
Modeling, Identification and Control, Vol. 36, No. 1, 2015, pp. 23–52, ISSN 1890–1328

Towards Qualifiable Code Generation from a
Clocked Synchronous Subset of Modelica

B. Thiele 1 A. Knoll 2 P. Fritzson 1

1PELAB, Linköping University, SE-581 83 Linköping, Sweden. E-mail:{bernhard.thiele,peter.fritzson}@liu.se

2Institute for Robotics and Embedded Systems, Technische Universität München, 85748 Garching bei München,
Germany. E-mail: knoll@in.tum.de

Abstract

So far no qualifiable automatic code generators (ACGs) are available for Modelica. Hence, digital control
applications can be modeled and simulated in Modelica, but require tedious additional efforts (e.g., manual
reprogramming) to produce qualifiable target system production code. In order to more fully leverage the
potential of a model-based development (MBD) process in Modelica, a qualifiable automatic code generator
is needed.

Typical Modelica code generation is a fairly complex process which imposes a huge development
burden to any efforts of tool qualification. This work aims at mapping a Modelica subset for digital control
function development to a well-understood synchronous data-flow kernel language. This kernel language
allows to resort to established compilation techniques for data-flow languages which are understood enough
to be accepted by certification authorities.

The mapping is established by providing a translational semantics from the Modelica subset to the
synchronous data-flow kernel language. However, this translation turned out to be more intricate than
initially expected and has given rise to several interesting issues that require suitable design decisions
regarding the mapping and the language subset.

Keywords: Modelica, Automatic Code Generation, Model-Based Development, Safety-Relevant Systems

1. Introduction

Deliberate use of modeling and simulation (M&S) is an
effective strategy to cope with increasing product com-
plexity and time to market pressure. A particular chal-
lenge is software functions running on distributed, net-
worked computing devices which are in feedback loops
with physical processes (cyber-physical systems). For
the development and validation of these functions, it
is no longer sufficient to solely consider a single, self-
contained component without taking the interaction of
this part within the whole system (including the phys-
ical parts!) into account.

For example, modern automotive vehicles can have
more than 60 ECUs (electronic control units) commu-

nicating over a heterogeneous network of automotive
buses like CAN, FlexRay, LIN, and MOST, as well as
other communication buses used for infotainment pur-
poses. The complexity1 of the utilized embedded soft-
ware increased about fiftyfold within 15 years (Ebert
and Jones, 2009). Currently the development phase
for new vehicles is estimated to be about three years
(Schäuffele and Zurawka, 2010). Increased use of vir-
tual prototyping methods has the potential to further
curb the required development time span. Nowadays,
model-based development (MBD) has become a well
established development approach in the domain of em-

1Taking the size in object instruction as a measure of code
complexity.

doi:10.4173/mic.2015.1.3 © 2015 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2015.1.3

Modeling, Identification and Control

bedded (control) systems and the original promise of
model-based development, to provide a more rapid and
economic development process, seems to be confirmed
in industrial practice (Broy et al., 2011).

In order to optimize the benefits gained by a model-
based development process as, it is crucial that for-
mally specified high-level applications can be automat-
ically transformed (usually by using generated embed-
ded C-code) into executable binary code for respective
embedded platforms, thus eliminating error prone and
expensive manual re-programming of the application
using a general-purpose programming language. This
requires automatic code generators (ACGs). However,
if the generated code affects safety related functions
the additional effort to safeguard the generated code
diminishes the initial benefit of model-based develop-
ment. A remedy is to rely on (automatic code gen-
eration) tools that are qualifiable i.e., tools for which
a certain degree of confidence in their correctness can
be established for the relevant use cases. Specialized
standards (despite conceptual similarities and shared
base standards) apply for different industrial domains,
e.g., ISO 26262 (Automotive), ISO 13849: (Machinery
Control Systems), DO-178 (Aircraft), etc.

There are tools on the market which fulfill (for spe-
cific industrial domains) the necessary requirements for
safety related developments and that support control
system modeling in an adequate manner (e.g., Simulink
Coder from MathWorks, ASCET from ETAS, SCADE
from Esterel, TargetLink from dSpace). However, they
share two drawbacks: (i) they do not offer state-of-the-
art physical modeling2, and (ii) they are based on pro-
prietary model formats. Hence, more integrated mod-
eling approaches (integrated modeling of software and
physical aspects, facilitated integration in an existing
software eco system) are considerably impeded.

Extensions of the non-proprietary, multi-domain
cyber-physical system modeling language Modelica
(Fritzson, 2014) aim at closing that gap by integrating
language elements that are motivated from the point of
view of clocked synchronous data-flow languages3 for

2MathWorks reacted to this deficiency by offering several
Simulink toolboxes, most notably SimScape, to enable
equation-based physical modeling (SimScape made its debut
in the R2007A release of Matlab/Simulink). Unfortunately,
despite using the same basic concepts like Modelica, Math-
Works decided to create its own, proprietary, physical mod-
eling language. In effect, the huge pool of high-quality (free
and commercial) physical modeling libraries already available
for Modelica cannot be reused in SimScape.

3Synchronous languages (Benveniste et al., 2003) are an estab-
lished technology for modeling, specifying, validating, and
implementing real-time embedded applications. Prominent
members of the synchronous family include the Lustre (Caspi
et al., 1987), Esterel (Boussinot and De Simone, 1991) and
Signal (LeGuernic et al., 1991) language. The greatest indus-
try relevancy can be attributed to the Lustre-based commer-

safety-relevant, sampled-data systems (Elmqvist et al.,
2012; Otter et al., 2012).

However, so far no Modelica tool for high-integrity,
embedded code generation has appeared on the mar-
ket. Typical compilation techniques for Modelica differ
significantly from established compilation techniques
for data-flow languages. Hence, available knowledge
about high-integrity code generation for clocked syn-
chronous data-flow languages are not directly trans-
ferable to Modelica, exacerbating any qualification at-
tempts.

This work proposes to link the semantics of a Mod-
elica subset for digital control function modeling to an
established clocked synchronous data-flow kernel lan-
guage (SDFK) by means of a translational semantics4.
This is achieved by providing transformation equations
from the Modelica language to the SDFK language. At
the same time this translational semantics is close to
a practical implementation of a source-to-source com-
piler. This opens up a path to a qualifiable Mod-
elica compiler by leveraging established compilation
techniques for clocked synchronous data-flow languages
which are understood enough to be accepted by certi-
fication authorities.

2. Model-Based Development and
Tool Qualification

2.1. Overview

Figure 1 shows a typical model-based development
toolchain including an automatic code generator. The
specification model (aka physical model) is designed us-
ing a high-level domain-oriented modeling tool. These
specification models are typically enriched with imple-
mentation details (e.g., a continuous-time controller
model is replaced by a discrete-time approximation) re-
sulting in so-called code generation or implementation
models. A code generator transforms code generation
models into C-code, that the cross compiler translates
into object code. The different object codes, including
legacy and basic software code are then finally linked to

cial Scade tool (Sauvage and Bouali, 2006) that is especially
used for the development of safety critical software functions.
Synchronous languages have no notion of continuous time and
are therefore not suited for physical modeling.

4Attempts to formalize semantic aspects of the Modelica lan-
guage can be traced back to the very early phases of the lan-
guage standard where natural semantics based approaches
were considered as a help in the language design process
(K̊agedal and Fritzson, 1998) and also as a base for trans-
lator generation (Fritzson et al., 2009). However, these pre-
vious studies focused rather on general advantages of formal
language specifications and were not particularly concerned
with high-integrity, embedded code generation.

24

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

a binary that can be executed by an embedded target.

Code Generation Model

Function
C-Code

Object-Code

Binary

Code Generator

Cross-Compiler

Cross-Linker

Specification Model

Enrichment with
implementation details

Legacy
C-Code

Basic Software C-Code

Legacy Software
Process

Basic Software
Process

Function SoftwareBasic Software Legacy Software

Object-Code Object-Code

MIL Simulation

Specification
Model

Plant
 Model

Figure 1: The generic build process for a model-
based development toolchain with an auto-
matic code generator (adapted from Schnei-
der et al. (2009)).

The development of safety-relevant software typi-
cally needs to comply to rules described in functional
safety standards. This also affects the used develop-
ment tools. A development tool may need to fulfil a
certain level of qualification depending on the severity
of the impact a malfunction in the development tool is
expected to have on a safety-related item. For exam-
ple, in the automotive domain the ISO 26262-8:2011,
Section 11 Qualification of software tools, establishes a
set of recommendations concerning the needed qualifi-
cations of such software tools.

The automatically generated C-code in Figure 1 can
also be seen as a low-level intermediate representation
of the model, because it is both the output of the code
generator as well as input to the cross compiler for
the target. If sufficient confidence can be put into
the correct functioning of the tool chain, safeguarding
measures for intermediate representations can be elim-
inated. For example, code reviews on automatically
generated code can be omitted.

2.2. Tool Qualification

Functional safety standards typically classify develop-
ment tools into categories that depend on the impact a
systematic tool failure (“bug”) has on a safety related
item and on the probability that a bug remains unde-
tected by downstream development steps and tools.

For example, ISO 26262 defines four categories
termed Tool Confidence Level (TCL1 – TCL4) where

TCL4 denotes the highest level of required confidence.
Tools classified higher than TCL1 need to be quali-
fied. Required qualification measures are further tied
to the usage context, in particular to the criticality
of the software function that is realized with the de-
velopment tool. ISO 26262 further recommends four
principle methods for tool qualification: (i) increased
confidence from use, (ii) development process evalu-
ation, (iii) software tool validation, and (iv) develop-
ment in compliance with a safety standard. While (i) or
(ii) are recommended for less critical functions and/or
tool confidence levels, (iii) or (iv) are considered an
adequate choice for highly critical functions and tool
confidence levels.

Note that the output of tools that are not quali-
fied can still be used, but require suitable safeguard-
ing measures, e.g., automatically generated code can
be passed into a standard assurance process where
it is treated like manually written code. The bene-
fit of qualified development tools is that certain safe-
guarding measures, like code reviews on generated code
(Stürmer et al., 2006), can be omitted.

In order to increase the confidence in the toolchain
depicted in Figure 1 it is, in principle, possible to ap-
ply a number of techniques that have been proposed
for ensuring safety of compilers. The survey by Frank
et al. (2008) gives an overview of existing techniques
and also comments on the suitability of the presented
methods for practical application. In particular Frank
et al. conclude that a combination of test-based ap-
proaches (as opposed to formal verification-based ap-
proaches) is the most promising way to improve the
reliability of compilers for safety-related applications
within the automotive industry.

Despite plenty reports in the open literature about
(in many cases formal) methods that are in principle
capable of increasing confidence levels in compilers or
code generators, detailed reports of actually success-
ful tool qualification efforts for automatic code gener-
ators are rare. Schneider et al. (2009) give a rather
comprehensive report on the practical qualification of
an industrial-strength development tool (an integrated
code generator tool with target compiler) by a valida-
tion suite approach (hence, by a software tool valida-
tion method) according to automotive requirements.
The approach is centered around an automated test
environment that allows the automated execution of
large numbers of test cases. The number of required
test cases is subject to scalability issues so that suitable
language restrictions are an important prerequisite be-
fore starting qualification efforts for complex real-world
languages.

Regardless of whether the tool qualification method
of choice is to develop a new tool according to ap-

25

Modeling, Identification and Control

propriate safety standards, or to use a test-based or
verification-based approach to qualify an existing tool:
keeping the input language of the code generation
model (see Figure 1) as simple and well-defined as pos-
sible is essential to keep development/qualification ef-
forts under control. This regards the number and com-
plexity of basic constructs in the language and also the
number and complexity of performed transformation
rules in the code generation process.

Furthermore, it is important to understand that
technically tools need to be qualified in the context
of a particular system development project and there-
fore only qualifiable tools are available on the market.
Using a qualifiable tool alleviates tool qualification ef-
forts and the project specific tool qualification is usu-
ally achieved in close collaboration of the tool user and
the tool vendor (Hatcliff et al., 2014).

2.3. Typical Modelica Code Generation

Compiling Modelica code usually involves substantial
code transformation. The following description is a
slightly adapted reproduction of (Thiele et al., 2012,
Section 4.2.5). Figure 2 gives an overview of the compi-
lation and simulation process as described by Broman
(2010, p. 29).

Modelica
Model

AST

Lexical Analysis
and Parsing

Hybrid DAE

Elaboration

Executable

Simulation
Result

Equation
Transformation &
Code generation

Simulation

Compile
Time

Run time

Compiler
front-end

Compiler
back-end

Figure 2: Outline of a typical compilation and simu-
lation process for a Modelica language tool
(Broman, 2010, p. 29).

The different phases are:

Lexical Analysis and Parsing This is standard com-
piler technology.

Elaboration Involves type checking, collapsing the in-
stance hierarchy and generation of connection
equations from connect-equations. The result is a
hybrid differential algebraic equation (DAE) sys-
tem consisting of variable declarations, equations
from equations sections, algorithm sections, and
when-clauses for triggering discrete-time behavior.

Equation Transformation This step encompasses
transforming and manipulating the equation sys-
tem into a representation that can be efficiently
solved by a numerical solver. Depending on the
intended solver the DAE is typically reduced to
an index one problem (in case of a DAE solver) or
to an ODE form (in case of numerical integration
methods like Euler or Runge-Kutta).

Code generation For efficiency reasons tools typically
allow (or require) translation of the residual func-
tion (for an DAE) or the right-hand side of an
equation system (for an ODE) to C-code that is
compiled and linked together with a numerical
solver into an executable file.

Simulation Execution of the (compiled) model. Dur-
ing execution the simulation results are typically
written into a file for later analysis.

In the context of code generation for safety relevant
systems the typical processing of Modelica models has
two problems:

1. In the Elaboration phase the instance hierarchy
of the hierarchically composed model is collapsed
and flattened into one (large) system of equations,
which is subsequently translated into one (large)
chunk of C-code, thus impeding modularization
and traceability at the C-code level.

2. In the Equation Transformation phase the
equations are extensively manipulated, optimized
and transformed at the global model level. The
algorithms used in this step are the core elements
that differentiate the model compiler tools (qual-
ity of implementation). Although the basic algo-
rithms are documented in the literature, the opti-
mized algorithms and heuristics used in commer-
cial implementations are vendor confidential pro-
prietary information. The lack of transparency
and simplicity exacerbates tool qualification ef-
forts.

Therefore, the compilation process for simulation
(Figure 2) may be significantly different compared to
the target code compilation process depicted in Fig-
ure 1. Not only because different compilers are used,
but also because the target code generator may (need

26

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

to) be an entirely distinct piece of software that may
share only minimal to no amounts of code with the
simulation code generator5. In particular the target
code generator depicted in Figure 1 is only required
to understand a Modelica subset that is sufficient for
digital control function modeling.

2.4. An Approach Towards a Qualifiable
Modelica Code Generator

The requirement to keep the input language of the code
generation model as simple and well-defined as possible
motivated Thiele et al. (2012) in a previous work to
propose a subset of Modelica for safety-relevant control
applications that would offer a reasonable compromise
between language expressiveness and expected effort of
tool qualification. The proposed language restrictions
were substantiated by providing rationales. However,
no evidence was given about the practical feasibility to
develop a qualifiable automatic code generator for that
language subset.

The Modelica subset used in this work is a modi-
fied version of the subset proposed in the former pa-
per. In order to allow a clear and brief presentation of
the translational semantics the former subset is further
reduced to a kernel of representative elements. The re-
sulting language kernel for automated code generation
is denoted as mACG-Modelica.

The presented approach towards a qualifiable code
generator relies on:

1. A target language which allows the proposition
that a qualifiable code generator can be imple-
mented for it. This language is in the following
referred to as the Synchronous Data-Flow Kernel
language (SDFK).

2. A representative language kernel for digital con-
trol function development in Modelica (mACG-
Modelica).

3. A set of translation equations from mACG-
Modelica to SDFK. The semantics of mACG-
Modelica are defined in terms of this translation
(translational semantics).

5The amount of code that can be shared depends on vari-
ous aspects, particularly on the tool qualification approach.
Tool qualification by developing the tool in compliance with
a safety standard, needs respective evidence on the devel-
opment process that is usually not available for existing
code. ISO 26262 also lists increased confidence from use as
a method that is particularly applicable for more moderate
safety requirements and tool validation as method that is also
applicable for more safety-critical software — these methods
are more amenable to reuse existing code.

The existence of the translation provides: (i) a
strong argument for the feasibility to develop a qualifi-
able code generator for the considered Modelica subset
and (ii) a base that can be used to create a gateway
from Modelica to a qualifiable code generator that is
based on clocked synchronous data-flow language like
Scade/KCG (similarly to what has been reported by
Caspi et al. (2003) for a translator from Simulink to
Scade).

3. Translation to a Synchronous
Data-Flow Kernel Language

3.1. The Synchronous Data-Flow Kernel
Language (SDFK)

Synchronous data-flow kernel languages have been used
in various publications as suitable representation for
languages in certain formal methods based research.
Instead of reinventing syntax, this work utilizes the
synchronous data-flow kernel language6 described by
Biernacki et al. (2008). The SDFK is close to Lus-
tre/Scade so that it allows to use well-understood and
accepted compilation techniques that have been devel-
oped for these languages.

Biernacki et al. (2008) formally describe modular
code generation from that data-flow kernel into im-
perative code and note that “The principles presented
in this article are implemented in the RELUC com-
piler of SCADE/LUSTRE and experimented on indus-
trial real-size examples”. Hence, using that particular
SDFK language is attractive since it directly allows
to reuse the described code generation techniques for
ACG-Modelica as soon as a translational semantics is
available.

In order to keep the following discussion more self-
contained, the syntax and intuitive semantics described
in (Biernacki et al., 2008, Section 2) are briefly repro-
duced in the current section:

A program is made of a list of global type (“td”)
and node (“d”) declarations. In order to allow a clear

6 Note that the semantics of the synchronous kernel language
is given informally in (Biernacki et al., 2008). However, it
can be traced back to a formal semantics if necessary. Bier-
nacki et al. (2008) refer to (Colaço et al., 2005) for the formal
semantics of the clock calculus. Actually, the extended lan-
guage presented in (Colaço et al., 2005) is similar to the one
used in (Biernacki et al., 2008). In (Colaço et al., 2005) this
extended language is formally translated into a more “ba-
sic” data-flow kernel language by a source-to-source transfor-
mation. For this “basic” data-flow kernel language (Colaço
et al., 2005, Section 3.1) refers to (Colaço and Pouzet, 2003)
for a (formal) denotational Kahn semantics (except for the
semantics of the modular reset operator “every” which is
formally defined in (Hamon and Pouzet, 2000)).

27

Modeling, Identification and Control

Table 1: Expressions in SDFK

v Values are either immediate values (“i”), e.g., integer values, or they
are constructors (“C”) belonging to a finite enumerated type (e.g., the
Boolean type is defined as “bool = False +True”).

x Variables.
(a1, . . . , an) Tuples.
v fby a Initialized delays. The first argument “v” (the initial value) is expected

to be an immediate value, the second argument “a” is the stream that
is delayed.

op(a1, . . . , an) Point-wise applications. To simplify the presentation, “op(a1, . . . , an)”
is a placeholder for any point-wise application of an external function op
(e.g., +, not) to its arguments. To improve the readability of examples,
the application of classical arithmetic operations will be written in infix
form.

f(a1, . . . , an) every a Node instantiations with possible reset condition “a”. At any instant
at which Boolean stream “a” equals “True” the internal state of the
node instantiation is reset. To simplify the notation the reset condition
“every a” may be omitted which is equal to writing “every False” as
reset condition.

a when C(x) Sampling operations. Sample a stream “a” at every instant where “x”
equals “C”.

merge x (C → a1) . . . (C → an) Combination operations are symmetric to the sampling operation:
They combine complementary streams in order to produce a faster
stream. “x” is a stream producing values from a finite enumerated
type “bt = C1 + . . . + Cn”. “a1, . . . , an” are complementary streams,
i.e., at an instant where “x” produces a value at most one stream of
“a1, . . . , an” is producing a value. At every instant where “x” equals
“Ci” the value of the corresponding stream “ai” is returned.

and brief presentation, only abstract types and enu-
merated types are considered in the discussion. A
global node declaration “d” has the form “node f(p) =
p with var p in D”. Within this node declaration “p”
denotes a list of variables while “D” denotes a list of
parallel equations. In an equation “pat = a” the pat-
tern “pat” is either a variable or a tuple of patterns
“(pat, . . . , pat)” and “a” denotes an annotated expres-
sion “e” with its clock “ct”. Table 1 briefly describes
various elements that can be part of an expression.
The expressions can be extended by the conditional
“if/then/else” which relates to the original kernel by
the equivalence relation:

if x then e2 else e3 =merge x

(True→ e2 when True(x))
(False→ e3 when False(x))

(1)

Note that the clock annotations “ct” have no impact
on the data-flow semantics of the language. Clocks do
not have to be explicitly given in the SDFK language,
although they are part of the language semantics. For
example, instead of writing “((v fby xck)ck+yck)ck” it
suffices to write “((v fby x) + y)”. Clock annotations
in the SDFK language are determined automatically
by a clock calculus which is defined as a type inference

system. This clock calculus precedes the code genera-
tion step (see (Biernacki et al., 2008, Section 2.2) for
more details).

The syntax of the (clock-annotated) SDFK language
is defined by the following grammar:

td ∶∶= type bt ∣ type bt = C + . . . +C

d ∶∶= node f(p) = p with var p in D

p ∶∶= x ∶ bt; . . . ;x ∶ bt
D ∶∶= pat = a ∣ D and D

pat ∶∶= x ∣ (pat, . . . , pat)
a ∶∶= eck

e ∶∶= v ∣ x ∣ (a, . . . , a) ∣v fby a ∣ op(a, . . . , a)
∣ f(a, . . . , a) every a ∣ a when C(x)
∣ merge x (C → a) . . . (C → a)

v ∶∶= C ∣ i
ct ∶∶= ck ∣ ct × . . . × ct

ck ∶∶= base ∣ ck on C(x)

For the translational semantics the expressions “e” are
extended by the conditional “if/then/else” as defined
in (1).

Some of the traditional operations supported by Lus-

28

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

tre are related to SDFK through the following equiva-
lences:

Lustre SDFK

e when x = e when True(x)
Lustre’s sampling operation, where x is a Boolean
stream.
e1 − > e2 = if True fby False

then e1 else e2
Lustre’s initialization operator.
pre(e) = nil fby e
Lustre’s uninitialized delay operator. The shortcut nil
stands for any constant value e which has the type of e.
It is the task of the initialization analysis to check that
no computation result depends on the actual nil value.

In order to illustrate the effect of these operators
Table 2 shows example applications of these operators
to streams of values.

Table 2: Examples for applying the SDFK operators

Stream/Expression Stream values

h True False True False . . .
x x0 x1 x2 x3 . . .
y y0 y1 y2 y3 . . .
v fby x v x0 x1 x2 . . .
x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 . . .
x − > y x0 y1 y2 y3 . . .
pre(x) nil x0 x1 x2 . . .
z = x when True(h) x0 x2 . . .
t = y when False(h) y1 y3 . . .
merge h

(True→ z)
(False→ t)

x0 y1 x2 y3 . . .

3.2. mACG-Modelica

To allow a clear and brief presentation of the transla-
tional semantics the Modelica language is reduced to a
small subset of elements that is considered to be repre-
sentative for data-flow based digital control functions.
The resulting language kernel is denoted as mACG-
Modelica.

A program is made of a list of global type (“td”),
connector (“cd”) and block (“bd”) declarations. Only
abstract types “t” are considered (nevertheless the pro-
vided examples will use concrete Modelica types, e.g.,
replacing “t” by “Real”). Connectors “cd” have either
input or output causality. A block declaration “d” has
the form “block id p equation D end;”, where “id”
is the name of the block, “p” contains the local compo-
nent declarations and “D” the equation declarations.
A component declaration “p” can be modified by a

modification “mo” (compared to Modelica modifica-
tions are more restricted, see Section 5).

Parameters can be declared with modification ex-
pression “parameter t x = me;”, or without modifi-
cation binding “parameter t x;”7.

The use of component dot accesses for parameters is
not supported in the presented translation in order to
simplify the presentation. Allowing it would require to
additionally introduce component dot access normal-
ization (Figure 21) and “dummy” equation generation
(Figure 22) in a slightly adapted form for parameters in
the normalization step. For the actual translation step
it would be necessary to translate all parameters not
only to node input arguments, but also to node out-
puts arguments. This seems to make the translation
harder to understand without adding much additional
conceptual value8.

Equations “D” are either connect equations
“connect(cx, cx)” or equations of the form “cx = e”,
where “cx” is a single variable (the unknown of the
equation, which is either accessed by a simple identifier
“x”, or by using a component dot access “x.x”) and “e”
is an expression (hence, equations are more restricted
than in Modelica where the unknown of an equation
may appear at an arbitrary place). Similar to SDFK
an abstract n-ary operator “op(e, . . . , e)” is provided
to simplify the presentation (nevertheless the provided
examples will be presented using concrete Modelica op-
erators).

The syntax of mACG-Modelica is defined by the fol-
lowing grammar:

td ∶∶= type t;

bd ∶∶= block id p equation D end;

cd ∶∶= connector id = c t;

c ∶∶= input ∣ output
p ∶∶= p p ∣ t x; ∣ t x mo; ∣ c t x; ∣ c t x mo;

∣ parameter t x;

∣ parameter t x = me;

mo ∶∶= (ar , . . . , ar)
ar ∶∶= id = me

D ∶∶=D D ∣ eq;

7Modelica semantics require that modification bindings for pa-
rameters have parametric or constant variability (Modelica
Association, 2012, Section 3.8). This needs to be ensured
by a statical check before the translation (for conciseness the
description of that check is omitted).

8In addition to transforming parameters to input arguments of
a (C-) function, it becomes necessary to make them avail-
able as output arguments. E.g., consider “block A parameter
Real p1 = 0.1; end A;” which is instantiated in “block B A
a(p1=0.2); parameter Real p2 = a.p1; end B;” and note that
a.p1 needs to return the value 0.2. If A is translated to a
function, there needs to be an input argument to set p1 and
an output argument to retrieve its value.

29

Modeling, Identification and Control

e ∶∶= v ∣ cx ∣ op(e, . . . , e) ∣ previous(x)
∣ if e then e else e

me ∶∶= v ∣ x ∣ op(me, . . . ,me)
∣ if me then me else me

eq ∶∶= cx = e ∣ connect(cx, cx)
cx ∶∶= x . x ∣ x
x ∶∶= id

v = value

id = identifier

Abstract types “t” encompass predefined primitive
types and user-defined structured types (blocks and
connectors). The set “B” is introduced to denote the
set of all predefined primitive types, particularly Mod-
elica’s “Boolean”, “Integer”, and “Real” types.

From all the clocked synchronous language elements
that are listed in (Modelica Association, 2012, Chap-
ter 16) only “previous” appears in the grammar
above. The clock conversion operators are omitted —
for practical applications this is not as restrictive as it
may appear at a first glance. Section 5 briefly com-
ments on that.

Also the operator “interval(u)” is missing in the
grammar. This operator is considered to be available
as external function call or macro — the time span be-
tween a previous and a present tick is typically only
known by the environment that triggers the execution
of the synchronous data-flow program. Consequently,
that value needs to be provided by the runtime envi-
ronment. In the case of single-rate programs (i.e., if no
clock conversion operators are supported) the interval
duration is simply the duration between two ticks of
the base clock, in case of multi-rate programs it be-
comes more complicated and the value depends on the
specific clock that is associated to the operators argu-
ment ”u”.

3.3. A Multilevel Translation Approach

The translation to the SDFK language is rather com-
plex. In order to keep the translation manageable and
understandable the translation is subdivided into sev-
eral steps. The two major steps are:

1. Normalization of mACG-Modelica (formulated as
source-to-source transformation). This step is
again subdivided in:

a) Generation of connection equations.

b) Stripping of parameter modifications, nor-
malizing instance modifications and extract-
ing instance dot accesses appearing in expres-
sions.

c) Creating a fresh block that instantiates the
top-level block as a component with normal-
ized component modifications.

2. Translation to the SDFK language.

Normalization and translation are defined as a sys-
tem of mutually recursive functions. The normaliza-
tion is needed in order to transform mACG-Modelica
into a (simplified) normalized form which is the basis
for the translation to the SDFK language. The syntax
for the normalized mACG-Modelica language can be
found in Section 3.5.

Using a multilevel translation approach facilitates in-
cluding further language elements, as long as a source-
to-source transformation into a smaller language ker-
nel can be given. The generation of connection equa-
tions is a good example for this: it eliminates the con-
nector declarations and connect equations by replac-
ing them with simple variable declarations (using the
proper input/output causalities) and simple equations
of the form “x = e”. Hence, the multilevel translation
approach provides a path to incrementally extend the
mACG-Modelica subset to more comprehensive sub-
sets for control function development (see also the dis-
cussion in Section 5).

3.4. The Normalization

The normalization is presented by using example code
snippets that illustrate the required source-to-source
transformation. The formal translation equations are
rather heavy and are therefore provided as a supple-
mentary part of the appendix, Section B.

The line numbers of the code snippets are consecu-
tively incremented, so that descriptive text can refer to
them. Once a class/type is declared, it may reappear
in subsequent code snippets.

3.4.1. Generation of Connection Equations

Connector Declarations Connector declarations
(line 1–2) are replaced by their corresponding
short class definition (e.g., In ↦ input Real, com-
pare line 4 ↦ 10 and Out ↦ output Real, compare
line 5 ↦ 11).

1 connector In = input Real;
2 connector Out = output Real;
3 block A
4 In u;

5 Out y;

6 equation
7 y = u;

8 end A;

source↧normal

30

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

9 block A
10 input Real u;
11 output Real y;
12 equation
13 y = u;

14 end A;

Connect Equations The connect equations are re-
placed by simple equations of the form “x = e”. Note
that the causality is not directly encoded in the con-
nect equations, so it has to be inferred from the variable
declarations.

15 block B
16 In u;

17 A a1;

18 equation
19 connect(u, a1.u);
20 end B;

source↧normal

21 block B
22 input Real u;
23 A a1;

24 equation
25 a1.u = u;

26 end B;

3.4.2. Parameters, Instance Modifications, and Dot
Accesses

Parameter Stripping Parameter modifications in a
class are stripped away.

27 block PI
28 parameter Real kd = Td*2;
29 parameter Real Td = 0.1;
30 end PI;

source↧normal

31 block PI
32 parameter Real kd;
33 parameter Real Td;
34 end PI;

Parameter Modifications at Instantiated Blocks All
parameters of an instantiated block are extracted,
merged with applicable instance modifications and in-
troduced as fresh parameters with a modification ex-
pression.

Note that the parameter modification from line 28 is
extracted and reintroduced in line 43, while the modifi-
cation from line 29 is overridden by the instance mod-
ification in line 28 before being assigned to the fresh
parameter _pi_Td in line 44.

35 block C
36 parameter Real k;
37 parameter Real Td=0.2;
38 PI pi(Td=Td);

39 end C;

source↧normal

40 block C
41 parameter Real k;
42 parameter Real Td;
43 parameter Real _pi_kd=_pi_Td*2;
44 parameter Real _pi_Td=Td;
45 PI pi(kd=_pi_kd, Td=_pi_Td);

46 end C;

Extraction of dot accesses Instance dot accesses in
RHS equations are extracted and replaced by fresh sub-
stitute variables.

47 block D
48 output Real y;
49 A a;

50 equation
51 a.u = 3;

52 y = a.y + 2;

53 end D;

source↧normal

54 block D
55 output Real y;
56 A a;

57 Real _a_y;
58 equation
59 a.u = 3;

60 _a_y = a.y;

61 y = _a_y + 2;

62 end D;

3.4.3. Generation of Top-Level Instantiation Blocks

If a block is the top-level block for code generation,
it needs a special treatment: parameter modifications
in that block should not be lost by stripping them
away. To achieve that without requiring a special case
treatment in the preceding translation step, a fresh
block that instantiates the top-level block with normal-
ized instance modifications is inserted for every block.
Hence, block C (line 35–39) would introduce the fresh
block:

63 block _Inst_C
64 parameter Real _c_k;
65 parameter Real _c_Td=0.2;
66 C _c(k=_c_k, Td=_c_Td);

67 end _Inst_C;

Inputs and outputs of a block are simply propagated
through, e.g., block D (line 47–53) would introduce the
fresh block:

31

Modeling, Identification and Control

68 block _Inst_D
69 output Real y;
70 D _d;

71 equation
72 y = _d.y;

73 end _Inst_D;

3.5. Normalized mACG-Modelica

After the normalization all component dot accesses
are extracted from nested expressions. All “connect-
equations” are resolved. At instance declarations all
available parameters are set as modifications. In a
block that instantiates another block, any output of the
instantiated block is at least accessed once. The syn-
tax of normalized mACG-Modelica is defined by the
following grammar:

td ∶∶= type t;

d ∶∶= block id p equation D end id;

c ∶∶= input ∣ output
p ∶∶= p p ∣ t x; ∣ t x mo; ∣ c t x; ∣ c t x mo;

∣ parameter t x ∣ parameter t x = e;

mo ∶∶= (ar , . . . , ar)
ar ∶∶= id = e

D ∶∶=D D ∣ eq;

e ∶∶= v ∣ x ∣ op(e, . . . , e) ∣ previous(x)
∣ if e then e else e

eq ∶∶= x = e ∣ x . x = e ∣ x = x . x

x ∶∶= id

v = value

id = identifier

3.6. The Translation

After normalization (Section 3.4), the model is avail-
able in the normalized mACG-Modelica language (Sec-
tion 3.5). This form allows a more straightforward
translation to the SDFK language (Section 3.1) which
will be described in the following sections.

Any normalized mACG-block is directly mapped to
an SDFK node — no context information from sur-
rounding blocks is needed.

3.6.1. Intuitive Translation

Inputs, Outputs, Parameters without Modification,
and Initialized Delays Inputs and parameters with-
out modification bindings are mapped to node input

arguments. Outputs are mapped to node return val-
ues. A lexicographic order relation on node input and
output arguments ensures an unambiguous mapping.

Delays and the start values of their argu-
ments are mapped to initialized delays (e.g.,
“previous(x)” ↦ “0 fby x”, if “x(start=0)”, compare
line 6,8 ↦ 16).

1 block PI
2 input Real u;
3 output Real y;
4 parameter Real kd;
5 parameter Real Td;
6 Real x(start=0);
7 equation
8 x = previous(x) + u/Td;
9 y = kd*(x + u)

10 end PI;

normal↧sdfk

11 node PI (Td:real,
12 kd:real,

13 u:real) =

14 y:real with
15 var x:real in
16 x = 0 fby x + u/Td
17 and y = kd*(x+u)

Parameters with Modification Parameters with
modification bindings are mapped to local variables
and equations.

18 block E
19 parameter Real k1 = 2*k2;
20 parameter Real k2 = 4;
21 end E;

normal↧sdfk

22 node PI () = with
23 var k1:real,
24 k2:real in
25 k1 = 2*k2

26 and k2 = 4

Instance Modifications and Dot Access Instance
modifications and instance dot accesses are mapped to
function application like node instance calls.

27 block F
28 input u;
29 output y;
30 parameter Real _pi_Td = 0.1;
31 parameter Real _pi_kd = 2;
32 PI pi(kd=_pi_kd, Td=_pi_Td);

33 Real _pi_y;
34 equation
35 pi.u = 0.1*u;

32

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

36 _pi_y = pi.y;

37 y = _pi_y + 2;

38 end F;

normal↧sdfk

39 node F (u:Real) =
40 y:real with
41 var _pi_Td:real,
42 _pi_kd:real,

43 _pi_y:real in
44 _pi_Td = 0.1

45 and _pi_kd = 2
46 and _pi_y = PI(_pi_Td, _Pi_kd, 0.1*u)
47 and y = _pi_y + 2

3.6.2. Formal Translation Semantics

This section defines the translational semantics for
the normalized mACG-Modelica language. Hence, se-
mantics of modeling constructs in normalized mACG-
Modelica are expressed in terms of constructs from the
SDFK language.

Notation The following notation shall be used:

� A sequence of elements (e1, . . . , en) is frequently
written as a list [e1; . . . ; en] for which an oper-
ator “+” is defined so that if p1 = [e1; . . . ; en]
and p2 = [e′1; . . . ; e′k] then p1 + p2 =
[e1; . . . ; en; e′1; . . . ; e′k] provided ei ≠ e′j for all
i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ k. [] denotes an
empty list. Furthermore, e1 ∈ p1 shall denote that
e1 appears as an element in p1.

� Frequently, elements ei are tuples (e.g., ei =
(xi, ti)). Especially if tuples encode variable
names and their associated types an alternative
notation is preferred in which “,” is replaced by “∶”
and the parentheses are dropped (e.g., ei = xi ∶ ti).
The underscore “ ” is used as a placeholder for
entries which are irrelevant in the specific context.

� Mutually recursive functions
“Function(context)(element)” are used for
defining a transformation of an element within
a context. To keep the notation concise the
definition of a function is often overloaded — its
actual interpretation should be clear from the
context.

� Additionally, the transformation relies on a suit-
able lexicographical order relation “<L” to allow
an unambiguous ordering of node input and out-
put arguments (see Figure 13 on page 43).

Translation Equations The function T (.) in Figure 3
defines the translation of a block from the normal-
ized mACG-Modelica language to the SDFK language.
Note that the translation is performed block-by-block,
without requiring a context of global block declarations
as it was required during normalization.

The function CEq creates an auxiliary representation
structure d, i, o, l, s, j, q by traversing equations D and
using an accumulator initialized by the function CId.
The function CId is similar to CEq, but it traverses
the block’s instance declarations P and starts with all
elements of the accumulator being set to the empty
list []. The auxiliary structure is then directly used in
the translation T or further processed by translation
functions TEqList and TCList and their supporting
functions TE and TC (all described later).

d = [x1 ∶ t1; . . . ;xn ∶ tn] stands for a list of dec-
larations within the scope, i = [x1 ∶ t1; . . . ;xn ∶ tn]
stands for a list of input argument declarations, o =
[x1 ∶ t1; . . . ;xn ∶ tn] for a list of node output argu-
ment declarations, and n = [x1 ∶ t1; . . . ;xn ∶ tn] for
a list of local declarations (note that d = i + o + l).
s = [x1 ∶ v1; . . . ;xn ∶ vn] stands for an environment of
variables with start values (e.g., state variables).

j = [(c1 ∶ t1, ci1, co1); . . . ; (cn ∶ tn, cin, con)] is an en-
vironment to collect information of non primitive class
instances (i.e., block components). ci denotes the com-
ponent name, ti its type (i.e., the block declaration’s
name). cii = [u1 ↦ e1; . . . ;un ↦ en] contains the input
variables of ci. Each ui denotes the name of an input
variable and ei is the expression bound to that vari-
able. Similarly, coi = [y1 ↦ x1; . . . ; yn ↦ xn] contains
the output variables of ci. Each yi denotes the name
of an output variable and xi is a local variable bound
to that output variable.

q = [x1 = e1; . . . ;xn = en] stands for a list of equa-
tions, where xi is a variable or parameter name and ei
is an expression.

Most of the function CId (defined in Figure 4) is
rather straightforward. It seems worth mentioning that
a parameter with a bound expression is added as equa-
tion to q while a parameter without a bound expres-
sion is added as input to i. The parameter modifi-
cations (m1 = e1, . . . ,mn = en) in component declara-
tions are mapped to input variables with their respec-
tive bound expression in the block components envi-
ronment j ([m1 ↦ e1; . . . ;mn ↦ en]).

Function CEq (defined in Figure 5) adds equations
from a block to q, unless the equation includes a com-
ponent dot access. In that case the block components
environment j is modified and the equation is either
mapped to the inputs ci or outputs co bindings of that
component.

Once CEq returns the auxiliary representation struc-

33

Modeling, Identification and Control

Translate list of equations into SDFK equations:

TEqList
(d,s)(x1 = e1, . . . , xn = en) = x1 = TE(d,s)(e1) and . . . and xn = TE(d,s)(en)

Translate list of block instance contexts into SDFK equations with node instantiations:

TCList(d,s)((c1 ∶ t1, ci1, co1), . . . ,
(cn ∶ tn, cin, con))

= TC(d,s)(c1 ∶ t1, ci1, co1) and

. . . and TC(d,s)(cn ∶ tn, cin, con)
T(block id P equation D end id;) = letd, i, o, l, s, j, q = CEqCId([],[],[],[],[],[],[])(P)

(D) in

node id(is) = os with var l in qs

where is = SortList(i), os = SortList(o),
qs = TEqList

(d,s)(q) and TCList(d,s)(j)

Figure 3: Translation from the normalized mACG-Modelica language into the SDFK language. The translation
function T(.) utilizes functions CId (defined in Figure 4) and CEq (defined in Figure 5) to create
auxiliary structures d, i, o, l, s, j, q which are further used in the translation functions TEqList and
TCList and their supporting functions TE (defined in Figure 6) and TC (defined in Figure 7).

CId(d,i,o,l,s,j,q)(t x) = (d + [x ∶ t], i, o, l, s, j + [(x ∶ t, [], [])], q) where t ∉ B
CId(d,i,o,l,s,j,q)(t x(m1 = e1, . . . ,

mn = en);)
= (d + [x ∶ t], i, o, s, j + [(x ∶ t, [m1 ↦ e1; . . . ; mn ↦ en], [])], q)

where t ∉ B ∧mi ≠ start

CId(d,i,o,l,s,j,q)(t x) = (d + [x ∶ t], i, o, l + [x ∶ t], s, j, q) where t ∈ B
CId(d,i,o,l,s,j,q)(t x(start = v)) = (d + [x ∶ t], i, o, l + [x ∶ t], s + [x ∶ v], j, q) where t ∈ B
CId(d,i,o,l,s,j,q)(input t x) = (d + [x ∶ t], i + [x ∶ t], o, l, s, j, q)where t ∈ B
CId(d,i,o,l,s,j,q)(input t x(start = v)) = (d + [x ∶ t], i + [x ∶ t], o, l, s + [x ∶ v], j, q) where t ∈ B
CId(d,i,o,l,s,j,q)(parameter t x) = (d + [x ∶ t], i + [x ∶ t], o, l, s, j, q)where t ∈ B
CId(d,i,o,l,s,j,q)(parameter t x = e) = (d + [x ∶ t], i, o, l + [x ∶ t], s, j, q + [x = e]) where t ∈ B
CId(d,i,o,l,s,j,q)(output t x) = (d + [x ∶ t], i, o + [x ∶ t], s, j, q)where t ∈ B
CId(d,i,o,l,s,j,q)(output t x(start = v)) = (d + [x ∶ t], i, o + [x ∶ t], l, s + [x ∶ v], j, q) where t ∈ B
CId(d,i,o,l,s,j,q)(P ;) = CId(d,i,o,l,s,j,q)(P)
CId(d,i,o,l,s,j,q)(P1; P2) = CIdCId(d,i,o,l,s,j,q)(P1)

(P2)

Figure 4: Function CId—Create auxiliary structure for instance declarations.

CEq
(d+[x∶t],i,o,l,s,j,q)(x = e) = (d + [x ∶ t], i, o, l, s, j, q + [x = e])

CEq
(d+[c∶t1]+[x∶t2],i,o,l,s,j+[(c∶t1,ci,co)],q)(x = c . y) = (d + [c ∶ t1] + [x ∶ t2], i, o, l, s, j + [(c ∶ t1, ci, co + [y ↦ x])], q)

CEq
(d+[c∶t],i,o,l,s,j+[(c∶t,ci,co)],q)(c . u = e) = (d + [c ∶ t], i, o, l, s, j + [(c ∶ t, ci + [u↦ e], co)], q)

CEq
(d,i,o,l,s,j,q)(D;) = CEq

(d,i,o,l,s,j,q)(D)
CEq

(d,i,o,l,s,j,q)(D1; D2) = CEqCEq
(d,i,o,l,s,j,q)(D1)

(D2)

Figure 5: Function CEq—Create auxiliary structure for equation declarations.

34

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

ture d, i, o, l, s, j, q, the elements i, o, and l translate
(after applying SortList to i and o) directly to an
SDFK node signature and its local variable declara-
tions. Equations gathered in q are translated to SDFK
equations by function TEqList, which in turn applies
TE to each RHS expression in q. Function TE (de-
fined in Figure 6) translates mACG-Modelica expres-
sions into SDFK expressions.

TE(d,s)(v) = v

TE(d+[x∶t],s)(x) = x

TE(d,s)(if e1 then e2

else e3)
= if TE(d,s)(e1) then

TE(d,s)(e2) else

TE(d,s)(e3)
TE(d,s+[x∶v])(previous(x)) = v fby x

TE(d,s)(op(a1, . . . , an)) = op(c1, . . . , cn)
where c1, . . . , cn =
TEList(d,s)(a1, . . . , an)

TEList(d,s)(a1, . . . , an) = (TE(d,s)(a1), . . . ,
TE(d,s)(an))

Figure 6: Function TE—Translate mACG-Modelica
expression into SDFK expression

Finally j, in which information of block component
usage is collected, is translated to SDFK equations by
function TCList, which in turn applies function TC
to each element of j. Function TC (defined in Fig-
ure 7) translates collected component dot accesses to
an SDFK equation with an RHS node instance. For ex-
ample, a normalized mACG-Modelica code containing
the dot accesses c.u1=x1;, c.u2=x2; x3=c.y1; x4=c.y2;
for a component c would finally be translated into the
SDFK equation (x3,x4)=c(x1,x2).

3.7. Translator Implementation

A concrete translator was implemented using the Scala
programming language Odersky et al. (2010) and the
Kiama language processing library Sloane (2011).

The translator is structured in three main compo-
nents:

Parser Lightweight parser implementation using
Scala’s parser combinator library (extended by
additional functionality provided by the Kiama
library).

Transformation Implementation of the presented mul-
tilevel translation approach. Taking advantage of

TC(d,s)

(c ∶ t, ci, co)
= os = t(is) where

is = TE(d,s)(e1), . . . ,TE(d,s)(en)
where

{(ei)n=∣ci∣i=1 } = {(ei)n=∣ci∣i=1 ∣
ci + [ui ↦ ei] ∧ ui <L ui+1}

and os = (x1, . . . , xn) where

{(xi)n=∣co∣i=1 } = {(xi)n=∣co∣i=1 ∣
co + [yi ↦ xi] ∧ yi <L yi+1}

Figure 7: Function TC—Translate component dot ac-
cesses to an SDFK equation with an RHS
SDFK node instance.

the functional nature of Scala allows a rather di-
rect and lean implementation.

Emitter Emitters to the SDFK language defined in
Section 3.1 and to Lustre code. The emitter com-
ponent utilizes the functional pretty printing com-
binators provided by the Kiama library.

The SDFK output is not executable and needs to
be checked statically (currently by manual inspection).
The Lustre output allows taking advantage of the soft-
ware infrastructure that is available around Lustre.
Particularly, using Lustre as intermediate presenta-
tion, allows to generate executable C-code utilizing
Verimag’s Lustre V4 Toolbox9. This C-code can be
used for dynamic testing. The translator supports
that by allowing to generate appropriate Modelica code
adapters (“C code wrapper blocks”) that provide an in-
terface from Modelica to the generated C code (using
Modelica’s external function interface). These wrap-
pers can be directly loaded into Modelica simulation
environments, enabling convenient back-to-back test-
ing.

Note that the presented translation differs signifi-
cantly from typical Modelica code generation as de-
scribed in Section 2.3. Hence, a completely new trans-
lator implementation was needed to allow experiment-
ing with the new approach.

4. Example

This section aims to present a short, yet still illustra-
tive, example of how ACG-Modelica can be used for
modeling practical relevant control functions. The ex-
ample is presented in the context of a control design

9The Lustre V4 Toolbox is available from the VERIMAG re-
search center (2014), http://www-verimag.imag.fr/.

35

http://www-verimag.imag.fr/

Modeling, Identification and Control

for an electric drive system. However, it is focused
on one particular aspect: The digital realization of
a practical proportional-integral-derivative controller
(PID controller).

4.1. PID Controller Realization

PID controllers constitute the most widespread control
loop feedback mechanism used within industrial prac-
tice. Hence, they can be considered the “bread and
butter” of control engineering. The “textbook” equa-
tion for a PID controller is

y(t) = k (e(t) + 1

Ti
∫

t

e(s)ds + Td
de(t)

dt
) (2)

where y(t) is the controller output signal (≡ actuator
input signal), e(t) = us(t)− um(t) is the error between
set-point signal us(t) and measurement signal um(t),
k is the proportional gain of the controller, and Ti and
Td are the integral- and the derivative time constants.
However, practical implementations are more elaborate
than this.

For example, the Modelica Standard Library
contains a continuous-time model of a PID
controller (library path of the model: Model-
ica.Blocks.Continuous.LimPID) which incorporates
several aspects of practical PID controller design
which are described in (Åström and Hägglund,
1995, Chapter 3), namely limited controller output,
anti-windup compensation and set-point weighting.

The following PID controller equation incorporates
set-point weighting and accounts for the fact that prac-
tical implementations use a modified derivative (“D”)
term which is more robust against high-frequency con-
tent in the controller input signal (a typical source of
high-frequency content is measurement noise). The
controller equation is given in its Laplace transformed
form using s as Laplace variable:

y(s) = k(wpus(s) − um(s) + 1

sTi

(us(s) − um(s))

+ sTd

1 + sTd/Nd

(wdus(s) − um(s))). (3)

The “D” part of the controller is approximated by
sTd ≈ sTd

1+sTd/Nd
, where Nd limits the gain at high fre-

quencies (typically: 3 ≤ Nd ≤ 20). Set-point weighting
is provided by parameters wp and wd and allows to
weight the set-point in the proportional and derivative
part independently from the measurement.

A digital implementation requires a discrete-time
representation. Following the example in (Åström and
Wittenmark, 1997, Listing 8.1) the discretization is

performed by using forward differences10 for the inte-
gral term and backward differences11 for the derivative
term. A valid Z-domain representation for the integral
term is therefore

yI(z) = yI(z)z−1 +
h

Ti

(us(z) − um(z))z−1 (4)

where z is the Z-transform variable and h is the sam-
pling period. The Z-domain representation is com-
monly used in the area of digital control systems or
digital signal processing. Such a representation can
be conveniently mapped to ACG-Modelica code by the
substitution rule xz−1 → previous(x). Hence, a cor-
responding Modelica equation for Equation (4) is:

y_I = previous(y_I)
+ h/T_i*(previous(u_s) - previous(u_m));

The implementation of the derivative part follows in
an analogous way.

Figure 8 shows the complete digital PID-controller
model. Its structure (Figure 8a) is similar to the
continuous-time version provided in the Modelica Stan-
dard Library, the parameters (except for sampling pe-
riod “h”) are the same as in the continuous-time version
so that parameters found for the continuous-time PID-
controller can be directly reused in the digital version
(Figure 8b).

Anti-windup compensation is provided by an internal
feedback loop which uses an error signal formed from
the difference between the output of an actuator model
(here the actor is modeled by a simple output limiter
“limiter”) and the output of the controller (i.e., the
output of gain “gainPID”) in order to drive the inte-
grator to a value which makes the error signal equal
to zero. This mechanism is identical to the one imple-
mented in the continuous-time MSL version. Note that
setting parameter Td = 0 will give a controller with PI
controller characteristics.

4.2. Code Generation and SIL Validation

Figure 9 shows a Software-in-the-Loop (SIL) configu-
ration in which the PID controller from Figure 8 was
translated to C code (using the tool chain described in
Section 3.7) and imported back into Modelica by using
Modelica’s external C function interface. The gener-
ated C code is encapsulated in the “wrapper” block
“sILPI”. The digital PID block from Figure 8 is shown
on the right side. It is fed with the same inputs as the
“sILPI” block and is included in the model to allow a

10Forward differences are also known as Euler’s method. This
corresponds to the substitution rule s → z−1

h
for the trans-

formation from the Laplace-domain to the Z-domain.
11This corresponds to the substitution rule s → z−1

zh
for the

transformation from the Laplace-domain to the Z-domain.

36

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

addP

+
wp

-1

addP

addD

+
wd

-1

addD

k=1

P

I

I

k=1/Ti

D

DT1

Td=Td Nd=Nd k=k

gainPIDaddPID
+1

+1

+1
+

addI
+1

-1

+1
+

addS
at

+
+1-1 addS

at

k=1/(k*Ni)

gainTrack

limiter

yMax

yMin

u_s

u_
m

y

(set-point) (actuator)

(measurement)

(a) Component view of the digital PID-controller.

h Sampling period
k Gain of controller
Ti Time constant of Integra-

tor block
Td Time constant of Deriva-

tive block
yMax Upper limit of output
yMin Lower limit of output
wp Set-point weight for Pro-

portional block (0..1)
wd Set-point weight for

Derivative block (0..1)
Ni Ni*Ti is the time constant

of the anti-windup com-
pensation

Nd The higher Nd, the more
ideal the Derivative block
(typical values between 3
to 20)

(b) Parameters of the the digital
PID controller.

Figure 8: Digital PID controller with limited output, anti-windup compensation and set-point weighting.

SIL simulation using the generated code Original controller model
parameter Real h =0.001 "Sampling period";
parameter Real k_C =0.1 "Gain of controller";

p

DCPM parameters

speed

w

signalVoltage

+-

ground

dcpmMotor

digitalPI

PID

sa
m

pl
e1

periodicClock

h s

0.0

hold1
step

startTime=0

sILPI

step.y

ref
k_C

parameter_k_C

sample1.y

mes
-

diff

sILPI.y

actSILPI

uMax=24

saturation

Figure 9: PI(D) controller and plant in a SIL configuration. The generated code is interfaced to the model
by using a “wrapper” block (“sILPI”). For direct comparison, the original digital PID model (see
Figure 8) is included as component “digitalPI”.

37

Modeling, Identification and Control

direct comparison of “model” vs “software”. The PID
block regulates the speed of the DC permanent magnet
machine “dcpmMotor”. The block is configured as a PI
controller (Td = 0), and the time constant of the inte-
gral part is set to a value that compensates the largest
time constant of the motor model.

The controller gain “k = kC” is provided as an
input to the “software wrapper” block (the trans-
lation in Section 3.1 maps Modelica parameters to
SDFK node inputs). Besides the top-level parameters
“k_C” (controller gain) and “h” (sampling period for
“periodicClock”) the model has a parameter record
component “p” which contains parameters for the mo-
tor model.The block “saturation” limits the actuator
output to ±24 V. The sample element “sample1”has
an additional input for a clock signal. Its origin is
block “periodicClock” that defines a sampling period
of h = 0.001 seconds. The hold element “hold1” im-
plements a zero-order hold element. Hence, the digital
control parts of the model will be executed with a sam-
pling period of h = 0.001 seconds, while the physical
parts are simulated as continuous-time systems. The
blocks stem from the Modelica Synchronous library12

which is described in (Otter et al., 2012).
Figure 9 compares the step response of the SIL con-

figuration for two gain values kC . The plot shows that

0 0.01 0.02 0.03 0.04
0

50

100

150

time [s]

sp
ee

d
[r

ad
/s
]

kC = 0.1

kC = 0.3

Figure 10: Step response of SIL model (with DCPM
engine model and actuator saturation) for
different controller gain values kC .

the control performance cannot be improved arbitrarily
by increasing the controller gain kC .

Figure 11 shows a plot of the relative error between
the output of the “controller software” encapsulated

12The library is available from the Modelica Association (2014),
https://github.com/modelica/Modelica Synchronous.

in the “wrapper” block “sILPI.y” and the output of
the digital PID model “digitalPI.y”. The difference

0 0.01 0.02 0.03 0.04

−2

0

2

⋅10−15

time [s]
d

iff
.y

/
d

ig
it

al
P

I.
y

kC = 0.1

kC = 0.3

Figure 11: Relative error between the output of the
“controller software” (i.e., code using the
tool chain described in Section 3.7) and the
“controller model”.

between the “software” and the “model” stays within
reasonable bounds. For kC = 0.3 the actuator output
is at its limits at the start and the anti-windup com-
pensation with its associated equations is active. At
t = 0.005 s the actuator output is close to zero and
changes its sign for one tick, hence the sign change in
the relative error.

4.3. Summary

The example demonstrates that the ACG-Modelica
language subset is expressive enough in order to model
a practically relevant digital control function. It fur-
thermore indicates how Modelica allows to integrate
such discrete-time control models seamlessly with phys-
ical models from the continuous-time domain. Model-
ica tools’ support for hybrid models is based on solid
mathematical foundations as well as long-term practi-
cal experiences in hybrid systems simulation. Hence,
a model-based development process leveraging Model-
ica technology extended with high-integrity production
code generation can be an attractive and powerful ap-
proach for the development of cyber-physical systems.

5. Discussion

The foregoing discussion is based on a rather restricted
subset of the Modelica language. This allows to keep

38

https://github.com/modelica/Modelica_Synchronous

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

the scope of the translation within manageable bounds
and keeps the language simple and well-defined. The
considered subset is neither arbitrarily chosen nor with-
out alternatives — this section comments design deci-
sions and possible extensions.

5.1. Design Decisions

Languages restrictions and extensions for safety-
related control applications in Modelica have been dis-
cussed in (Thiele et al., 2012). The mACG-Modelica
subset is guided by the same considerations, but at the
same time, the translation effort has also given addi-
tional insight. This section will briefly highlight im-
portant points that motivated the subset.

5.1.1. Clocked Variables

In the mACG-Modelica subset all variables are consid-
ered to be clocked variables. Clocked variables were
introduced in Modelica 3.3 to improve the support for
sampled-data systems. They provide improved model-
ing safety since the clock calculus ensures that only
variables that are on the same clock (are active at
the same time instant) can be combined in expres-
sions (otherwise explicit clock conversion operators are
needed). Previous Modelica support for sampled-data
systems had an automatic sample and hold semantics
for discrete-time variables so that this temporal cor-
rectness property could not be checked automatically
by a compiler.

5.1.2. Causal Data-Flow without Algebraic Loops

Modelica is based on (acausal) equations. Hence,
“a*b = c” is a valid gather and symbolic processing
of the equation system (see Section 2.3) will transform
the equation as needed. If symbolic processing identi-
fies “b” as the unknown variable the equation will be
transformed into the assignment “b := c/a”. This is
very convenient and powerful when modeling the phys-
ical part of a system, since physical “textbook” equa-
tions can be mapped naturally and directly to Model-
ica code. However, it can be problematic for (safety-
relevant) digital control function modeling since sym-
bolic transformations interfere with the ability of the
developer to tightly control the evaluation of expres-
sions. The transformation above is potentially harmful
if “a = 0” cannot be excluded. It is conceivable to safe-
guard performed symbolic transformations, however, a
simple solution is to only allow causal data-flow equa-
tions for the digital control part. This is the design
decision used for the mACG-Modelica subset in which
the left-hand side of an equation must be the unknown
variable of that equation. Additionally, these data-flow

equations may not contain algebraic loops. Solving al-
gebraic loops needs (potentially unbounded) numerical
iteration, which is not compatible with the hard real-
time constraints of control applications.

5.1.3. Modular Code Generation

Modular code generation is understood identical to
Biernacki et al. (2008) that define it as “producing a
transition function for each block definition and com-
posing them together to produce the main transition
function”. Support of modular code generation has
considerable advantages:

� it facilitates to generate code that can be treated
just like handcrafted code (e.g., in order to pass
generated code into a standard assurance process
if the level of tool qualification is not sufficient for
the development project at hand),

� it helps to establish a good traceability between
model and generated code,

� it may decrease the size of the generated code,
since a transition function that corresponds to a
block can be reused for all instances of the block,

� it allows separate compilation of blocks which, on
one hand has positive effects on the scalability of
the development process and on the other hand
allows to distribute modules without source code
in order to protect intellectual property.

Modular code generation is known to impose
stronger causality constraints when sorting the equa-
tions (see (Biernacki et al., 2008)). Hence, design
trade-offs become necessary, e.g., one might want to
use modular code generation for high-level, highly-
cohesive blocks, but not for basic arithmetic blocks.
There are also approaches to modular code generation
which impose less (or none) additional causality con-
straints. Lublinerman et al. (2009) provide a good dis-
cussion of the involved trade-offs and also present an
alternative approach to modular code generation.

It is important to understand that the translation
to the synchronous data-flow kernel language enables
a straightforward path to modular code generation for
Modelica, but it does not enforce a particular code gen-
eration approach. It is highly likely that an industry-
relevant code generator would support modular code
generation as a “per block” option and delegate neces-
sary trade-off decisions to the developer.

5.1.4. Simplified Modifications

Modifications handling in Modelica is rather complex
(Åkesson et al. (2010) provide a good exposition of the

39

Modeling, Identification and Control

challenges). Modifications allow to change aspects of
a block/class (e.g., parameter values) at instance dec-
larations of that block/class. The difficulty lies in the
possibility to nest modifications over several instance
levels, e.g., “a(b(c=2))”. In mACG-Modelica modifi-
cations must not be nested, e.g., “b(c=2)” is allowed,
but not “a(b(c=2))”.

This reduces the language complexity and is also ad-
vantageous with respect to modular code generation.
The presented translation maps parameters to SDFK
node inputs which means that a node that instanti-
ates another node has to be aware of all the applicable
parameters. Using this approach, supporting several
levels of modifications would require to collect all appli-
cable parameters of instantiated nodes and propagate
them through by introducing them as additional in-
puts to the enclosing node. As a result node signatures
(and consequently also function signatures of generated
modular code) would grow significantly. Having sim-
plified modifiers in the language keeps the size of node
signatures within acceptable bounds.

Furthermore, restrictions on nesting modifications
can be considered as beneficial in terms of code read-
ability on the Modelica level — hence, restricting it
(arguable) enforces a better modeling style.

5.2. Applicability to Extended Language
Subsets

The multilevel translation approach presented in Sec-
tion 3.3 allows adding new language elements in a way
that keeps the lower level language representation un-
touched. This is thus an attractive way to further ex-
tend the considered language scope as long as a source-
to-source transformation into a smaller kernel language
can be given.

Essentially, a design trade-off needs to be made. On
one hand the language should be as simple and well
defined as possible to keep qualification efforts under
control, but on the other hand control function devel-
opers need a sufficiently expressive modeling language
in order to work efficiently.

5.2.1. Data typing and Hierarchical Scoping

Data typing and hierarchical scoping using package
declarations has been left out of the discussion. Data
typing is rather similar to typical general purpose lan-
guages and its discussion is considered to be out of
scope of this work. The extension of the language with
packages should be feasible by introducing an addi-
tional step to the aforementioned multilevel translation
approach.

5.2.2. Multirate Control Systems

A more distinctive omission is the absence of clock con-
version operators — hence, the considered language
subset does not allow to model multirate systems. This
is not as restrictive in practice as it may seem at
first sight. Typically, generated code from behavioural
models is integrated into an existing software archi-
tecture that handles non-functional aspects like com-
munication and scheduling (see Figure 1). Linking
the timely start of generated code sequences to ac-
tivation events (e.g., hardware timer interrupts) be-
comes therefore a responsibility of the software inte-
gration phase. In effect, this allows assigning different
activation events to different code generation models
during software integration and thus enables multirate
systems.

Figure 12 illustrates this aspect on the basis of a mul-
tirate cascade control system for a very simple drive
system. The objective is that the load inertia “load”
follows the reference angle given by block “reference”.
The discrete-time controllers are connected to the

Code Gen.

Plant Model

load

J=10

sp
ee

d w

torque

tau

angle

phi

sample1

sa
m

pl
e2

0.0

hold1
sample3

super

subSample1

5

periodicClock

0.02 s

fastController

Speed
Control

slowController

Position
Control

reference
Model

Code Gen.
Model

Figure 12: Multirate cascaded control loop with
Code Generation Models. Note, that
the rate-conversion elements (“subSample1”,
“super”) and the clock are considered to be
part of the Plant Model. Hence, it is not
essential that the qualified code generator
supports that elements.

continuous-time model parts by sample and hold el-
ements. Sampling elements “sample1” and “sample2”
have an additional input for a clock signal. The clock
signal defines the activation instants of the controller
blocks. Its origin is block “periodicClock” that defines
a sampling period of 0.02 seconds. The rate transi-
tion element “subSample1” converts that sampling rate
to 0.1 seconds. Hence, the inner speed control loop is
faster than the outer position control loop. Element
“super” provides slow-to-fast rate transition between

40

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

the two controller blocks. The utilized rate transition
and clock blocks stem from the Modelica Synchronous
library. Otter et al. (2012) describe that library in de-
tail.

While the complete multirate system can be mod-
eled and simulated in Modelica, a qualified code gener-
ator would not need to support the rate-conversion el-
ements: block “slowController” and “fastController”
can be translated separately into sequential code and
activation and rate-conversion can be offloaded to
the software integration phase. Also note that clock
“periodicClock” is not part of the code generation
model, it is also considered to be part of the plant
model. Hence, the omission of clock conversion op-
erators in the behavioral model for code generation
does not prohibit multirate models on the global sys-
tem level.

5.2.3. Inheritance

Inheritance is not supported in the language subset.
A full support of Modelica’s multiple inheritance (in-
cluding its related modification and redeclaration) fea-
tures would increase the language complexity consider-
ably and therefore complicate tool qualification efforts.
However, extending the subset with a restricted sup-
port of inheritance seems quite feasible.

5.2.4. State Machines

Control application often consists of both: data-flow
parts that are naturally described with block diagrams
and system logic parts which are described more natu-
rally using state machine formalisms. Modelica 3.3 in-
troduced state machines with a comparable modeling
power as Statecharts (Harel, 1987) as built-in language
elements (Modelica Association, 2012, Chapter 17).
Extending the presented translation with support for
state machines is desirable, but is a challenge on its
own.

6. Conclusions

Despite its suitability for integrated modeling and sim-
ulation of multi-domain physical systems and sampled-
data systems, the use of Modelica for embedded sys-
tems development was so far limited. A model-driven
development process for embedded systems is so far
impeded by the lack of tools for qualifiable automatic
code generation from Modelica.

To mitigate that deficiency this article presented a
translational semantics of a Modelica subset for con-
trol applications to a synchronous data-flow kernel lan-
guage. The synchronous data-flow kernel allows to

resort to published and well-established compilation
techniques which are accepted by certification author-
ities.

In addition to the formal translation a concrete pro-
totype translator was implemented. The translator ad-
ditionally supports emitting Lustre code for which the
software infrastructure around Lustre can be leveraged.
This demonstrates that the translation equations can
also serve as a base to create a gateway from Modelica
to established tools based on synchronous data-flow.

Enabling the proposed approach requires suitable de-
sign decisions regarding the supported Modelica sub-
set. The necessary trade-offs that resulted in the con-
sidered data-flow based language subset for control ap-
plication have been exposed and possible extensions
have been discussed. Particularly, extending the sub-
set with a state machine formalism seems a desirable
task for the future.

The presented translation to a synchronous data-
flow kernel language opens up new paths towards
a qualifiable automatic code generator for Modelica
that can directly utilize well-accepted methodology and
technology for high-integrity software development.

Acknowledgements

The first author would like to thank Martin Otter
and Dirk Zimmer from the German Aerospace Cen-
ter (DLR) who supervised and supported him during
and after his time at DLR where this work was initially
started.

References
Benveniste, A., Edwards, S. A., Halbwachs, N., Le Guernic, P.,

and de Simone, R. The synchronous languages 12 years later.
In Proceedings of the IEEE, volume 91 (1). pages 64–83, 2003.
doi:10.1109/JPROC.2002.805826.

Biernacki, D., Colaço, J.-L., Hamon, G., and Pouzet, M.
Clock-directed modular code generation for synchronous data-
flow languages. SIGPLAN Not., 2008. 43(7):121–130.
doi:10.1145/1379023.1375674.

Boussinot, F. and De Simone, R. The ESTEREL lan-
guage. Proceedings of the IEEE, 1991. 79(9):1293–1304.
doi:10.1109/5.97299.

Broman, D. Meta-Languages and Semantics for Equation-Based
Modeling and Simulation. Ph.D. thesis, Linköping University,
PELAB - Programming Environment Laboratory, The Insti-
tute of Technology, 2010.

Broy, M., Krcmar, H., Zimmermann, J., and Kirstan, S. Einfluss
des Software-Designs auf die Wirtschaftlichkeit von Software-
Entwicklungen. ATZelektronik, 2011. 02:34–37.

Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis,
S., and Niebert, P. From Simulink to SCADE/Lustre to

41

http://dx.doi.org/10.1109/JPROC.2002.805826
http://dx.doi.org/10.1145/1379023.1375674
http://dx.doi.org/10.1109/5.97299

Modeling, Identification and Control

TTA: a layered approach for distributed embedded applica-
tions. In Proceedings of the 2003 ACM SIGPLAN confer-
ence on Language, compiler, and tool for embedded systems,
LCTES ’03. ACM, New York, NY, USA, pages 153–162, 2003.
doi:10.1145/780732.780754.

Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J. A.
Lustre: a declarative language for real-time programming.
In Proceedings of the 14th ACM SIGACT-SIGPLAN sym-
posium on Principles of programming languages, POPL
’87. ACM, New York, NY, USA, pages 178–188, 1987.
doi:10.1145/41625.41641.

Colaço, J.-L., Pagano, B., and Pouzet, M. A conservative exten-
sion of synchronous data-flow with state machines. In Proceed-
ings of the 5th ACM International Conference on Embedded
Software, EMSOFT ’05. ACM, New York, NY, USA, pages
173–182, 2005. doi:10.1145/1086228.1086261.

Colaço, J.-L. and Pouzet, M. Clocks as First Class Abstract
Types. In R. Alur and I. Lee, editors, Embedded Software,
volume 2855 of Lecture Notes in Computer Science, pages
134–155. Springer Berlin Heidelberg, 2003. doi:10.1007/978-
3-540-45212-6 10.

Ebert, C. and Jones, C. Embedded software: Facts, figures, and
future. Computer, 2009. 42:42–52. doi:10.1109/MC.2009.118.

Elmqvist, H., Otter, M., and Mattsson, S. E. Fundamentals of
Synchronous Control in Modelica. In M. Otter and D. Zim-
mer, editors, 9th Int. Modelica Conference. Munich, Germany,
2012. doi:10.3384/ecp1207615.

Frank, S., Grabmüller, M., Hofstedt, P., Kleeblatt, D., Pepper,
P., Mai, P. R., and Schneider, S.-A. Safety of Compilers and
Translation Techniques – Status quo of Technology and Sci-
ence. In Automotive – Safety & Security. 2008.

Fritzson, P. Principles of Object Oriented Modeling and Simu-
lation with Modelica 3.3: A Cyber-Physical Approach. Wiley
IEEE Press, 2014.

Fritzson, P., Pop, A., Broman, D., and Aronsson, P. For-
mal Semantics Based Translator Generation and Tool De-
velopment in Practice. In Software Engineering Confer-
ence, 2009. ASWEC ’09. Australian. pages 256–266, 2009.
doi:10.1109/ASWEC.2009.46.

Hamon, G. and Pouzet, M. Modular Resetting of Synchronous
Data-flow Programs. In ACM International conference on
Principles of Declarative Programming (PPDP’00). Mon-
treal, Canada, 2000. doi:10.1145/351268.351300.

Harel, D. Statecharts: a visual formalism for complex sys-
tems. Science of Computer Programming, 1987. 8(3):231–274.
doi:10.1016/0167-6423(87)90035-9.

Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., and Jones,
P. Certifiably Safe Software-Dependent Systems: Challenges
and Directions. In Proceedings of the on Future of Soft-
ware Engineering, FOSE 2014. ACM, Hyderabad, India, 2014.
doi:10.1145/2593882.2593895.

ISO 26262-8:2011. Road vehicles – Functional safety – Part 8:
Supporting processes. International Organization for Stan-
dardization, 2011.

Åkesson, J., Ekman, T., and Hedin, G. Implementation
of a Modelica compiler using JastAdd attribute grammars.
Science of Computer Programming, 2010. 75(1–2):21–38.
doi:10.1016/j.scico.2009.07.003. Special Issue on ETAPS 2006
and 2007 Workshops on Language Descriptions, Tools, and
Applications (LDTA ’06 and ’07).

K̊agedal, D. and Fritzson, P. Generating a Modelica compiler
from natural semantics specifications. In Proceedings of the
1998 Summer Computer Simulation Conference (SCSC’98).
1998.

LeGuernic, P., Gautier, T., Le Borgne, M., and Le Maire, C. Pro-
gramming real-time applications with SIGNAL. Proceedings
of the IEEE, 1991. 79(9):1321–1336. doi:10.1109/5.97301.

Lublinerman, R., Szegedy, C., and Tripakis, S. Modular code
generation from synchronous block diagrams: Modularity vs.
code size. In ACM SIGPLAN Notices, volume 44. ACM, pages
78–89, 2009. doi:10.1145/1594834.1480893.

Modelica Association. Modelica—A Unified Object-Oriented
Language for Systems Modeling v3.3. Standard Specification,
2012. Available at http://www.modelica.org/.

Odersky, M., Spoon, L., and Venners, B. Programming in Scala.
Artima Press, second edition, 2010.

Otter, M., Thiele, B., and Elmqvist, H. A Library for Syn-
chronous Control Systems in Modelica. In M. Otter and
D. Zimmer, editors, 9th Int. Modelica Conference. Munich,
Germany, 2012. doi:10.3384/ecp1207627.

Sauvage, S. and Bouali, A. Development Approaches in Soft-
ware Development. In Embedded Real Time Software (ERTS).
Toulouse, France, 2006.

Schneider, S.-A., Lovric, T., and Mai, P. R. The Validation
Suite Approach to Safety Qualification of Tools. In SAE
World Congress. SAE International, Detroit, MI, USA, 2009.
doi:10.4271/2009-01-0746.

Schäuffele, J. and Zurawka, T. Automotive Software Engineer-
ing. Vieweg + Teubner, Wiesbaden, 4 edition, 2010.

Sloane, A. M. Lightweight Language Processing in Kiama. In
J. Fernandes, R. Lämmel, J. Visser, and J. Saraiva, editors,
Generative and Transformational Techniques in Software En-
gineering III, volume 6491 of Lecture Notes in Computer
Science, pages 408–425. Springer Berlin Heidelberg, 2011.
doi:10.1007/978-3-642-18023-1 12.

Åström, K. J. and Hägglund, T. PID Controllers: Theory, De-
sign, and Tuning. Instrument Society of America, 1995.

Åström, K. J. and Wittenmark, B. Computer-Controlled Sys-
tems: Theory and Design. Prentice-Hall, Inc., 1997.

Stürmer, I., Conrad, M., Fey, I., and Dörr, H. Experiences
with Model and Autocode Reviews in Model-based Soft-
ware Development. In Proceedings of the 2006 international
workshop on Software engineering for automotive systems,
SEAS ’06. ACM, New York, NY, USA, pages 45–52, 2006.
doi:10.1145/1138474.1138483.

Thiele, B., Schneider, S.-A., and Mai, P. R. A Modelica Sub-and
Superset for Safety-Relevant Control Applications. In M. Ot-
ter and D. Zimmer, editors, 9th Int. Modelica Conference.
Munich, Germany, 2012. doi:10.3384/ecp12076455.

42

http://dx.doi.org/10.1145/780732.780754
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.1145/1086228.1086261
http://dx.doi.org/10.1007/978-3-540-45212-6_10
http://dx.doi.org/10.1007/978-3-540-45212-6_10
http://dx.doi.org/10.1109/MC.2009.118
http://dx.doi.org/10.3384/ecp1207615
http://dx.doi.org/10.1109/ASWEC.2009.46
http://dx.doi.org/10.1145/351268.351300
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1145/2593882.2593895
http://dx.doi.org/10.1016/j.scico.2009.07.003
http://dx.doi.org/10.1109/5.97301
http://dx.doi.org/10.1145/1594834.1480893
http://dx.doi.org/10.3384/ecp1207627
http://dx.doi.org/10.4271/2009-01-0746
http://dx.doi.org/10.1007/978-3-642-18023-1_12
http://dx.doi.org/10.1145/1138474.1138483
http://dx.doi.org/10.3384/ecp12076455

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

A. Auxiliary Functions

<L = Lexicographical order relation

SortList(xs) = [x1 ∶ t1; . . . ;xn ∶ tn] where

{(xi ∶ ti)n=∣xs∣i=1 } = {(xi ∶ ti)n=∣xs∣i=1 ∣ xs + [xi ∶ ti] ∧ xi <L xi+1}

Figure 13: Lexicographical order relation and function SortList—Auxiliary relation and function for arranging
node input or output arguments in alphabetical order. The elements of the list xs have the structure
name ∶ type. They are sorted by a suitable lexicographical order relation on name.

B. Normalization

B.1. Generation of connection equations

The generation of connection equations is defined as a source-to-source transformation through a set of mutually
recursive functions. G(D) at the bottom of Figure 14 defines the translation of Modelica code that includes
connect-equations into a Modelica code in which these connect-equations are replaced by simple connection
equations of the form “x = e”.

G(D) relies on GCenv(..) to create an environment (I,O,Bs) which is utilized in the translation function
GTcd(I,O,Bs)(D).

GTcd traverses the class declarations. It removes the connector declarations and utilizes function GTd (see
Figure 15) to replace connect-equations by simple equations of the form “x = e”.

The environment (I,O,Bs) is a tuple of (globally) declared input connectors I, output connectors O and
block declarations Bs. I = [i1 ∶ t1; . . . ; in ∶ tn] is a list of input connector short class definitions where i
denotes the class name and t denotes the respective (primitive) data type associated to that input connector.
O = [o1 ∶ t1; . . . ; on ∶ tn] is a list of output connector short class definitions where o denotes the class name
and t denotes the respective (primitive) data type associated to that output connector. Bs = [Bd1; . . . ; Bdn]
is the list of block declarations

Each element Bd = (b, d) is a tuple there b denotes the block class name and d stands for a list of component
declarations in b. d = [x1 ∶ t1; . . . ; xn ∶ tn] is composed from the component names x and their respective type
t.

B.2. Modification and Dot Access Normalization

This normalization step includes the stripping of parameter modifications, the normalizing of component mod-
ifications and the extraction of component dot accesses appearing in expressions. As previously, it is defined as
a source-to-source transformation through a set of mutually recursive functions. The translation makes use of
a couple of auxiliary functions defined in Figure 16. A notable complication of the name decoration function
dn(D,p)(x) in Figure 16 is that it may be used at places there it is required that the decorated name introduces
a fresh variable — i.e., a variable of the same name must not already exist in its scope. To ensure that a fresh
name is introduced one may provide a set of names D which are forbidden as a result of name decoration. The
second equation in Figure 16 handles cases in which the resulting name would be in D by prefixing an additional
“ ” to the name until the resulting name is not any longer in D.

Function N(D) at the bottom of Figure 17 defines the translation from the mACG-Modelica language into
the normalized mACG-Modelica language. This is achieved in three steps:

1. Creation of an auxiliary representation structure C = NCenv[](D) (defined in Figure 18) which encodes the
mACG-Modelica block declarations “D” in a structure that facilitates the normalization transformation in
the subsequent step,

43

Modeling, Identification and Control

GTcd(I,O,Bs+[(id,d)])

(block id D equation E end id)
= block id

GTd((I,O,Bs+[(id,d)]),(id,d))(D)

equation

GTd((I,O,Bd+[(id,d)]),(id,d))(E)

end id;

GTcd(I+[id∶t],O,Bs)(connector id = input t) = , remove declaration

GTcd(I,O+[id∶t],Bs)(connector id = output t) = , remove declaration

GTcd(I,O,Bd)(D;) = GTcd(I,O,Bd)(D)
GTcd(I,O,Bd)(D1;D2) = GTcdGTcd(I,O,Bd)(D1)

(D2)
Gd(d)(t x) = d + [x ∶ t]
Gd(d)(t x(m1 = e1, . . . ,mn = en)) = d + [x ∶ t]
Gd(d)(a) = d, for the remaining forms of a

Gd(d)(D1; . . . ; Dn) = let d1 = Gd(d)(D1) in

. . . let dn = Gd(dn−1)
(Dn) in

dn

GCenv(I,O,Bs)(
block id D equation E end id)

= let d = Gd([])(D) in

(I,O,Bs + [(id, d)])
GCenv(I,O,Bs)(connector id = input t) = (I + [id ∶ t],O,Bs)
GCenv(I,O,Bs)(connector id = output t) = (I,O + [id ∶ t],Bs)
GCenv(I,O,Bs)(D;) = GCenv(I,O,Bs)(D)
GCenv(I,O,Bs)(D1;D2) = GCenvGCenv(I,O,Bs)(D1)

(D2)
G(D) = let (I,O,Bs) = GCenv([],[],[])(D) in

GTcd(I,O,Bs)(D)

Figure 14: Generation of connection equations.

44

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

GTd((I+[t∶tI],O,Bs),Bd)(t x) = input tI x

GTd((I+[t∶tI],O,Bs),Bd)(t x(start = v)) = input tI x(start = v)

GTd(I,O+[t∶tO],Bs),Bd)(t x) = output tO x

GTd(I,O+[t∶tO],Bs),Bd)(t x(start = v)) = output tO x(start = v)

x – internal input, y – internal output:

GTd((I+[t1∶],O+[t2∶],Bs),

(b,db+[x∶t1]+[y∶t2]))(connect(x, y))

= y = x

x – internal output, y – internal input:

GTd((I+[t2∶],O+[t1∶],Bs),

(b,db+[x∶t1]+[y∶t2]))(connect(x, y))

= x = y

c.x – external input, y – internal input:

GTd((I+[t1∶]+[t2∶],O,Bs+[(tc,dc+[x∶t1])]),

(b,tb+[c∶tc]+[y∶t2]]))(connect(c.x, y))

= c.x = y

c.x – external output, y – internal output:

GTd((I,O+[t2∶]+[t1∶],Bs+[(tc,dc+[x∶t1])]),

(b,db+[c∶tc]+[y∶t2]))(connect(c.x, y))

= y = c.x

GTd(Cd,Bd)(connect(y, c.x)) = GTd(Cd,Bd)(connect(c.x, y))
c.x – external input, c.y – external output:

GTd((I+[t1∶],o+[t2∶],Bs+[(tc,dc+[x∶t1])]+[(tm,dm+[y∶t2])]),

(b,db+[c∶tc]+[m∶tm]))(connect(c.x,m.y))

= c.x =m.y

c.x – external output, c.y – external input:

GTd((I+[t2∶],O+[t1∶],Bs+[(tc,dc+[x∶t1])]+[(tm,dm+[y∶t2])]),

(b,db+[c∶tc]+[m∶tm]))(connect(c.x,m.y))

=m.y = c.x

GTd(Cd,Bd)(a) = a; , for the remaining forms of a

GTd(Cd,Bd)(D1; . . . ; Dn;) = GTd(Cd,Bd)(D1); . . . ; GTd(Cd,Bd)(Dn);

Figure 15: Function GTd—Replace connect-equations by equations of the form “x = e”.

45

Modeling, Identification and Control

Name decoration, combining p, x to p x:

dn(D,p)(x) = p x, if x is an identifier and p x ∉D
If a variable name p x already exists in D, try p x instead:

dn(D,p)(x) = dn(D, p)(x), if x is an identifier and p x ∈D
dn(D,p)(v) = v, if v is a value or �
dn(D,p)(if e1 then e2 else e3) = let (a1, a2, a3) = dnList(D,p)(e1, e2, e3) in

if a1 then a2 else a3

dn(D,p)(op(a1, . . . , an)) = let c1, . . . , cn = dnList(D,p)(a1, . . . , an) in

op(c1, . . . , cn)
dnList(D,p)(a1, . . . , an) = (dn(D,p)(a1), . . . ,dn(D,p)(an))
Extract names from lists of parameters, variables or (non-primitive) instance declarations:

Vars([x1 ∶ t1; . . . ;xn ∶ tn]) = {x1, . . . , xn}
Vars([x1 ∶ t1 ∶ e1; . . . ;xn ∶ tn ∶ en) = {x1, . . . , xn}
Vars([(x1 ∶ t1, cm1); . . . ; (xn ∶ tn, cmn)]) = {x1, . . . , xn}
Vars((i, o, l)) = Vars(i) ∪Vars(o) ∪Vars(l)
Join a list of declarations using “;” as separator:

JoinDecl(d) = d;

JoinDecl(d, r) = d; JoinDecl(r)

Figure 16: Auxiliary functions for the normalization.

2. application of the normalization transformation to the auxiliary structure, CN = NormC(C) (defined in
Figure 19 and discussed in more detail later), and finally

3. output of the auxiliary structure as normalized mACG-Modelica using function NdeclList(CN).

The auxiliary representation structure C = [(b1, p1,m1, r1, q1); . . . ; (bn, pn,mn, rn, qn)] is a list of block class
declarations within the (global) environment. bi is a class declaration name. pi = [x1 ∶ t1 ∶ e1; . . . ; xn ∶ tn ∶ en]
is the list of parameter declarations of block bi with their respective type ti and an optionally bound expression
ei. The case that no expressions is bound to a parameter ei is denoted by the symbol � (e.g., x ∶ t ∶ �).

mi = [(c1 ∶ t1, cm1); . . . ; (cn ∶ tn, cmn)] is the list of (non-primitive) class instances appearing in block bi,
where ci denotes the instance name, ti denotes the respective type, and cmi = [x1 = e1; . . . ; xn = en] is the list
of respective class modifications.

ri is partitioned into the tuple ri = (ii, oi, li) where ii = [i1 ∶ t1; . . . ; in ∶ tn] is the list of inputs to block bi
with their respective primitive types, o = [o1 ∶ t1; . . . ; on ∶ tn] is the list of outputs from block bi with their
respective primitive types, and l = [l1; . . . ; ln]) is the list of all local class declarations of primitive type in block
bi, except for parameter declarations (i.e., the list includes input, output and local variable declarations).

qi = [x1 = e1; . . . ; xn = en] is the list of equations declared in block bi.

Function NormC in Figure 19 performs the actual normalization transformation on the auxiliary block rep-
resentation structure C constructed in function NCenv (see Figure 18). It applies functions NB and NbInst
to each block. The translation differs depending on whether a block is used as instance in another block, or
whether a block is used as the top-level instance. Although the final program will have only one top-level
instance, function NormC always creates two versions of a block: One version that is used if the block is used
as instance in another block (using function NB) and one version that is used if the block is used as top-level
instance (using function NbInst which is described in more detail in Section B.3).

Function NB first strips all parameter modifications from a block using the auxiliary function NBstrip. This
is necessary, because the parameters of a block will later be transformed to node inputs in the SDFK language

46

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

Ncomponent(c, ct, cm) = let [m1 = e1; . . . ; mn = en] = cm in

ct c(m1 = e1, . . . ,mn = en)
Nblock(b,

[pa1 ∶ pat1 ∶ pae1;

. . . ; paj ∶ patj ∶ paej]
+ [pb1 ∶ pbt1 ∶ �;

. . . ;pbk ∶ pbtk ∶ �],
[(c1 ∶ ct1, cm1);

. . . ; (cn ∶ ctn, cmn)],
(i, o, l), q)

= let pas = (parameter pati pai = paei)i∈{1,...,j} in

let pbs = (parameter pbti pbi)i∈{1,...,k} in

let ms = (Ncomponent(ci, cti, cmi))i∈{1,...,n} in

block b

JoinDecl(l)
JoinDecl(pas)
JoinDecl(pbs)
JoinDecl(ms)

equation

JoinDecl(q)
end b;

NdeclList(b) = Nblock(b);
NdeclList(b, r) = Nblock(b);

NdeclList(r)
N(D) = let C = NCenv([])(D) in

let CN = NormC(C) in

NdeclList(CN)

Figure 17: Translation from the mACG-Modelica language into the normalized mACD-Modelica language. The
translation function N(D) utilizes functions NCenv (Figure 18) and NormC (Figure 19) for the
transformation and the remaining functions for transforming the auxiliary representation structure
CN to normalized mACG-Modelica.

47

Modeling, Identification and Control

Na(b,p,m,r,q)(x = e) = (b, p,m, r, q + [x = e])
Na(b,p,m,r,q)

(t x(cm1 = e1, . . . , cmn = en))
= (b, p,m + [(x ∶ t, [cm1 = e1; . . . ; cmn = en])], r, q)

where t ∉ B
Na(b,p,m,r,q)(t x) = (b, p,m + [(x ∶ t, [])], r, q) where t ∉ B
Na(b,p,m,r,q)(parameter t x = e) = (b, p + [x ∶ t ∶ e],m, r, q) where t ∈ B
Na(b,p,m,r,q)(parameter t x) = (b, p + [x ∶ t ∶ �],m, r, q) where t ∈ B
Na(b,p,m,(i,o,l),q)(input t x) = (b, p,m, (i + [x ∶ t], o, l + [input t x]), q)

where t ∈ B
Na(b,p,m,(i,o,l),q)

(input t x(start = v))
= (b, p,m, (i + [x ∶ t], o, l + [input t x(start = v)]), q)

where t ∈ B
Na(b,p,m,(i,o,l),q)(output t x) = (b, p,m, (i, o + [x ∶ t], l + [output t x]), q)

where t ∈ B
Na(b,p,m,(i,o,l),q)

(output t x(start = v))
= (b, p,m, (i, o + [x ∶ t], l + [output t x(start = v)]), q)

where t ∈ B
Na(b,p,m,(i,o,l),q)(t x) = (b, p,m, (i, o, l + [t x]), q) where t ∈ B
Na(b,p,m,(i,o,l),q)(t x(start = v)) = (b, p,m, (i, o, l + [t x(start = v)]), q) where t ∈ B
NCdec(b,p,m,r,q)(d;) = Na(b,p,m,r,q)(d)
NCdec(b,p,m,r,q)(d1; d2) = NCdecNa(b,p,m,r,q)(d1)

(d2)
NCenv(C)(block id D

equation E end id)
= C + [NCdecNCdec(id,[],[],[],[])(D)(E)]

NCenv(C)(D;) = NCenv(C)(D)
NCenv(C)(D1; D2) = NCenvNCenv(C)(D1)

(D2)

Figure 18: Function NCenv—Create an auxiliary representation structure for mACG-Modelica block declara-
tions.

48

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

NBstrip(b, [p1 ∶ t1 ∶ e1;

. . . ; pn ∶ tn ∶ en],m, r, q)
= (b, [p1 ∶ t1; . . . ; pn ∶ tn],m, r, q)

NB(C)(b, p, [m1; . . . ; mk],
r, [q1; . . . ; ql])

= let BN0 = NBstrip(b, p, [m1; . . . ; mk],
r, [q1; . . . ; ql]) in

let BN1 = NBm(C,BN0
)(m1) in

. . . BNk
= NBm(C,BNk−1

)(mk) in

let BNk+1
= NBq

(C,BNk
)
(q1) in

. . . BNk+l
= NBq

(C,BNk+l−1
)
(ql) in

let (c1 ∶ tc1 ,), . . . , (cn ∶ tcn ,) =m1, . . . ,mk in

let BNk+l+1
= NBo(C,BNk+l

)(c1 ∶ tc1) in

. . . BNk+l+n
= NBo(C,BNk+l+n−1

)(cn ∶ tcn) in

BNk+l+n

NormC(C) = let [(b1, p1,m1, r1, q1); . . . ; (bn, pn,mn, rn, qn)] = C in

(NB(C)(b1, p1,m1, r1, q1),NbInst(C)(b1, p1,m1, r1, q1),
. . . ,NB(C)(bn, pn,mn, rn, qn),NbInst(C)(bn, pn,mn, rn, qn))

Figure 19: Function NormC—Normalization transformation on the auxiliary structure C. Applies NB and
NbInst (see Section B.3) to each block. Function NB uses NBstrip to remove parameter modifications,
NBm (defined in Figure 20) to normalize component modifications, NBq (defined in Figure 21) to
extract and normalize dot accesses appearing in RHS expressions and NBo (defined in Figure 22) to
add “dummy” equations for component outputs that are not accessed.

49

Modeling, Identification and Control

which resemble function arguments. Therefore, the parameters of a block need to be set at the place there the
block/node is instantiated and not within the block itself.

After that, function NB uses function NBm (defined in Figure 20) to normalize component modifications for
every component instantiated in the current block. NBm first extracts all parameters from the component’s
block definition and introduces them as new (decorated) parameters in the block enclosing the component
declaration. During that process it needs to be ensured that component modifications applied in the enclosing
block replace parameter modifications in the component’s block definition.

NBm(C+[(tc,[pt1
∶tt1 ∶et1 ; ...; ptk

∶ttk ∶etk], , ,)],

(bB ,pB ,mB+[(c∶tc,)],rB ,qB))
(c ∶ tc, [pc1 = ec1 ; . . . ; pcn = ecn])

= let Ptp = {pt1 , . . . , ptk} in

let Ptpte = {(pt1 , tt1 , et1), . . . , (ptk , ttk , etk)} in

let Pcp = {pc1 , . . . , pcj} in

let Pcpe = {(pc1 , ec1), . . . , (pcn , ecn)} in

let Pcpte = {(pc1 , tc1 , ec1), . . . , (pcn , tcn , ecn)} =
{(p, t, e) ∣ (p, e) ∈ Pcpe ∧ (p, t,) ∈ Ptpte} in

let Prp = Ptp ∖ Pcp in

let Prpte = {(pr1 , tr1 , er1), . . . , (prl , trl , erl)} =
{(p, t, e) ∣ p ∈ Pr ∧ (p, t, e) ∈ Ptpte} in

let D = Vars(pB) ∪Vars(mB) ∪Vars(rB) in

let pnew = [(dn(D,c)(pr1) ∶ tr1 ∶ dn(D,c)(er1));
. . . ; (dn(D,c)(prl) ∶ trl ∶ dn(D,c)(erl))]+

[(dn(D,c)(pc1) ∶ tc1 ∶ ec1);
. . . ; (dn(D,c)(pcn) ∶ tcn ∶ ecn)] in

let mnew = [(c ∶ tc, [pr1 = dn(D,c)(pr1);
. . . ; prl = dn(D,c)(prl)]+

[pc1 = dn(D,c)(pc1);
. . . ; pcn = dn(D,c)(pcn)])] in

(bB , pB + pnew,mB +mnew, rB , qB)

Figure 20: Function NBm—Normalize component modifications. All parameters from the modified component
are extracted from the component’s block definition and are introduced as fresh (decorated) parame-
ters in the block enclosing the component declaration. During that introduction it is ensured that the
components modification replace the parameter modifications from the component’s block definition.

As a next step function NB applies function NBq (defined in Figure 21) to extract and normalize nested
component dot accesses appearing in RHS expressions of equations. It traverses a RHS expressions e and
searches for an occurrences of a component dot accesses c.a in e. If it finds one, the component dot access is
extracted and a fresh (decorated) variable xca = dn(D,c)(a) is introduced and bound to c.a in a new equation
xca = c.a. The component dot access c.a in e is then replaced by xca. In order to ensure that any component dot
access c.a is uniquely associated to exactly one equation xca = c.a it is checked whether an equation association
xca = c.a already exists — if so, the variable xca is reused and no fresh variable is introduced.

And finally function NB applies function NBo (defined in Figure 22) to add “dummy” equations for component
outputs that are not accessed in in the instantiating block. This is necessary, since after normalization it is
required that all outputs of a component actually have a binding equation in a block that instantiates the
component. Hence, function NBo first extracts all RHS component dot access variables that appear in the
block equations for the respective component. Since component dot accesses have been previously normalized
to x = c.a by function NBq, the set YBo of all RHS component dot access variables of component c is obtained
by YBo = {o ∣ [= c.o] ∈ qB}. The remaining relations check whether there are outputs in c which have no
binding in the current block context and create “dummy” variables and equations if such outputs exist.

50

Thiele et. al., “Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica”

NBe
(C+[(tc, , ,(i,o+[a∶t],l),)],

(bB ,pB ,mB+[c∶tc,mc],(iB ,oB ,lB),qB))
(c.a)

= (xca, (bB , pB ,mB + [c ∶ tc,mc],

(iB , oB , lB + [t xca]), qB + [xca = c.a]))

where xca = dn(D,c)(a)
and D = Vars(pB) ∪Vars(mB)∪

Vars((iB , oB , lB)) ∪ {c}

NBe
(C+[(tc, , ,(i,o+[a∶t],l),)],

(bB ,pB ,mB+[c∶tc,mc],

(iB ,oB ,lB+[t xca]),qB+[xca=c.a]))
(c.a)

= (xca, (bB , pB ,mB + [c ∶ tc,mc],

(iB , oB , lB + [t xca]), qB + [xca = c.a]))

where xca = dn(D,c)(a)
and D = Vars(pB) ∪Vars(mB)∪

Vars((iB , oB , lB)) ∪ {c}
NBe(C,B)(op(e1, . . . , en)) = let((a1, . . . , an),Ba) = NBeList(C,B)(e1, . . . , en) in

(op(a1, . . . , an),Ba)
NBe(C,B)(if e1 then e2 else e3) = let((a1, a2, a3),Ba) = NBeList(C,B)(e1, e2, e3) in

(if a1 then a2 else a3,Ba)
NBe(C,B)(previous(e)) = let(a,Ba) = NBe(C,B)(e) in

(previous(a),Ba)
NBe(C,B)(e) = (e,B) for the remaining forms of e

NBeList(C,B)(e1, . . . , en) = let (a1,Ba1) = NBe(C,B)(e1) in

. . . let(an,Ban) = NBe(C,Ban−1
)(en) in

((a1, . . . , an),Ban)
NBq

(C,(bB ,pB ,mB ,rB ,qB+[x=e]))(x = e) = let (a,Ba) = NBe(C,(bB ,pB ,mB ,rB ,qB))(e) in

let (, , , ra, qa) = Ba in

(bB , pB ,mB , ra, qa + [x = a])

Figure 21: Function NBq—Normalize RHS component dot access in equations. The RHS expression e is tra-
versed by function NBe. An occurrence of a component dot accesses c.a in e is extracted and a fresh
(decorated) variable xca = dn(D,c)(a) is introduced and bound to c.a in a new equation xca = c.a. The
component dot access c.a in e is then replaced by xca. It is also checked whether c.a already is asso-
ciated to an equation xca = c.a — in that case no fresh variable is introduced and xca is reused. This
ensures that any component dot access c.a is uniquely associated to exactly one equation xca = c.a.

51

Modeling, Identification and Control

NBo(C+[(tc, , ,(,[o1∶t1; ...;ok ∶tk],),)],

(bB ,pB ,mB ,(iB ,oB ,lB),qB))
(c ∶ tc)

= let YBo = {o ∣ [= c.o] ∈ qB} in

let Yco = {o1, . . . , ok} in

let Ycot = {(o1, t1), . . . , (ok, tk)} in

let Yrot = {(or1 , tr1), . . . , (orn , trn)} =
{(o, t) ∣ o ∈ Yco ∖ YBo ∧ (o, t) ∈ Ycot} in

let qnew = [dnc(or1) = c.or1 ; . . . ; dnc(orn) = c.orn] in

let lnew = [tr1 dnc(or1); . . . ; trn dnc(orn)] in

(bB , pB ,mB , (iB , oB , lB + lnew), qB + qnew)

Figure 22: Function NBo—Add “dummy” equations for component outputs that are not accessed in the instan-
tiating block. Normalization requires that all outputs of a component have bindings to equations in
the block that instantiates the component.

B.3. Top-Level Block Instantiation

For any block declaration with name m in mACG-Modelica, function NbInst, defined in Figure 23, creates a
fresh block with its name decorated by the string “Inst”. The fresh block duplicates inputs and outputs of the
instantiated block m and adds equations to connect its inputs and outputs to the inputs and outputs of m.

As a last step it calls function NBm (see Figure 20) on the freshly constructed block. That call ensures
that parameter modifications in the block definition of m are applied at the created instance of m and that
parameters in m that have no binding modification are introduced as parameters (likewise with no binding
modifications) in the fresh block. Note that parameters that have no binding modification will be turned to
additional node inputs in the subsequent translation to the SDFK language (see Section 3.6).

NbInst([(b1, , , ,); ...; (bl, , , ,)])

(b, p,m, ([i1 ∶ it1; . . . ; ik ∶ itk],
[o1 ∶ ot1; . . . ; on ∶ otn], l), q)

= let mInst = [(xnew ∶ b, [])] in

let qInst = [xnew.i1 = i1; . . . ; xnew.ik = ik]+
[o1 = xnew.o1; . . . ; ol = xnew.on]

let B = (dn({b1,...,bl},Inst)(b), [],mInst,

([i1 ∶ it1; . . . ; ik ∶ itk],
[o1 ∶ ot1; . . . ; on ∶ otn], [it1 i1; . . . ; itk ik]+

[ot1 o1; . . . ; otn on]), qInst) in

let BInst = NBm(C,B)(mInst)
BInst

where xnew ∉ {i1, . . . , ik} ∪ {o1, . . . , on}

Figure 23: Function NbInst—Create block instance wrapper block.

52

http://creativecommons.org/licenses/by/3.0

	Introduction
	Model-Based Development and Tool Qualification
	Overview
	Tool Qualification
	Typical Modelica Code Generation
	An Approach Towards a Qualifiable Modelica Code Generator

	Translation to a Synchronous Data-Flow Kernel Language
	The Synchronous Data-Flow Kernel Language (SDFK)
	mACG-Modelica
	A Multilevel Translation Approach
	The Normalization
	Generation of Connection Equations
	Parameters, Instance Modifications, and Dot Accesses
	Generation of Top-Level Instantiation Blocks

	Normalized mACG-Modelica
	The Translation
	Intuitive Translation
	Formal Translation Semantics

	Translator Implementation

	Example
	PID Controller Realization
	Code Generation and SIL Validation
	Summary

	Discussion
	Design Decisions
	Clocked Variables
	Causal Data-Flow without Algebraic Loops
	Modular Code Generation
	Simplified Modifications

	Applicability to Extended Language Subsets
	Data typing and Hierarchical Scoping
	Multirate Control Systems
	Inheritance
	State Machines

	Conclusions
	Auxiliary Functions
	Normalization
	Generation of connection equations
	Modification and Dot Access Normalization
	Top-Level Block Instantiation

