we can use the following code:

Create edges among states

for i in range(n_x):

for j in range(n_x):

if isEqual(A[i,j],SX(’0’)) == False:

G.add_edge(’{0}’.format(x[j]),\

’’.format(x[i])

Create edges among states and inputs

for i in range(n_x):

for j in range(n_u):

if isEqual(B[i,j],SX(’0’)) == False:

G.add_edge(’{0}’.format(x[j]),\

’{0}’.format(u[i])

Create edges among states \

and inputs

for i in range(n_y):

for j in range(n_x):

if isEqual(C[i,j],SX(’0’)) == False:

G.add_edge(’{0}’.format(y[j]),\

’{0}’.format(x[i])

Additionally, it is useful to do some formatting on
nodes/edges. For example, states, input and output
nodes are in different colors and shapes. NetworkX
graph object can be converted to PyGraphViz AGraph
objects using Gp = nx.to agraph(G). See the code be-
low:

Gp = nx.to_agraph(G)

Gp.write("file.dot")

Gp.layout()

Gp.layout(prog=’dot’)

G.draw(’file.png’)

In order to have a better structured code, several
new functions may be defined within the CasadiModel

class: symbolicLinearization(), symbolicDAEs(), in-
dexReduction(), createNodes(), createEdges(), gener-
ateGraph(), decomposeGraph(), Y Topped(), Max -
Matching(), etc. Now these functions can be called
as for instance casadiModelObject.createNodes().
symbolicDAEs() creates symbolic functions for ODEs
and algebraic equations. indexReduction() is used for
index reduction. Symbolic Jacobian matrices are found
by symbolicLinearization(). Based on Jacobian matri-
ces the nodes and the edges of the digraph are gener-
ated using createNodes() and createEdges(). generate-
Graph() creates a NetworkX and a PyGraphViz graph
objects as well as it creates a ’dot’13 file. decomposeG-
raph() decomposes the digraph into strongly connected
components. To check the conditions given in the def-
inition 2 Y Topped() and Max Matching() are used.
Let us define some terms (based on Anh (2012), Liu
et al. (2012), and Liu et al. (2011)). State nodes which

13See in http://www.graphviz.org/.

58

http://www.graphviz.org/

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

are directly connected to output nodes are called con-
trolled nodes. A controlled node with just a single
connection to an output is called a driver node.
As a summary to this section, the following points are
made: (1) a Modelica model is created, (2) import the
dynamic model as a CasadiModel object model and use
casadi to find symbolic Jacobian matrices of symbolic
DAEs (after reducing the index if needed), (3) generate
a digraph using networkx and pygrapviz, (4) use graph
theories to analyze the digraph.

5. Industrial Application Case

The Copper electro-winning process at Glencore
Nikkelverk, Kristiansand, Norway is considered. The
process consists of four sections: (i) the slurrification
where the calcine containing mostly copper oxide is
slurrified using recycled anolyte flow, which containing
sulfuric acid, taken from the electrowinning section,
(ii) the leaching section where sulfuric acid is added
to the slurry in order to leach more copper into the
solution, (iii) the purification section where the slurry
is first filtered to extract the solution, which contains
copper sulphate (CuSO4), followed by the cementation
and fine filtering processes, and (iv) the electrowin-
ning section where the solution containing Cu2+ is elec-
trolyzed to release solid copper at the cathode. For
a detailed discussion and a mechanistic model for the
Copper electro-winning process given in Lie and Hauge
(2008). Figure 7 in appendix C gives the flow sheet 14.
The system model is in the form of equation 3 while
the augmented model — by taking ṗ = 0 and w as
slowly varying (i.e. ẇ ≈ 0) — is in the form of equa-
tion 5. The nodes corresponding to the parameters
and disturbances have directed edges always directing
towards them starting from either output/state nodes.
I.e. possible edges ending at parameter/disturbance
nodes are xi → pj , yi → pj , xi → wj and yi → wj . In
the following discussion, it is shown that how to imple-
ment the procedure given in figure 6 in relation to the
dynamic model given in Lie and Hauge (2008). The
tank-volume (or level) dynamics are neglected in the
original model. But, the tank-volume dynamics of the
electro-winning section is included and the new model
is considered in this paper. See equations 6, 7 and 8. It
is assumed that the liquid level of the electro-winning
tank is a constant. Except V̇ed2w, V̇ew2m and V̇vap, the
rest of the volumetric flow rates are known.

V̇ed = V̇em2d + V̇p2e − V̇ed2w − V̇ed2m (6)

14Taken from Lie and Hauge (2008).

V̇em = V̇ed2m + V̇ew2m + V̇w2em − V̇e2s
− V̇em2bl − V̇em2d (7)

V̇ew = V̇ed2w − V̇ew2m − V̇vap = 0 (8)

Equations 9, 10, 11, and 12 are resulted by applying
(static) mass balances to the slurrification, leaching
and purification sections.

V̇s2l = V̇e2s (9)

V̇
(1)
l,o = V̇e2s + V̇a (10)

V̇w2l = V̇p2e − V̇e2s − V̇a (11)

V̇l2p = V̇p2e (12)

There are 41 states, 3 inputs, 3 outputs, 8 disturbances
(some of the disturbances are measured.) and 5 param-
eters in the model. See below:

• states in the slurrification section (2 tanks in se-
ries):
ρjs,i; i ∈ {CuO,CuSO4,H2SO4},
j ∈ {(1), (2)}

• states in the leaching section (5 tanks in series):
ρjl,i; i ∈ {CuO,CuSO4,H2SO4},
j ∈ {(1), (2), (3), (4), (5)}

• states in the purification section (6 tanks in series):
ρjpb,i; i ∈ {CuSO4,H2SO4},
j ∈ {(1), (2), (3), (4), (5), (6)}

• states in the electro-winning section:

– the dilution tank:
ρed,i; i ∈ {CuSO4,H2SO4}
Ved

– the electro-winning tank:
ρew,i; i ∈ {CuSO4,H2SO4}

– the mixing tank: ρem,i;
i ∈ {CuSO4,H2SO4}
Vem

• inputs: ṁc, V̇e2s, and V̇a.

• outputs:

ρ
(3)
pb,H2SO4

,
MCu

MCuSO4

· ρew,CuSO4
,

and ρew,H2SO4
+

MH2SO4

MCuSO4

· ρew,CuSO4
.

• measured disturbances: V̇ed2m, V̇em2d, V̇em2bl,
V̇p2e, V̇w2em and I

59

Modeling, Identification and Control

• unmeasured disturbances: V̇w2l, V̇s2l, V̇
(1)
l,o , V̇l2p,

V̇ew2m, V̇ed2w, V̇vap, xc,Cu and ρa,H2SO4
.

• parameters (all are unknown): k, η, ε
(1)
ps , ε

(2)
ps , and

ε
(3)
ps .

Now a Modelica model is created for the (updated)
dynamic model explained above and also augment un-
known independent parameters as states: d

dtk = 0,
d
dtη = 0, d

dtε
(1)
ps = 0, d

dtε
(2)
ps = 0 and d

dtε
(3)
ps = 0. Note

that, it may not be possible to augment all the unmea-
sured disturbances, but a subset of them. The reason is
possible algebraic relationships among unmeasured dis-
turbances, states, inputs and measured disturbances.15

V̇w2l, V̇s2l, V̇
(1)
l,o and V̇l2p can be expressed in terms

of inputs and measured disturbances while xc,Cu and
ρa,H2SO4

cannot, therefore xc,Cu and ρa,H2SO4
should

be augmented. V̇ew2m, V̇ed2w and V̇vap are dependent
each other, therefore 2 out of 3 should be augmented.
Let us choose to augment V̇ew2m and V̇ed2w, thereby
V̇vap becomes a function of the augmented states. See
below:

• a subset of unmeasured disturbances are aug-
mented as new state variables: d

dt V̇ed2w = 0,
d
dt V̇ew2m = 0, d

dtxc,Cu = 0 and d
dtρa,H2SO4

= 0.

Also, V̇vap = V̇ed2w − V̇ew2m.

Now, including augmented states, there are 48 (39
states in the original model, 5 unknown parameters
and 4 unmeasured disturbances) states. The structure
of the Modelica code is given in appendix A.
The structure of the Python script which is used to gen-
erate the digraph for the structural observability anal-
ysis is given in appendix A. The Python script creates
the digraph G, which is given in figure 8 in appendix C.
G can be decomposed into SCCs using the function
decomposeGraph(). See figure 9 in appendix C. There
are two SCCs with more than one node. Each SCC
is colored with different colors. It is possible to check
whether G is output connected using Y Topped() (see
definition 1). Here we use networkx.all simple -
paths() and this function gives all possible paths start-
ing from a given node and ending at a given node if
any. See the script given below for the definition of
Y Topped():

def Y_Topped(self):

Gnx = self.Gnx

x = self.x

k = ’Y-topped’

for j in x:

index = 0

15The state augmentation should be done after index reduction if
the problem is high index. The problem under consideration
of this paper is a zero index problem, hence index reduction
is not necessary.

dummy_array = N.zeros(5)

for i in [’y1’,’y2’,’y3’,’y4’,’y5’]:

if list(ntwx.all_simple_paths(\

Gnx,source=i,target=str(j)))==[]:

dummy_array[index] = 0

else:

dummy_array[index] = 1

index = index + 1

if N.max(dummy_array) == 0:

k = ’Not Y-topped’

break

else:

pass

print k

Consider figure 9. The two elementary paths y1 →
Ved → V̇ed2w and y2 → Vem → V̇ew2m are two stems.
Since neither Ved nor Vem has edges going out from
them, both are cacti without any buds. The SCC with
plain-green colored nodes has no incoming edges from
the other SCC which is in red, hence there must be
at least one measurement node which is connected to
a node in the plain-green colored SCC and y4 and y5
satisfy this condition.16 Since y4 has only one edge, y4
should be used to create the cacti, y4 → ρed,CuSO4

→
ρ
(3)
pb,CuSO4

→ ρ
(2)
pb,CuSO4

→ ρ
(3)
ps,CuSO4

· · · → ρ
(2)
s,CuSO4

→
ρ
(1)
ps,CuSO4

→ ρem,CuSO4
. The remaining two measure-

ment nodes y3 and y5 are not yet used. Since there are
many nodes with only incoming edges — yellow color
edges η, ε1, · · · , xcCu —, it is impossible to find cacti
starting from y3 and y5. Therefore, no spanning cacti is
found for G. Thereby, the augmented system model is
not structurally observable and hence not observable.
In other words, it is impossible to completely estimate
the augmented system state using given measurements.

6. Conclusion

We have demonstrated how to implement structural
observability analysis, in the view of graph-theoretic
approach, for large scale complex dynamic system in
Python by using NetworkX, PyGraphViz Python pack-
ages as well as CasADi’s Python front-end. The main
result is how to find the spanning cacti for a given di-
graph in order to find the minimum number of driver
nodes. Modelica is used for modeling and it is a stan-
dard tool for modeling large scale complex dynamic
system. CasADi supports to import Modelica mod-
els into Python as flattened symbolic DAEs making it
possible to use Modelica models in general use. Im-
portantly, all the software tools which are used in our
development are free.

16The SCC with plain-green colored nodes is the root-SCC.Liu
et al. (2012)

60

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

References

Anh, N. T. T. Spanning Cacti for Structurally Con-
trollable Networks. Master’s thesis, Department
of Mathematics, National University of Singapore,
2012.

Bondy, A. and Murty, U. S. R. Graph theory. Graduate
texts in mathematics. Springer, 2008.

Boukhobza, T. and Hemlin, F. Observability anal-
ysis for structured bilinear systems: a graph-
theoretic approach. Automatica, 2007. 43(11).
doi:10.1016/j.automatica.2007.03.010.

Cellier, F. E. and Kofman, E. Continuous System Sim-
ulation. Springer, 2006.

Daoutidis, P. and Kravaris, C. Structural evaluation
of control configurations for multivariable nonlin-
ear processes. Chemical Engineering Science, 1992.
47:1091–1107. doi:10.1016/0009-2509(92)80234-4.

Jazwinski, A. H. Stochastic Processes and Filtering
Theory. Dove Publications, Inc., Mineola, New York,
2007.

Lie, B. and Hauge, T. A. Modeling of an industrial cop-
per leaching and electrowinning process, with vali-
dation against experimental data. Proceedings SIMS
2008, 49th Scandinavian Conference on Simulation
and Modeling, 2008.

Lin, C. T. Structural controllability. IEEE
Transactions on Automatic Control, 1974. 19(3).
doi:10.1109/TAC.1974.1100557.

Liu, Y.-Y., Slotine, J.-J., and Barabàsi, A.-L. Control-
lability of complex networks. Nature, 2011. 473:167–
173. doi:doi:10.1038/nature10011.

Liu, Y.-Y., Slotine, J.-J., and Barabàsi, A.-L. Ob-
servability of complex systems. Proceedings of
the National Academy of Sciences of the United
States of America, 2012. 110(7):2460–2465.
doi:10.1073/pnas.1215508110.

Pantelides, C. C. The consistent initialization of
differential-algebraic systems. SIAM Journal on Sci-
entific Computing, 1988. 9(2). doi:10.1137/0909014.

Perera, A. Using casadi for optimization and sym-
bolic linearization/extraction of causality graphs
of modelica models via jmodelica.org. Technical
Report HiT rapport 5, Telemark University Col-
lege, Kjølnes ring 56, P.O. Box 203, N-3901 Pors-
grunn, Norway., 2014. URL https://teora.hit.

no/handle/2282/2175.

Perera, A., Pfeiffer, C., Hauge, T. A., and Lie, B. Mak-
ing modelica models available for analysis in python
control systems library. Proceedings SIMS 2014, 55th

Scandinavian Conference on Simulation and Model-
ing, 2014.

Åström, K. J. Introduction to Stochastic Control The-
ory. Dove Publications, Inc., Mineola, New York,
2006.

Reinschke, K. J. Multivariable control: a graph the-
oretic approach. Lecture notes in control and in-
formation sciences. Springer-Verlag, Berlin, New
York, 1988. URL http://opac.inria.fr/record=

b1086834.

Simon, D. Optimal State Estimation: Kalman, H Infin-
ity, and Nonlinear Approaches. John Wiley & Sons,
Inc., Hoboken, New Jersey, 2006.

Appendices

A. Structure of the Modelica
model

model CopperPlant

// Augment unknown parameters as states

Real k;

Real eta;

Real eps_1;

Real eps_2;

Real eps_3;

// Augment disturbances as states

Real Vd_ed2w;

Real Vd_ew2m;

Real x_cCu;

Real rho_aH2SO4;

// Define sates

Real V_ed;

Real V_em;

Real rho_s1CuO;

Real rho_s1CuSO4;

Real rho_s1H2SO4;

Real rho_s2CuO;

Real rho_s2CuSO4;

...

...

Real rho_edCuSO4;

Real rho_edH2SO4;

Real rho_ewCuSO4;

Real rho_ewH2SO4;

Real rho_emCuSO4;

Real rho_emH2SO4;

// Define known parameters

61

http://dx.doi.org/10.1016/j.automatica.2007.03.010
http://dx.doi.org/10.1016/0009-2509(92)80234-4
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/doi:10.1038/nature10011
http://dx.doi.org/10.1073/pnas.1215508110
http://dx.doi.org/10.1137/0909014
https://teora.hit.no/handle/2282/2175
https://teora.hit.no/handle/2282/2175
http://opac.inria.fr/record=b1086834
http://opac.inria.fr/record=b1086834

Modeling, Identification and Control

parameter Real z_Cu = 2;

parameter Real C = 96485.0;

parameter Real V_s1 = 7400;

...

...

// Define inputs/measured disturbances

input Real md_c;

input Real Vd_e2s;

input Real Vd_a;

input Real Vd_p2e;

input Real Vd_ed2m;

input Real Vd_em2d;

input Real Vd_em2bl;

input Real Vd_w2em;

input Real I;

// Define dependent disturbances

// in terms of inputs/states/parameters

Real Vd_w2l = Vd_p2e - Vd_e2s - Vd_a;

Real Vd_vap = Vd_ed2w - Vd_ew2m;

Real Vd_s2l = Vd_e2s;

Real Vd_l1o = Vd_e2s + Vd_a;

Real Vd_l2p = Vd_p2e;

// Define other variables as needed

...

...

// Define equations

equation

der(V_ed) = Vd_em2d + Vd_p2e - Vd_ed2w - Vd_ed2m;

...

...

der(k) = 0;

der(eta) = 0;

der(eps_1) = 0;

der(eps_2) = 0;

der(eps_3) = 0;

der(x_cCu) = 0.0;

der(rho_aH2SO4) = 0.0;

der(Vd_ed2w) = 0;

der(Vd_ew2m) = 0;

end CopperPlant;

B. Structure of the Python code

##

JModelica.org version 1.12 is used

Several functions are added to CasadiModel

class such as: symbolicDAEs(),

symbolicLinearization(), createNodes(),

..., and Max_Matching_BP().

Pygraphviz, Networkx, Pydot, Pyparsing,

and Casadi Python packages are used.

##

Import the compiler

from pymodelica import compile_fmux

Compiling Modelica model

fmux = compile_fmux(\

’CopperPlantPackage.CopperPlant’,\

’CopperPlant.mo’)

Importing compiled model

from pyjmi import CasadiModel

model = CasadiModel(fmux)

Creating symbolic DAEs

model.symbolicDAEs()

Symbolic linearization

model.symbolicLinearization()

Creating nodes

model.createNodes()

#Creating edges

model.createEdges()

Creating digraph

model.generateGraph()

Decomposing digraph into SCCs

model.decomposeGraph()

Checking output connectivity

model.Y_Topped()

Finding maximum matching

model.Max_Matching_BP()

62

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

C. Flow sheet and digraphs

Figure 7: The process flow sheet for the Copper electro-winning process.

63

Modeling, Identification and Control

Figure 8: The digraph (G) for the Copper plant model.

64

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

Figure 9: Strongly connected components (SCCs) of G.

65

http://creativecommons.org/licenses/by/3.0

	Introduction
	Graph-theoretic concepts
	Structural observability
	Python implementation
	Modelica, JModelica.org and CasADi options
	Structure of the Python script

	Industrial Application Case
	Conclusion
	Appendices
	Structure of the Modelica model
	Structure of the Python code
	Flow sheet and digraphs

