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Abstract

This paper describes a numerical package for simulating stationkeeping operations of an offshore vessel in
floating sea ice. The software has found broad usage in both academic and industrial projects related to
design and operations of floating structures in the Arctic. Interactions with both intact and broken ice
conditions can be simulated by the numerical tool, but the main emphasis is placed on modelling managed
ice environments relevant for prospective petroleum industry operations in the Arctic. The paper gives a
thorough description of the numerical tool from both theoretical and software implementation perspectives.
Structural meshing, ice field generation, multibody modelling and ice breaking aspects of the model are
presented and discussed. Finally, the main assumptions and limitations of the computational techniques
are elucidated and further work directions are suggested.
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Nomenclature

α Orientation angle of a polygon

αwedge Ice wedge opening angle

β Error reduction parameter

λ Geometrical scaling factor

{Ipolygon} List of intersection polygons between the
vessel and an ice floe polygon

{Spolygon} List of intersection polygons between the
vessel and the top plane of an ice floe

µk Coefficient of kinetic friction

µs Coefficient of static friction

ρ Density of a medium

σc Compressive strength of ice

σf Flexural strength of ice

σmaxwedge Maximal bending stress in a wedge-shaped ice
beam resting on an elastic foundation

σyy Bending stress in a semi-infinite ice sheet

θcrack Polar angle of the splitting crack

4t Time step

~λ Vector of Lagrange multipliers of the multibody
system

~Ω Angular velocity of a body

~τ Torque acting on a body

~bbox Object-aligned bounding box vector

~bpen Position correction vector of the multibody sys-
tem
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~dbest Maximal scaling factor for a polygon in the ice
field generation algorithm

~dmax Maximal floe size

~dmin Minimal floe size

~dscale Scaling vector in the ice field generation algo-
rithm

~F Force vector of the multibody system

~f Force acting on a body

~g Acceleration of gravity

~n Contact normal

~n4 Normal to an intersection point between the
vessel and an ice floe

~nbreak First possible crack propagation direction

~npolygon Normal of an intersection polygon between
the vessel and an ice floe

~nsplit Splitting crack direction vector

~p Constraint impulse vector

~r Coordinate of a point

~u Velocity vector of the multibody system

~v Linear velocity of a body

A Area of a geometrical shape

b Thickness of an artificial boundary around the
ice field region

Ca Angular drag coefficient

Cd Form drag coefficient

Cs Skin friction coefficient

dlim Ice floe narrowness threshold

dpen Penetration depth in a contact point

e Coefficient of restitution

F Friction coefficient matrix of the multibody sys-
tem

H Kinematic map matrix of the multibody system

hi Ice thickness

I Inertia tensor of a body

I3×3 3-by-3 unit matrix

J Constraint Jacobian matrix of the multibody
system

jpos Positional noise in the ice field generation algo-
rithm

jrot Rotational noise in the ice field generation al-
gorithm

kd Constraint damping factor

ks Constraint stiffness factor

L Length of a region

l Length of an object

lavg Average length of a fluid mesh

Lbreakable Ice floe breakability length

M Inertia matrix of the multibody system

m Mass of an object

Nbody Amount of bodies in the simulation

N inters
contact Amount of contact points associated with an

intersection polygon between the vessel and an
ice floe

Ncont Amount of contacts in the multibody system

Nexpand Amount of attempts to expand a polygon in
the ice field generation algorithm

Nfails Amount of attempts to place a polygon in the
ice field generation algorithm

Njoint Amount of joints in the multibody system

Nsize Amount of the floe size sub-intervals in the ice
field generation algorithm

Ntrials Amount of attempts to perturb a polygon in
the ice field generation algorithm

Nver Amount of polygon vertices in the ice field gen-
eration algorithm

Nwedges Amount of ice wedges in a circumferential
crack

plim Limiting impulse of the ice crushing constraint

Q A quaternion

qload Areal density of the distributed load acting on
a semi-infinite ice plate

R Rotation matrix of a body

r, p, q Cardan angles
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Rbending Circumferential crack radius

Rload Radius of the loaded area on a semi-infinite ice
plate

Sk Splitting radius multiplication coefficient

T Transformation matrix of a body

t Length of a line segment in the polygon gener-
ation algorithm

V Volume of a geometrical shape

vproj Linear velocity projection on a surface

W Width of a region

w Width of an object

X,Y, Z Axes of a Cartesian reference frame

x, y, z Coordinates in a Cartesian reference frame

1 Introduction

The majority of prospective hydrocarbon deposits in
the Arctic are located offshore, beyond the 100-m wa-
ter depth contour, which is considered to be the upper
limit for bottom-founded structures in areas with pos-
sible sea ice intrusions (Hamilton, 2011). Operations in
such areas require robust floating drilling and produc-
tion systems, supported by a reliable fleet of ice man-
agement, supply, emergency response and intervention
vessels. Upcoming oil and gas activities require these
floating structures to withstand environmental loads,
including those from sea ice.

Although it is anticipated that the first upcoming
oil and gas operations in deep-water Arctic areas will
take place primarily within the open water season, sea
ice intrusions may occur under some circumstances. If
this happens, it is expected that the ice management
fleet will be able to break down the incoming ice floes
into acceptable sizes, such that the stationkeeping per-
formance of the platform would not be compromised.
Therefore, the ice cover approaching the operational
site will be discontinuous, i.e. broken into discrete ice
features of various shapes and sizes.

The ability of a platform to hold its position during
a sea ice intrusion event is governed by the relationship
between the global environmental load from broken ice
and the stationkeeping system capacity. The ice load
depends on the structure-ice interaction process which
involves complex contact mechanics: ice material fail-
ure, rigid-body motion of the broken ice pieces, ice-ice
and ice-structure friction and fluid effects. Moreover,
the boundary conditions of the managed ice domain

have an influence on the load-response relationship of
the dynamical system, leading to highly nonlinear and
complex behavior.

Full-scale data obtained during the Kulluk platform
operations (Wright, 1999) indicates that stationkeep-
ing in managed ice is possible, and the mooring system
loads measured during Kulluk operations can be used
to perform analytical estimates of the global ice loads
for design purposes (Palmer and Croasdale, 2013).
However, such estimates have not been validated by
full-scale data for the case of ship-shaped structures,
which are currently considered attractive for Arctic
deep-water exploration. Therefore, ice tank experi-
ments are usually performed on new designs to estab-
lish the global loads and operational envelopes of float-
ing offshore structures in various sea ice conditions.

Although model testing is currently considered to
be the state-of-the-art method for estimating global
ice loads, it has some limitations. Scaling uncertain-
ties and boundary effects are the most challenging
ones when testing floaters in broken ice, especially
vertically-sided ship-shaped structures. For example,
the author of this paper has experienced a 7-meter-long
vessel moored at 30◦ oblique angle relative to the ice
drift to induce a boundary interaction in a 10-meter-
wide ice tank after just first 3 meters of a model exper-
iment. Therefore, it seems attractive to develop a nu-
merical model for simulating such interactions, validate
it against model-scale data, and then use the validated
model to expand the testing environment (for example
to increase the width of the ice basin). Moreover, such
model could be used for pre-simulating the model tests
and optimizing the amount of physical experiments in
advance of the actual testing campaign.

Such numerical model has been developed within
the framework of the DYPIC (Kerkeni et al., 2014)
and Arctic Dynamic Positioning (DP) (Skjetne, 2014)
projects. The initial goal of the model was to run more
scenarios than during the laboratory testing campaign
of the DYPIC project at the large ice tank of the Ham-
burg Ship Model Basin (HSVA). Therefore, the model
was given a preliminary name ”Numerical Ice Tank”,
as it was tailored to replicate model-scale experiments
at HSVA. However, the latest version of the model sup-
ports also full-scale simulations, as reported in Scibilia
et al. (2014).

To the best of the author’s knowledge, the first nu-
merical ice tank concept was proposed by Valanto and
Puntigliano (1997) to simulate the icebreaking resis-
tance of a ship in level ice. That paper suggested an
approach which separated the icebreaking process at
the design waterline of a vessel from the motions of the
broken ice floes under the hull. Later, Derradji-Aouat
(2010) described a fully coupled numerical ice tank en-
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vironment based on Explicit Finite Element Method
implemented within commercial packages ANSYS and
LS-DYNA. This technique was used by Wang and
Derradji-Aouat (2010) and Wang and Derradji-Aouat
(2011) to simulate model-scale and full-scale interac-
tions of structures with broken ice. However, although
the approach proposed by Derradji-Aouat (2010) is
generic, the ice pieces were considered unbreakable in
those examples. Finally, Lee et al. (2013) proposed a
numerical ice tank based on the multi-material arbi-
trary Lagrangian formulation and the fluid-structure
interaction analysis technique of the LS-DYNA code.
Pre-sawn level ice tests of 2 different hull shapes were
successfully simulated in that paper.

The main differences of the current model from the
other numerical ice tanks is the assumption of low in-
teraction velocities between the vessel and the ice (i.e.
below 2 m/s in full-scale), and the focus on modelling
broken ice conditions. The former assumption leads to
a simplified treatment of hydrodynamic interactions,
because the ice breaking phenomena become more a
problem of solid mechanics rather than hydrodynam-
ics. The latter leads to adoption of the physics en-
gine software for collision detection, contact force com-
putation and time stepping of the numerical model.
From the theoretical perspective, the physics engine
approach is equivalent to the nonsmooth discrete ele-
ment method (Metrikin and Løset, 2013). The main
difference of the nonsmooth discrete element method
from the conventional penalty-based discrete element
method is that the stiffness and damping parameters
do not need to be introduced into the contact problem
formulations. Therefore, larger time steps can be used
and a higher computational efficiency can be achieved
in the numerical tool. A detailed comparison of the
two different discrete element methods can be found
in e.g. Servin et al. (2014). Discrete treatment of the
ice features allows the model to calculate the ice loads
due to breaking, rotation, submergence and sliding ex-
plicitly, i.e. the motions of the broken ice floes under
and around the hull are fully modelled. This is an-
other major difference of the current model from the
commonly used ice material transport formulations of
Lindqvist and Croasdale (Su, 2011; Bonnemaire et al.,
2011). The simulated ice failure modes in the current
model include crushing, flexural bending and splitting.
Therefore, although the model is tailored to simulat-
ing broken ice conditions, it is also capable of modelling
fixed and floating offshore structures interacting with
intact ice.

The software package has been broadly used by the
industry and academia to investigate design and oper-
ations of floating Arctic offshore structures. Metrikin
et al. (2013b) used the first version of the model for

simulating dynamic positioning of an Arctic drillship
in managed ice and compared the modelling results
with model testing data. Later, Kerkeni et al. (2013a)
used the model to compare the DP control laws in open
water and ice, and to establish DP capability plots of a
vessel in managed ice (Kerkeni et al., 2013b). Metrikin
and Løset (2013) simulated an oblique towing test of
an Arctic drillship in managed ice and compared sim-
ulation results to experimental data. Later, Metrikin
et al. (2013a) performed the first simulation of DP in
level ice and Kerkeni and Metrikin (2013) proposed an
automatic heading controller for managed ice condi-
tions, together with its verification by numerical sim-
ulations. Finally, Scibilia et al. (2014) simulated the
icebreaker Oden in full-scale broken ice conditions off-
shore North-East Greenland, Østhus (2014) developed
an adaptive control methodology for a vessel in man-
aged ice using hybrid position and force control, and
Kjerstad and Skjetne (2014) performed modeling and
control of a DP vessel in curvilinearly drifting managed
ice. Full development timeline of the model is outlined
in Kerkeni et al. (2014).

Currently, the binary version of the software has
been released to commercial partners of the DYPIC
and Arctic DP projects, while the source code and in-
tellectual property rights of the model are owned by
the Norwegian University of Science and Technology.

This paper describes the numerical tool from both
theoretical and software implementation perspectives.
First, Section 2 gives a high-level overview of the sim-
ulation model and its main components. Next, Section
3 describes the preparation steps the user has to take
for executing a simulation run. Then, Section 4 out-
lines the initialization sequence of the numerical model,
including structural creation and ice field generation.
Afterwards, Section 5 specifies the theoretical aspects
of the actual simulation process, including the multi-
body dynamics model, the fluid force model and the
ice breaking model. Then, Section 6 presents the out-
put functionalities of the simulator. Finally, Section
7 discusses the main assumptions and limitations of
the computational approach, and Section 8 summarizes
and concludes the paper.

2 Simulator Overview

On the highest level the simulator is structured as
shown in Figure 1. The user sets up a simulation in the
software by creating an input file for the pre-processor.
The structure and contents of this file are discussed in
Section 3.1. Then, the user should perform the meshing
of the simulated vessel according to a special process
outlined in Section 3.2. Finally, the actual simulation
program starts by initializing the physical scene (Sec-
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tion 4) and entering the simulation loop (Section 5).
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Figure 1: Simulation workflow of the numerical model.

The simulation loop is centered around the physi-
cal engine middleware. This software development kit
(SDK) is used to perform collision detection, contact
manifold creation, rigid body and joint dynamics com-
putation, contact force evaluation and time integration
of the equations of motion. Metrikin et al. (2012b) de-
scribed a framework for modelling a floating structure
in broken ice using a physical engine, and Metrikin
et al. (2012a) performed a comparative study of dif-
ferent physical engines for simulating ice-structure in-
teractions. Later it was realized that physical engines
are being constantly developed and improved, and one
solution might become outdated in a very short time.
Therefore, it was decided to base the software package
on a generic interface that would support any physical
engine, so that the user could easily switch between
the different engines and integrate new ones when nec-
essary. Such interface has been implemented using
the Physics Abstraction Layer (PAL) library (Boeing,
2009), which provides a unified interface to many differ-
ent physical engines. The PAL library is implemented
as a C++ abstract pluggable factory which maintains
a common registry of physical objects that can be sim-
ulated by all underlying physical engines. When a cer-
tain engine is selected by the user, the registry is popu-
lated with objects and methods for that specific engine
during run-time of the application. Further description

of the physical engine itself, including the theoretical
background, is given in Section 5.

Optional visualization of the simulation scene can
be performed by the software in real-time using the Ir-
rlicht library (Gebhardt et al., 2012) (Section 6.2). Fur-
thermore, the simulator can produce numerical output
data in comma-separated format (CSV) for subsequent
analysis and post-processing by the user (Section 6.1).

The full numerical model is packaged into a 32-bit
double-precision Microsoft Windows application. It
has been developed in C++ programming language
using Microsoft Visual Studio 2010 development en-
vironment, and the Microsoft Visual C++ runtime
is needed to run the software on the user’s machine.
The C++ Standard Library has been used for memory
management (e.g. smart pointers), exception handling,
input/output streaming, textual string processing, nu-
merical functions (e.g. square root), container manage-
ment (e.g. vectors, maps, sets and their algorithms)
and templates. Version 3 of the Boost.Filesystem li-
brary (Dawes, 2012) has been used to manipulate files,
directories and system paths for the majority of in-
put/output tasks in the software. Finally, the build
system of the application has been implemented using
Windows batch scripting, and the source code lifecycle
has been managed using the Subversion (SVN) tech-
nology.

3 Simulation Setup

This section describes the pre-processing steps required
for the user to set up a simulation in the software pack-
age.

3.1 Input File Preparation

The input file for the software tool has an Extensible
Markup Language (XML) format and contains all es-
sential information for initializing the numerical model.
Loading and parsing of the input file is implemented
using version 1.2 of the PugiXML library (Kapoulkine,
2014). There are 3 sections in the input file: overall
simulation settings, scene settings and output settings.
The contents of these sections are described in the fol-
lowing paragraphs.

Firstly, the overall simulation settings contain the
name of the physical engine to use in the simulation
loop. The user can select between AgX Dynamics (Al-
goryx Simulation AB, 2014), Bullet Physics (Coumans,
2012), Open Dynamics Engine (Smith, 2014), NVIDIA
PhysX (Nvidia Corporation, 2014) and Vortex Dynam-
ics (CM Labs Simulations Inc., 2014) libraries. How-
ever, the ice breaking functionality is currently sup-
ported only in the Bullet-based implementation of the
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numerical tool. Therefore, if the user selects any engine
except Bullet, the ice floes will be treated as unbreak-
able (see Section 5 for more details on ice breaking).

Furthermore, the overall simulation settings section
of the input file contains the amount of CPU threads
to run (the application supports multithreading), the
size of the time step, the total amount of time steps to
simulate and the real-time visualization system settings
(i.e. the target, heading, elevation and distance to the
camera in the global spherical coordinate system).

The scene settings of the input XML file contain the
following parameters:

• Properties of the simulated vessel: geome-
try, mass, inertia tensor and initial posi-
tion/orientation;

• Physical size of the virtual ice tank: length, width
and depth;

• Acceleration of gravity defined as a 3D vector in
the global reference frame;

• Ice properties: density, thickness, compressive and
flexural strength values and Youngs modulus;

• Fluid properties: density, drag coefficients and
type of the angular drag model (see Section 5.3);

• Mechanical contact properties for the various pairs
of contact surfaces: ice-ice, ice-structure and ice-
boundary (e.g. static and dynamic friction coeffi-
cients, possible restitution and stiffness/damping
in constraints - see Section 5);

• The ice field is defined inside a specified rectan-
gular region which is characterized by the type of
the ice feature (intact or broken), target ice con-
centration in %, floe size distribution and the seed
of random number generator for the packing algo-
rithm (Section 4.3);

• Simulation type: free running, oblique towing or
dynamic positioning (DP). The DP system inter-
face is implemented as a static library component
(a set of .lib files) which can be linked by the user
into a custom-made control system project. Both
the simulation and visualization processes can be
controlled by the user through this interface. At
the start of every time step of a DP simulation the
simulator receives actuation inputs in surge, sway
and yaw DOFs and sums them additively with any
other external forces acting on the vessel to obtain
the total load (see Metrikin et al. (2013b), Kjer-
stad and Skjetne (2014) and Section 5). A moor-
ing system or any other external forces acting on
the vessel can also be implemented through this
DP interface.

Finally, in the output settings section of the input
XML file the user specifies the system path to the out-
put CSV file; the components of the position, orienta-
tion, force and torque vectors of the vessel to record
at every time step (computed in the global reference
frame, as described in Section 6.1); and the amount of
numerical digits after the decimal point for all output
values (the software can output numerical values up to
machine precision).

3.2 Structural Meshing

The geometry of the vessel is also specified in the scene
settings section of the input XML file. In the simula-
tion it is represented by 2 different triangulated surface
meshes: a fluid mesh (Figure 2) and a collision mesh
(Figure 3). If the user would like to run model-scale
simulations, it is possible to specify a scaling factor
for the meshes in the input XML file. The simulator
will then grow or shrink both meshes to the desired
geometrical scaling factor λ.

Figure 2: Fluid mesh of a conceptual Arctic drillship
(courtesy Statoil).

Figure 3: Collision mesh of a conceptual Arctic drill-
ship (courtesy Statoil). Different colors rep-
resent different convex decomposition pieces.

The fluid mesh is used for calculating the inertia
tensor of the vessel and the fluid forces acting on it
(see Section 5.3), while the collision mesh is used to
construct a geometrical representation of the vessel for
detecting contacts with the ice floes in the physical en-
gine. The simulator does not support concave collision
meshes, so if there are any concavities in the original
collision mesh, it must be decomposed into convex ele-
ments (otherwise the collision detection system of the
physical engines will either fail or work very slowly).

216



Metrikin I., “A Software Framework for Simulating Stationkeeping of a Vessel in Discontinuous Ice”

Some automatic convex decomposition tools are avail-
able for this task, e.g. the Hierarchical Approximate
Convex Decomposition tool (Mamou, 2013). However,
experience shows that although such tools can pro-
vide a reasonable initial convex decomposition, the fi-
nal refinement has to be performed manually using a
3D computer graphics software package (such as 3ds
Max (Autodesk, 2014) or Blender (Blender Founda-
tion, 2014)). Throughout the manual refinement pro-
cess it is very important to constantly ensure that when
the convex pieces are added together they will repre-
sent the original mesh as closely as possible. Common
practice is to use the original concave fluid mesh as a
reference for the convex-decomposed collision mesh.

The geometrical file format used by the simulator is
Wavefront OBJ, and files constituting both the fluid
and collision meshes should be supplied in this format.
The physical engines need only the vertex coordinates
of the convex collision meshes for their construction,
while fluid meshes require the face indices in addition
to vertex coordinates. Currently, due to limitations
of the OBJ file loader in the application, all meshes
can have only triangular faces (the file loader is im-
plemented using an open source library developed by
Lindenhof (2012)). Furthermore, before starting a sim-
ulation it is recommended to pre-process the meshes
so that they contain as few faces as possible, in order
to reduce the computational burden on the simulator.
Moreover, the user must ensure that the meshes are
closed (i.e. every edge has exactly 2 adjacent triangu-
lar faces) and do not contain any holes, otherwise the
collision detection system will have artifacts. Finally,
degenerate features, such as too narrow triangles or
duplicate surfaces, must be removed from the meshes
in order to avoid degenerate collision configurations.
It is worth mentioning that the author’s experience in
using the simulator indicates that mesh preparation is
currently the most time-consuming part of the whole
simulation setup process.

4 Initialization of the Simulation
Scene

The simulation scene in the numerical model contains
5 physical components: the fluid domain, the vessel,
the ice field, the boundaries and, optionally, the tow-
ing carriage (Figure 4). The global coordinate system
{Xg, Yg, Zg} is assumed inertial, while local coordinate
systems of the structure {Xs, Ys, Zs} and the ice floes
{Xi, Yi, Zi} are moving attached to their respective ob-
jects.

Initialization of the scene is performed stepwise,
starting from creation of the boundaries which demar-

cate a rectangular region in the {Xg, Yg} plane where
all simulated objects will be confined (Figure 5). The
length L and width W of this region are specified by
the user in the input file. The boundaries are repre-
sented by static rectangular cuboids in the simulation,
meaning that they constitute immovable rigid objects
in the physical engine. The height of the cuboids de-
fines the depth of the virtual ice tank, as specified by
the user in the input file.

Yg

Xg W

L

Figure 5: Boundaries of the simulation domain.

Next, the fluid domain is created. It is represented
by a static half-space demarcated by the {Xg, Yg}
plane, i.e. the water level is always at Zg = 0. The
whole underwater domain is assigned a uniform con-
stant density, as specified by the user in the input file.
All objects in contact with the fluid are affected by
buoyancy and drag forces which are computed accord-
ing to a method described in Section 5.3.

The following sub-sections describe the creation of
the vessel (Section 4.1), the towing carriage (Sec-
tion 4.2) and the ice field (Section 4.3). However, be-
fore these objects are constructed, the simulator ini-
tializes the contact property table in the selected phys-
ical engine using the PAL interface. For every couple
of contacting surfaces (ice-ice, ice-structure and ice-
boundary), the following values are populated from the
input file: static friction coefficient µs, kinetic friction
coefficient µk, restitution coefficient e, constraint stiff-
ness factor ks and constraint damping factor kd. When
2 objects experience a pairwise collision this table is
used to define their interaction mechanics according to
the contact dynamics method (Section 5).

4.1 Vessel Creation

Creation of the vessel in the numerical model is a step-
wise process. First of all, the fluid and collision meshes
are loaded from their respective Wavefront OBJ files,
and geometrical scaling of the vertices is performed:
~r newi = λ~r oldi , where ~r oldi is the original 3D coordinate
of vertex i in the local coordinate system of the mesh,
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Xg Yg 

Zg 

Xs Ys 

Zs 

Xi 

Yi 

Zi 

Figure 4: Simulation scene of the numerical model.

λ is the geometrical scaling factor from the input file
and ~r newi is the scaled coordinate of the vertex. Af-
ter the scaling operation, each convex decomposition
piece is converted into a point cloud with unique ver-
tices, because the convex mesh loader of the application
removes triangulation and discards duplicate vertices
from the collision meshes of the vessel.

Secondly, the body of the vessel is created in the
physical engine through the PAL interface. Its collision
geometry becomes a compound shape consisting of the
provided convex pieces, and the fluid mesh is used to
calculate the inertial properties of the body according
to the following algorithm:

1. The signed volume of each tetrahedron in the fluid
mesh is computed as follows:

V i4 =
1

6
~r i1 · [(~r i2 − ~r i1)× (~r i3 − ~r i1)]

where ~r i1,2,3 are 3D vertex coordinates of triangle
i in the local coordinate system of the mesh, and
the apex of the tetrahedron is assumed to coincide
with the origin of this coordinate system. The ·
sign represents vector dot product, and the × sign
represents vector cross product.

2. Center of mass of every tetrahedron is calculated
in the local coordinate system of the mesh as fol-
lows:

~r4i

CoM =
1

4
(~r i1 + ~r i2 + ~r i3)

3. The total volume of the mesh is calculated by ac-
cumulating the signed volumes of every tetrahe-
dron:

V =
∑
i

V i4

4. The center of mass of the whole mesh is calcu-
lated in the local coordinate system of the mesh
as follows:

~rCoM =
1

V

∑
i

~r4i

CoMV
i
4

5. An auxiliary 3D vector ~d is computed for every
triangle in the mesh:

~d i = (~r i1)2 +(~r i2)2 +(~r i3)2 +~r i1 ◦~r i2 +~r i1 ◦~r i3 +~r i2 ◦~r i3

where the ◦ sign represents the Hadamard vector
product.

6. Components of the inertia tensor of each unit-mass
tetrahedron are computed in the local coordinate
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system of the mesh using the method of Tonon
(2005):

I4i

11 =
diy + diz

10

I4i

22 =
dix + diz

10

I4i

33 =
dix + diy

10

I4i

12 = I4i

21 = − 1

20
·

·(2ri1,xri1,y + ri2,xr
i
1,y + ri3,xr

i
1,y+

+ri1,xr
i
2,y + 2ri2,xr

i
2,y + ri3,xr

i
2,y+
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i
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i
3,y + 2ri3,xr

i
3,y)

I4i

13 = I4i

31 = − 1

20
·
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i
1,z + ri3,xr

i
1,z+

+ri1,xr
i
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i
2,z + ri3,xr

i
2,z+

+ri1,xr
i
3,z + ri2,xr

i
3,z + 2ri3,xr

i
3,z)

I4i

23 = I4i

32 = − 1

20
·

·(2ri1,yri1,z + ri2,yr
i
1,z + ri3,yr

i
1,z+

+ri1,yr
i
2,z + 2ri2,yr

i
2,z + ri3,yr

i
2,z+

+ri1,yr
i
3,z + ri2,yr

i
3,z + 2ri3,yr

i
3,z)

7. Inertia tensor of the unit-mass mesh about the ori-
gin is computed as follows:

Io =
∑
i

I4iV i4

8. Inertia tensor about the center of mass is calcu-
lated using the parallel axis theorem:

ICoM = ρ[Io − V ·
· (~r 2

CoMI3×3 − ~rCoM ⊗ ~rCoM )]

where

ρ = m/V is the density of the vessel (the soft-
ware tool assumes uniform distribution of mass
m), I3×3 is a 3-by-3 unit matrix and the ⊗ sign
represents the outer vector product.

9. The principal axes of the body are found using the
Jacobi eigenvalue algorithm ICoM = RIdiagCoMR

T ,
where

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33


is the rotation matrix to the principal axes of the
body (composed from the eigenvectors of ICoM ),

and IdiagCoM is the diagonalized inertia tensor (com-
posed from the eigenvalues of ICoM ). The Jacobi
iteration stops when all off-diagonal elements are
less than the threshold value of 10−12 multiplied
by the sum of the absolute values on the diagonal,
or when the limit of 20 iterations is reached. It
is possible to use this algorithm for inertia tensor
diagonalization because ICoM is a real symmetric
matrix.

In the subsequent simulation, the origin of the local
coordinate system of the vessel {Xs, Ys, Zs} is always
kept at the center of mass ~rCoM and its orientation is
kept equal to the principal axes orientation, such that
the inertia tensor is constant and diagonal (equal to

IdiagCoM ). The software ensures that both the fluid and
the collision meshes are always synchronized with this
coordinate system.

The simulator uses unit quaternions to represent
rotations during the dynamical simulation process.
Therefore, the rotation matrix to the principal axes
R is converted to a unit quaternion Qprincipal =
{Qx, Qy, Qz, Qw} using Algorithm 1. The algorithm
ensures a non-degenerative production of a unit quater-
nion to represent rotation matrix R.

Initial position and orientation of the vessel in the
simulator are given by the user in the input file as the
3D coordinate of the center of mass ~r initCoM in the global
frame {Xg, Yg, Zg} and 3 Cardan angles {r, p, q} in ra-
dians. The software converts these angles into a unit
quaternion as follows:

Quser = (sin
r

2
cos

p

2
cos

y

2
− cos

r

2
sin

p

2
sin

y

2
,

cos
r

2
sin

p

2
cos

y

2
+ sin

r

2
cos

p

2
sin

y

2
,

cos
r

2
cos

p

2
sin

y

2
− sin

r

2
sin

p

2
cos

y

2
,

cos
r

2
cos

p

2
cos

y

2
+ sin

r

2
sin

p

2
sin

y

2
)

Then, initial quaternion of the simulated vessel is
computed by applying the user-defined rotation to the
principal axes of the body using quaternion multipli-
cation operation:
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Algorithm 1 Matrix-quaternion conversion algorithm

T = R11 +R22 +R33

if T > 0 then
S = 2

√
T + 1

Qx = −R32−R23

S

Qy = −R13−R31

S

Qz = −R21−R12

S

Qw = S
4

else
if R11 > R22 andR11 > R33 then

S = 2
√

1 +R11 −R22 −R33

Qx = S
4

Qy = R12+R21

S

Qz = R31+R13

S

Qw = −R32−R23

S
else if R22 > R33 then

S = 2
√

1 +R22 −R11 −R33

Qx = R12+R21

S

Qy = S
4

Qz = R23+R32

S

Qw = −R13−R31

S
else

Sc = 2
√

1 +R33 −R11 −R22

Qx = R13+R31

S

Qy = R23+R32

S

Qz = S
4

Qw = −R21−R12

S
end if

end if
Ensure: Q is normalized

Qinit = QuserQprincipal = Q2Q1 =

= (Q1,wQ2,x +Q1,xQ2,w +Q1,yQ2,z −Q1,zQ2,y,

Q1,wQ2,y +Q1,yQ2,w +Q1,zQ2,x −Q1,xQ2,z,

Q1,wQ2,z +Q1,zQ2,w +Q1,xQ2,y −Q1,yQ2,x,

Q1,wQ2,w −Q1,xQ2,x −Q1,yQ2,y −Q1,zQ2,z)

Finally, for free running simulation type, initial lin-
ear and angular velocities of the vessel are fetched from
the input file and assigned to the simulated body in the
selected physical engine.

4.2 Towing Carriage Creation

For an oblique towing simulation type the towing car-
riage is created by the software as a kinematic body
in the physical engine, i.e. it is represented by an ani-
mated object that has a constant velocity irrespective
of the forces acting on it (a moving body with infinite
mass). Velocity of the carriage along the global Xg

axis is fetched from the input file and assigned both
to its kinematic body and to the body of the vessel,
for initial synchronization (see Figure 4 where the car-
riage is represented by a dark-red rectangular cuboid
positioned directly above the vessel). Towing carriage
velocity is constant throughout the whole simulation
process.

For visualization purposes the user can specify
the height of the carriage zusercarriage in the input
file. It will be represented by a cube located at
(r initCoM,x, r

init
CoM,y, z

user
carriage) in the {Xg, Yg, Zg} frame

and moving with the desired velocity along the Xg axis.
The total towing distance is specified by the user in
the input file. When this distance is covered, the tow-
ing velocity is reset to zero, and the towing process is
stopped.

The carriage and the vessel are connected to each
other by a prismatic joint (Figure 6), which is a slider
restricting 5 DOF of relative motion between the ves-
sel and the carriage. Relative displacements only along
the Zg axis are allowed. The height of the joint zuserjoint is
specified by the user in the input file, and its initial po-
sition in the simulation is set to (r initCoM,x, r

init
CoM,y, z

user
joint)

in the {Xg, Yg, Zg} frame. If the user does not specify
zuserjoint, the height of the joint will be equal to r initCoM,z.

This arrangement ensures a physical towing process
in the numerical simulation, meaning that the vessel is
”dragged” by the towing carriage, and the resistance
force can be measured by the prismatic joint.

4.3 Ice Field Generation

The ice field is created inside a rectangular region on
the {Xg, Yg} plane according to the input file speci-
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Figure 6: A horizontally aligned prismatic joint
(Coumans, 2014).

fication. Before generating the ice field the software
checks that the requested rectangular region of the ice
field is fully contained inside the ice tank boundaries
(Figure 11), so that no ice floes fall outside the ac-
tually simulated domain. Within the ice field rectan-
gle the numerical tool can generate a level ice sheet
(Section 4.3.1) or 3 different types of broken ice fields:
randomly-distributed (Section 4.3.2), grid-distributed
or size-distributed. The latter 2 are not discussed in
this paper.

After the 2D ice field generation step is completed
each ice floe polygon is positioned in the {Xg, Yg}
plane. Then, all ice floes are created as dynamic bodies
in the selected physical engine, i.e. their collision and
fluid meshes are generated. Collision meshes are ob-
tained by extruding the 2D polygonal shapes of the ice
floes along the Zg axis to obtain a uniform thickness
hi according to the input file specification. The result
of the extrusion operation is a set of polyhedral rigid
bodies with their side faces parallel to the Zg axis (Fig-
ure 7). These polyhedra are used as collision meshes of
the ice floes during the following dynamical simulation
process.

Top face 

Side faces 

Figure 7: Ice floes in the virtual ice tank.

Fluid meshes of the ice floes are created differently
for rectangular and polygonal geometries. Rectangular
ice floe meshes are generated by manually triangulat-
ing their faces (Figure 8, a-d), while polygonal ice floes
are first triangulated in-plane using a constrained De-
launay triangulation library Poly2Tri (Green, 2013):
Figure 9, a-b. Then, the triangulated polygon is du-
plicated to create an extruded 3D prism of thickness
hi, which will constitute the top and bottom faces of
the fluid mesh (Figure 9, c). Finally, the side faces of
the polyhedron are triangulated to complete the mesh
(Figure 9, d).

Figure 8: Rectangular cuboid triangulation.

Inertial properties of the rectangular ice floes are
computed using analytical formulae. The mass is cal-
culated as follows: mi = LiWihiρi, where ρi is the
ice density. Inertia tensor about the principal axes is
computed as follows:

Ibox = mi/12

L2
i + h2i 0 0

0 W 2
i + h2i 0

0 0 L2
i +W 2

i


The principal axes themselves are parallel to the sides
of the rectangular cuboid (Figure 10). The origin of the
principal axes is located at the center of mass, which
in this case coincides with the geometrical center (red
dot in Figure 10).

Inertial properties of polyhedral ice floes are calcu-
lated using their fluid meshes and the same techniques
as for the vessel (Section 4.1, steps 1-9). The only
difference is that in step 8 of the algorithm the ice
density is used instead of the structural density (it is
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Figure 9: Polyhedron triangulation.

assumed that the ice floes have uniform density and
their mass can be computed as mi = A2Dhiρi, where
A2D is the area of the ice floe polygon). Otherwise,
the exact same source code is used for the ice floes and
the vessel. Furthermore, in the same manner as for
the vessel, the simulator ensures that the origin of the
local coordinate system of the ice floes {Xi, Yi, Zi} is
always kept at the center of mass, and its orientation is
always kept equal to the principal axes, such that the
inertia tensor in the local frame remains constant and
diagonal throughout the whole simulation process.

hi

Li Wi

Xi
Yi

Zi

Figure 10: Dimensions of a rectangular cuboid.

The software initializes the vertical positions of the
ice floes such that their draft is equal to hi

ρi
ρw

, where ρw
is the water density. Therefore, at the start of the sim-
ulation process all ice floes are created in equilibrium
with the fluid. Additionally, the ice field generation al-
gorithm ensures that the ice floes do not intersect each

other and do not physically interact with each other at
the start of the simulation process (Section 4.3.2).

To create the ice floes in the physical engine through
the PAL interface, their initial positions and orienta-
tions have to be converted into PAL 4 × 4 matrices.
To achieve this, first, the orientation quaternion of
an ice floe is generated from its axis-angle represen-
tation: Q = (kx sin α

2 , ky sin α
2 , kz sin α

2 , cos α2 ). Since
kx = ky = 0, kz = 1, this expression simplifies to
Q = (0, 0, sin α

2 , cos α2 ), where α is the rotation angle of
the ice floe around the Zg axis. Then, a 3× 3 rotation
matrix is generated from the quaternion:

R =


1− 2

Q2
y+Q

2
z

‖Q‖2 2
QxQy+QwQz

‖Q‖2 2
QxQz−QwQy

‖Q‖2

2
QxQy−QwQz

‖Q‖2 1− 2
Q2

x+Q
2
z

‖Q‖2 2
QyQz+QwQx

‖Q‖2

2
QxQz+QwQy

‖Q‖2 2
QyQz−QwQx

‖Q‖2 1− 2
Q2

x+Q
2
y

‖Q‖2


where ‖Q‖2 = Q2

x +Q2
y +Q2

z +Q2
w. Finally, the 4× 4

transformation matrix for the PAL interface is com-
puted as follows:

T =


R11 R12 R13 0
R21 R22 R23 0
R31 R32 R33 0
rx ry rz 1


where ~r = (rx, ry, rz)

T is the 3D position vector of the
ice floe’s center of mass. The resulting matrix T is used
for initializing every ice floe in the selected physical
engine.

4.3.1 Level Ice Field Generation

The level ice field is generated as a rectangular region
extruded along the Zg axis and uniformly filled with
the ice material of thickness hi. In the physical engine
it is represented by a static rectangular cuboid which
is not affected by forces from any other objects in the
simulation domain (same rigid body type as the ice
tank walls). However, the level ice itself can break
and can produce reaction forces on the vessel and the
dynamic ice pieces in contact with it. The ice force
computation algorithms are described in Section 5.

4.3.2 Randomly-distributed Ice Field Generation

This generation algorithm can produce 2 different ice
field types: rectangular and polygonal, depending on
the shape of the individual ice floes selected by the
user in the input file. The rectangular ice field consists
of rectangles, while the polygonal ice field consists of
convex polygons. The actual packing algorithm is the
same for both ice field types. Furthermore, both ice

222



Metrikin I., “A Software Framework for Simulating Stationkeeping of a Vessel in Discontinuous Ice”

field types are characterized by the same floe size pa-
rameters in the input file: the maximal floe size and
the minimal floe size. They are defined as the length
and the width of bounding rectangles in the {Xg, Yg}
plane: ~dmin = (lmin, wmin) and ~dmax = (lmax, wmax)
(Figure 11).

Before the algorithm is executed, 4 artificial rectan-
gular boundaries with thickness b are created around
the ice field rectangle to provide a ”safety” margin for
preventing polygon creation on the border of the region
(Figure 11). These boundaries are used exclusively by
the ice field generation algorithm, and they are not
created in the physical simulation.

Yg

Xg
W

L

b

b

Ice field rectangle

lmin lmax

wmin wmax

Figure 11: The ice field rectangle and its ”safety”
margins.

The actual generation algorithm starts by subdi-
viding the user-defined floe size interval into Nsize
sub-intervals (Figure 12), and the packing procedure

starts with the largest floes: [~d curmin,
~d curmax] = [~dmin +

(Nsize− 1)
~dmax−~dmin

Nsize
, ~dmax]. Without subdivision into

sub-intervals the algorithm tends to produce ice floes
with almost exclusively ~dmin and ~dmax sizes, which re-
sults in unnaturally looking ice fields. Moreover, if the
bounds of the sub-intervals are too narrow with re-
spect to dlim, which is the maximal allowed floe sides
ratio (floe narrowness threshold), they are immediately
corrected according to Algorithm 2 in order to avoid
creation of unphysically narrow ice floes.

Algorithm 2 Interval narrowness correction.

if
dcur
min,y

dcur
min,x

> dlim then dcurmin,y = dlimd
cur
min,x

end if
if

dcur
max,y

dcur
max,x

> dlim then dcurmax,y = dlimd
cur
max,x

end if
if

dcur
max,x

dcur
max,y

> dlim then dcurmin,x = dlimd
cur
min,y

end if
if

dcur
min,x

dcur
max,y

> dlim then dcurmax,x = dlimd
cur
max,y

end if

Then, a candidate ice floe polygon is created. In
case of the rectangular ice field type, the candidate
polygon is created as a centered axis-aligned rectangle
with size (d curmin,x, d

cur
min,y). In case of the polygonal ice

field type, the candidate polygon is created as shown
in Figure 13. First, a unit square is created and a
small space t is reserved on all of its edges next to the
vertices (Figure 13, a). Then, 4 random points are
generated on the remaining space of the 4 edges (Fig-
ure 13, b). These 4 points constitute the vertices of the
initial polygon, i.e. a quadrilateral. Next, one of the 4
vertices of the quadrilateral is selected randomly and
a small space t is reserved on the 2 edges adjacent to
it (Figure 13, c. Blue point is the one selected). Then,
2 more points are created on the remaining space of
these 2 edges (Figure 13, c. Green points are the ones
generated). Finally, the old point is discarded (the blue
one in Figure 13, c), and the 2 new points are added to
the polygon (the green ones in Figure 13, c), making it
a pentagon (Figure 13, d). This procedure of selecting
a random vertex and adding 2 new ones instead of it is
repeated as many times as needed to create an Nver-
gon, where Nver ≥ 4 is the amount of vertices required
in the final polygon. As an example, Figure 13 shows
the creation of a heptagon, i.e. a 7-vertex polygon, us-
ing the outlined procedure. An important property of
the algorithm is that it ensures creation of convex poly-
gons, which makes them suitable for subsequent usage
in the physical engine.

After the vertices of the polygon are created, its axis-
aligned bounding box is obtained by looping through
all of the vertices and finding their minimal and
maximal coordinates: xmin, xmax, ymin, ymax in the
{Xg, Yg} plane. Then, a scaling vector is introduced:
~dscale = (

dcur
min,x

xmax−xmin
,

dcur
min,y

ymax−ymin
) and each vertex of the

polygon ~ri is centered and scaled using this vector to
ensure user-defined proportions along the Xg and Yg
axes:

~ri ← ~ri · ~dscale − 0.5~d curmin − (xmin, ymin)T · ~dscale

Finally, the polygon is either expanded or contracted
in order to match the required area dcurmin,x · dcurmin,y. In
order to do this, the current area of the polygon is first
calculated as follows:

Apolygon = 0.5 · (rNver,xr1,y − rNver,yr1,x+

+

Nver−1∑
i=1

ri,xri+1,y − ri,yri+1,x)

Finally, the coordinate vector of each vertex in the
polygon is scaled as follows:
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Figure 12: User-defined floe size interval with subdivision.
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Figure 13: Random polygon generation procedure.

~ri ← ~ri ·

√
dcurmin,x · dcurmin,y

Apolygon

The polygonal ice floe generation algorithm, de-
scribed in the previous paragraphs, performs random
vertex selection and polygon point creation using a
pseudo-random number generator. This generator is
used here, as well as in other parts of the software,
to produce pseudo-random integers and real numbers
using a user-defined seed from the input file (an un-
signed integer number). A custom-made routine, ini-
tialized by the seed, creates pseudo-random numbers
in order to ensure consistency and repeatability of the
simulations. All random numbers in the software have
uniform distributions in their respective ranges.

After the candidate ice floe polygon is finally created,
the ice floe placement routine is initiated in a loop.
Firstly, a random 2D displacement vector ~rloc inside
the ice field rectangle and a random rotation angle α
in the range [0, π] are applied to each vertex ~ri of the
candidate polygon:

(
ri,x
ri,y

)
←
(
ri,x cosα− ri,y sinα+ rloc,x
ri,x sinα+ ri,y cosα+ rloc,y

)
Then, the software checks if the candidate polygon

intersects any of the previously added polygons or the
”safety” margins around the ice field rectangle. The
Boost.Geometry library (Gehrels et al., 2014) is used
for the intersection testing (the intersects function),
and the axis-aligned bounding boxes of the polygons
are checked first, before the actual polygons, catering
for increased numerical efficiency of the packing rou-
tine.

If no intersections are found the packing algorithm
makes Nexpand attempts to enlarge the candidate poly-
gon using Algorithm 3 (bisection method). The algo-

rithm finds the maximal possible scaling factor ~dbest
which produces no intersections with the previously
added polygons or the ”safety” margins around the ice
field rectangle.

Then, the packing routing makes Ntrials attempts to
slightly move, rotate and enlarge the candidate polygon
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Algorithm 3 Polygon expansion procedure.

~dlow = (1, 1)T

~dhigh = (dcurmax,x/d
cur
min,x, d

cur
max,y/d

cur
min,y)T

for i = 1 : Nexpand do
~dtest = (~dlow + ~dhigh)/2

~ri ← ~ri · ~dtest
if intersects other polygons or margins then

~dhigh = ~dtest
else

~dlow = ~dtest
end if

end for
Maximal expansion ~dbest = ~dlow

in order to find its optimal placement and size in a
separate loop (the trials loop). Finally, the algorithm
adds the polygon to the ice field and checks if the target
ice concentration has been reached. The full ice field
generation routine is outlined in Figure 14.

The main limitation of the algorithm is that, due to
its stochastic nature, it practically cannot produce ice
concentrations above 80%. Nevertheless, the software
reports the actually achieved ice concentration to the
user at the end of the 2D generation process, so that
it can be compared to the target concentration. Ad-
ditionally, the ice field generation time is reported in
textual format.

The final step before the physical creation of an ice
floe is an update of its 2D polygon vertices in the
{Xg, Yg} plane:

(
ri,x
ri,y

)
←

←
(
ri,xdbest,x cosαbest − ri,ydbest,y sinαbest + rbest,xloc

ri,xdbest,x sinαbest + ri,ydbest,y cosαbest + rbest,yloc

)
Figure 15 shows an example of the generated rect-

angular and polygonal 57 × 10 m ice fields with 70%
ice concentration and the following generation param-
eters: ~dmin = (0.1, 0.1) m, ~dmax = (0.5, 0.5) m,
b = 1 m, Nsize = 3, dlim = 3, Nver = 8, t = 0.1 m,
Nfails = 1024, jinitpos = 0.1, jinitrot = 0.2, Nexpand = 7
and Ntrials = 64. The generation time of the rectan-
gular ice field was 8.73 s, while for the polygonal ice
field it took 11.86 s.

5 Simulation Loop

The simulation loop of the numerical tool is centered
around the physical engine software. Although the
application supports several different engines, the ice

Figure 15: Two different 10 × 57 m ice fields gener-
ated by the software: rectangular (left) and
polygonal (right).
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Initialize ice field area Atotalfield = 0
for i = 1 : Nsize do

~d curmin = ~dmin + (Nsize − i)
~dmax−~dmin

Nsize

~d curmax = ~dmin + (Nsize − i+ 1)
~dmax−~dmin

Nsize

Execute Algorithm 2
Create a candidate ice floe polygon
for j = 1 : Nfails do

Create random ~rloc and α
Apply ~rloc and α to the candidate polygon
if Candidate polygon intersects any other polygons or ”safety” margins then

j + +
else

j = 1
~r bestloc = ~rloc
αbest = α
Find ~dbest using Algorithm 3
jpos = max(dcurmin,x, d

cur
min,y) · jinitpos

jrot = π · jinitrot

for k = 1 : Ntrials do
~r trialloc = ~rloc + ~rrand(−jpos, jpos)
αtrial = α+ rand(−jrot, jrot)
Apply ~r trialloc and αtrial to the candidate polygon
if Candidate polygon intersects any other polygons or ”safety” margins then

k + +
else

Find ~dtrial using Algorithm 3
if |~dtrial| > |~dbest| then

~r bestloc = ~r trialloc

αbest = αtrial
~dbest = ~dtrial

end if
end if

end for
Afloe = Apolygon · dbest,x · dbest,y
Aupcomingfield = Atotalfield +Afloe

if Aupcomingfield > Atargetfield then

Acorrectedfloe = Afloe − (Aupcomingfield −Atargetfield )

if Acorrectedfloe > 10−4 m2 then

~dbest ← ~dbest ·
√
Acorrectedfloe /Afloe

else
Algorithm end

end if
Physically create the ice floe
Algorithm end

end if
Physically create the ice floe
Atotalfield ← Atotalfield +Afloe

end if
end for

end for

Figure 14: Randomly-distributed ice field generation algorithm.
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breaking functionality is currently implemented only in
the Bullet-based version of the model. Therefore, this
Section describes the simulation loop as implemented
in the Bullet engine.

One iteration of the simulation loop, which is pro-
gressing with a fixed time step specified by the user in
the input file, is shown in Figure 16. Before the loop
actually starts, the physical properties of all simulated
bodies (i.e. the vessel, the ice floes and the walls of the
ice tank) are created in the computer memory. For each
body with index i these properties are: the dynamical
type of the body (static, kinematic or dynamic), its
mass mi and inertia tensor Ii, its collision and fluid
meshes, its position ~ri and orientation quaternion Qi,
its linear and angular velocities ~vi, ~Ωi and the forces
and torques ~fi, ~τi acting on it (i = 1 : Nbody and Nbody
is the total amount of simulated bodies). If the towing
carriage is present in the simulation, its prismatic joint
is mapped into memory as well.

The following sub-sections describe the various steps
of the simulation loop which are executed sequentially
at every time step.

5.1 Collision Detection

The first step of the simulation loop is execution of the
collision detection routine. It uses the collision meshes
of the objects to compute their geometrical intersec-
tions. First, the axis-aligned bounding boxes (AABBs)
are computed for each simulated body in the global
{Xg, Yg, Zg} frame. As an early filter of potentially
colliding bodies, intersecting AABBs provide a list of
object pairs for further processing in the broad phase
step of the collision detection routine. If the collision
mesh of a body has a convex decomposition, a dynamic
AABB tree is constructed for the body as a bounding
volume hierarchy (BVH) in its local coordinate system.
These BVHs accelerate the collision detection process
by performing a middle phase step which uses a very
fast insertion, removal and update of nodes and ex-
ploits the temporal coherence of the simulated scene.
The broad phase and middle phase steps find all poten-
tially overlapping pairs of objects and reduce the time
complexity of the subsequent narrow phase contact de-
tection step from O(N2

body) to O(Nbody). The narrow
phase step itself computes the contact manifolds on
the overlapping geometries. Every contact manifold
consists of one or more contact points which contain
information about the two bodies in contact, the po-
sitions of the two closest (witness) points on each of
the overlapping bodies, the contact normal vector and
the contact distance along the normal vector (which
is positive if the objects are separate and negative if
there is a penetration). Later in the simulation loop
these contact points are converted into contact con-

straints which ensure non-penetration and frictional
forces between the simulated bodies. Therefore, the
contact points also contain information about the fric-
tion and restitution coefficients between the colliding
bodies. The narrow phase collision detection algorithm
uses the Bullet’s implementation of the Separating Axis
Theorem (SAT), because the default Gilbert-Johnson-
Keerthi distance algorithm was found to be unstable in
generating contact normals. Furthermore, the collision
margins of the SAT algorithm were set to 0 in order
to avoid contact point generation without the actual
contacts between the bodies (this value was non-zero
in the default version of the Bullet library). Finally,
the value of the contact breaking threshold was set to
10−10 m, because the default value was leading to col-
lision reporting of separated bodies.

5.2 Ice Crushing Constraint

The next step of the simulation loop, after the nar-
row phase collision detection is completed, is the ice
crushing constraint formulation. This constraint al-
lows coupling the multibody solver of the physical en-
gine to the mechanical properties of the ice material,
and eventually produces a more realistic physical be-
havior of the numerical model as reported in Scibilia
et al. (2014). Technically, this step of the simulation
loop is implemented as a collision system callback in
the Bullet library.

All ice floes in the simulation domain are divided
into 2 groups: breakable and unbreakable. Floes with
waterplane areas Afloe > Lbreakablehi are considered
breakable. In the current implementation of the nu-
merical model the value of Lbreakable can be easily ad-
justed in the simulator’s source code. Every breakable
ice floe in contact with the vessel is processed to formu-
late the ice crushing constraint, while the unbreakable
floes are not modified.

The ice crushing constraint formulation is a stepwise
process which is executed for all breakable ice floes in
contact with the vessel. The final objective of this pro-
cess is to compute the list of geometrical intersections
between the structural mesh and the ice floe mesh (Sec-
tion 5.2.1), and the associated list of contact points
from the physical engine (Section 5.2.2).

5.2.1 Geometrical Intersection Computation

The fluid mesh of the vessel is used to compute the
geometrical intersection between the structure and the
ice floes. First, each vertex i of the mesh is trans-
formed into the coordinate system of the top face of
the currently processed ice floe (Figure 7): ~r floei =
RTfloe(~ri − ~rCOMfloe ) − (0, 0, hi/2)T , where Rfloe is the

rotation matrix of the ice floe, ~rCOMfloe is the position
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Figure 16: One iteration of the simulation loop.

of the floe’s center of mass in the global frame, ~ri is
the position of vertex i of the fluid mesh in the global
frame, ~r floei is the position of vertex i of the fluid mesh
in the ice floes frame and hi is the ice thickness. All
subsequent calculations in this Section are performed
in this coordinate system, i.e. the frame of the top face
of a breakable ice floe.

For every edge of the vessels mesh, the intersection
point between that edge and the plane of the floe’s
top face is found using Algorithm 4. After the first
intersecting edge is found, each of the 2 edges in the
2 adjacent triangles to the first intersecting edge are
checked for intersection with the plane. The mesh con-
nectivity map is exploited for this task: for every edge
of the mesh this map contains information about the
indices of the 2 adjacent triangular faces and which
other 2 edges those faces contain. This allows ”prop-
agating” the edge-plane intersection contour through
the whole mesh in an efficient manner, until a closed
2D polygon is formed. To avoid numerical errors, for
every new candidate point of the intersection polygon
the algorithm computes the distance from that point
to the previous point already added to the polygon. If
that distance is below 10−12 m, the algorithm does not
add the new point to the polygon.

After the intersection contour is computed, every
point of the resulting polygon is complemented with
information about its 3D normal vector. This vector

Algorithm 4 Edge-plane intersection test.

Edge vertices in 3D: ~r1, ~r2
if r1,z · r2,z > 0 then

No intersection
end if
if |r1,z| < 10−8 m and |r2,z| < 10−8 m then

No intersection
end if
Intersection point ~rint = ~r1 +

|r1,z|
|r1,z|+|r2,z| (~r2 − ~r1)

~n4 is computed as the normal to the triangular face
that intersects the floe’s top face plane.

The full mesh-plane intersection algorithm is pro-
vided in Figure 17. This algorithm can produce sev-
eral intersection polygons between the floe’s top face
plane and the mesh of the vessel, for example when
there are thruster boxes in the waterplane of the ves-
sel (Figure 18). In this case, the list of all intersection
polygons between the vessel and the ice floes will be
denoted {Spolygon} in the remainder of this paper.

Next, for every polygon from the {Spolygon} set, the
software computes intersections with the currently pro-
cessed breakable ice floe polygon. The intersection
function of the Boost.Geometry library (Gehrels et al.,
2014) is used for this purpose. The result of this com-
putation is a list of intersection polygons between the
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Figure 18: An example of a possible set of intersection
polygons between the floe’s top face plane
and the mesh of the vessel.

ice floe and the vessel {Ipolygon}.

Then, for every polygon from the {Ipolygon} set, the
3D normal vectors are computed as follows. First, ev-
ery edge of the polygon is checked for equality with all
edges of the intersection polygons from the {Spolygon}
list. To do that, Algorithm 5 is executed for both ver-
tices of every edge of the polygon. If both distances,
reported by Algorithm 5, are below 10−8 m, the edges
are stated to coincide. In this case, the normal of
the first vertex of the currently processed edge ~n4i

is added into an accumulative vector ~nice ← ~nice+~n4i

for the currently processed polygon. After all coincid-
ing edges are found and their normals are accumulated,
the resulting unit normal of the polygon is computed
as follows: ~npolygon = −(~nice/|~nice|), where |~nice| is
the length of the ~nice vector. The negation sign is used
here to ensure that the vector is pointing from the ice
floe into the vessel, which is needed for subsequent ice
fracture computations in Section 5.5. If the result of
this operation is a vector with negative Zg component,
i.e. pointing from the structure into the ice, the whole

Mark all triangles in the mesh as unprocessed
for All edges in the mesh do

for All edges in the mesh do
if 2 triangles adjacent to the current edge are unprocessed then

Try to find edge-plane intersection ~rint using Algorithm 4 and terminate the loop if found
end if

end for
if Edge-plane intersection is found then

for All edges in the mesh do
for 2 triangles adjacent to the current edge do

if Current triangle is unprocessed then
for 2 edges in the current triangle (not the current edge) do

Try to find edge-plane intersection using Algorithm 4
if Edge-plane intersection found then

Mark the intersection point as the next intersection point
Mark the intersecting edge as the next edge
Mark the current triangle as 4n

end if
end for
Mark the current triangle as processed
Exit the loop if edge-plane intersection was found

end if
end for
Add r x,yint point to the intersection polygon and assign ~n4n

= ||(~r2 − ~r1)× (~r3 − ~r1)|| to this point
Go to the next edge and the next intersection point

end for
end if

end for

Figure 17: Mesh-plane intersection computation algorithm.
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polygon is discarded as invalid. The same happens if
the algorithm fails to produce an accumulated ~nice vec-
tor.

Algorithm 5 Distance from a point to an edge in 2D.

Input point ~r
Edge vertices ~r1, ~r2
~d = ~r2−~r1

|~r2−~r1|

if ~d · (~r − ~r1) < 0 then
Return |~r − ~r1|

else if ~d · (~r − ~r1) > |~r2 − ~r1| then
Return |~r − ~r2|

else
Return |(−dy, dx)T · (~r − ~r1)|

end if

Finally, the areas of the valid polygons are com-
puted using the Apolygon formula presented previously
and stored for subsequent ice fracture computations
in Section 5.5. Furthermore, the axis-aligned bound-
ing boxes of these polygons are obtained by looping
through all of their vertices and finding their mini-
mal and maximal coordinates: xmin, xmax, ymin, ymax
in the {Xg, Yg} plane. Then, the centers of the bonding
boxes are found: xcenter = 0.5(xmin + xmax), ycenter =
0.5(ymin + ymax) and saved as the vertical load appli-
cation points ~r vertload for each polygon. These values are
used in the following step of the simulation loop.

5.2.2 Contact Point Association

The goal of this step is to associate every contact
point, generated by the narrow phase collision de-
tection system, with a specific floe-vessel intersec-
tion polygon from the {Ipolygon} list. To accom-
plish that, each contact point is first computed as
an average value of the witness points on the over-
lapping bodies (found in Section 5.1): ~rcontact =
0.5(~r 1

contact + ~r 2
contact). Then, these contact points are

transformed into the local frame of the floe’s top face
(i.e. the same frame as of the floe-structure intersec-

tion polygons): ~r floecontact = RTfloe(~rcontact − ~rCOMfloe ) −
(0, 0, hi/2)T . Next, the 2D X,Y positions of these
points are found by discarding their z-coordinates:
~r 2D
contact = (rcontact,x, rcontact,y)T . Finally, the mini-

mal distances from these 2D points to the vertical load
application points of every floe-structure intersection
polygon are found: min|~r 2D

contact − ~r vertload |, and the con-
tact points themselves are associated to the polygons
with the minimal distance values. In this way every
contact constraint gets associated to one floe-structure
intersection polygon from the {Ipolygon} list.

The final step of the ice crushing constraint formu-
lation process is the computation of the ice crushing

limit for every contact point:

plim =
4tγσcApolygon

max(0.05, npolygon,zN inters
contact)

where 4t is the time step, γ is a uniformly-distributed
random value in the range [0.5 − 1.0] which accounts
for contact surface imperfections, σc is the compressive
strength of the ice andN inters

contact is the amount of contact
points associated to the current intersection polygon
from the {Ipolygon} list. Technically, plim is an upper
limit value for the normal contact constraint impulse,
expressed in N ·s. It contains a cut-off constant 0.05 to
avoid degenerative contact conditions (i.e. division by
zero in the above stated formula). It means that the
numerical model bypasses the handling of ice crushing
by vertically-sided vessels, which is a major limitation
of the simulator.

At the end of the ice crushing constraint formulation
process every breakable ice floe in the simulation has
an association to its physical body (through PAL), a
2D polygon of its top face surface, and a list of 2D in-
tersection patches between that polygon and the struc-
tural mesh: {Ipolygon}. Finally, every 2D intersection
patch has a list of contact points from the physical en-
gine associated to it, and every contact point knows
its ice crushing constraint limit. This relationship is
illustrated in Figure 16 with red arrows, and it is one
of distinct differences of the current model from that of
Lubbad and Løset (2011), where ice crushing forces are
calculated explicitly and applied directly to the vessel
at every time step.

5.3 External Force Computation

The first external force applied to all simulated objects
is the gravity force: ~fgrav = m~g, where m is the mass
of the object and ~g is the 3D gravity vector defined by
the user in the input file. This force is applied to the
center of mass of every simulated object.

The second external force is the thruster force. It
is applied to the vessel in free running and DP sim-
ulation modes. In the free running mode, both the
thruster force ~fthrust and the thruster torque ~τthrust
are fetched from the user input file, while in the DP
mode these loads are acquired from the DP interface.
In both modes the user specifies the force and torque
in the local frame of the vessel {Xs, Ys, Zs}, so they
have to be transformed into the global frame for sub-
sequent usage in the multibody solver (Section 5.4):

RT ~fthrust, R
T~τthrust, where R is the rotation matrix

of the vessel at the current time step. Both the force
and the torque are applied to the center of mass of the
vessel.
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5.3.1 Fluid Force Computation

As specified in Section 4, the fluid domain in the nu-
merical model is represented by a static half-space de-
marcated by the {Xg, Yg} plane, i.e. the water level is
always at Zg = 0. Free surface effects are not simu-
lated, and no volumetric deformations of the fluid are
allowed. Only buoyancy and drag forces are applied to
the objects, and the whole underwater domain has a
constant and uniform density. The fluid meshes of the
objects are used for the fluid force computations in the
software.

Currently 2 different types of the mathematical fluid
model are supported by the software: engine-specific
and internal. The engine-specific method is imple-
mented only in the Vortex engine and, therefore, does
not support ice fracturing. This method is described
in Metrikin et al. (2013b). The drag coefficient for the
Vortex model is provided by the user in the input file,
while the drag torque and added mass effects are dis-
abled in the engine through the PAL interface. This
method can be used for simulating vessels in unbreak-
able ice.

The algorithm of the internal mathematical fluid
model supports ice fracturing. It is based on the
method and source code of Catto (2006) which clips
the triangles of the fluid mesh against the water plane
and computes the submerged volume Vsub of the mesh
and its centroid ~rc using contributions from the in-
dividual triangles. However, 2 additional quantities
are computed in the current numerical model for ev-
ery submerged triangle in order to calculate the drag
force: its area A4 and the linear velocity projec-

tion v4proj . To do that, the following auxiliary vec-
tor is found first: ~rcross = (~r2 − ~r1) × (~r3 − ~r1),
where ~r1,2,3 are 3D vertex coordinates of the trian-
gle. Then, the area of the triangle is found as fol-

lows: A4 = 0.5
√
r2cross,x + r2cross,y + r2cross,z. To find

the linear velocity projection v4proj , the body’s veloc-
ity is first transformed from the global frame into the
local frame of the object: ~vloc = R~v, where ~v is the
linear velocity of the body in the global frame and R
is the rotation matrix of the body. Then, the velocity
projection onto the current triangle is found as follows:

v4proj = 0.5
~vloc√

v2loc,x + v2loc,y + v2loc,z

· ~rcross

if v4proj < 0, it is reset to 0, so that the drag force is not
applied to shaded surfaces. The total submerged sur-
face area of the object is then found as Asub =

∑
A4,

and the total velocity projection on the submerged sur-
face of the body is vproj =

∑
(v4projA4), where sum-

mation is performed over all submerged triangles of the
mesh.

The buoyancy force is computed as follows: ~fbuoy =
−~gρwVsub. Then, velocity of the center of buoyancy is
computed as follows: ~vc = ~Ω×(~rc−~rCoM )+~v, where ~Ω
is the angular velocity of the body in the global frame.
Finally, the drag force is found as follows:

~fdrag = −0.5ρw~vc(Cdvproj+

+
√
v2c,x + v2c,y + v2c,zCsAsub)

where Cd is the form drag coefficient and Cs is the skin
friction coefficient from the input file. The total fluid
force is then found as follows: ~ffluid = ~fbuoy + ~fdrag.

The fluid torque can be computed in 2 different ways,
depending on the user’s choice. The first option is the
model of Catto (2006). It requires the average length of
the mesh which is computed as follows. First, the axis-
aligned bounding box is found in the local frame of the
mesh: xmin, xmax, ymin, ymax, zmin, zmax. Then, the
average length of the mesh is found as follows: lavg =
1
3 (xmax− xmin + ymax− ymin + zmax− zmin). Finally,
the drag torque is computed as follows:

~τdrag = −mVsub
V

~ΩCal
2
avg

where V is the total volume of the fluid mesh and
Ca[1/s] is the angular drag coefficient from the input
file.

The second option for the fluid torque computation
is the following: ~τdrag = −0.5~Ω 2ρwCaAsubl

3
avg, which

is supposed to approximate the viscous drag torque.
The angular drag coefficient Ca in this formula is non-
dimensional, in contrast to the one used in the expres-
sion of Catto (2006).

Finally, the total fluid torque is computed as follows:

~τfluid = ~τdrag + (~rc − ~rCoM )× ~ffluid

the second term appears because the point of the drag
force application is assumed to coincide with the center
of buoyancy.

Although the numerical model does not account for
wind actions, the above described method can, in prin-
ciple, be applied for wind force and torque computa-
tions.

The final external force applied to each body in
the simulation domain is equal to ~fext = ~fgrav +

RT ~fthrust + ~ffluid, and the external torque is equal
to ~τext = RT~τthrust + ~τfluid. These forces and torques
are acting only on dynamic bodies in the simulation,
i.e. the static and kinematic objects are not affected.
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5.4 Multibody Solver

After all external forces are computed and the ice
crushing constraints are formulated the multibody
solving step is performed according to the procedure
described in this Section.

First, the Newton-Euler equations for body i out of
total Nbody are formulated in the global inertial frame
{Xg, Yg, Zg} as follows:

mi
d

dt
~vi = ~fi

Ii
d

dt
~Ωi + ~Ωi × Ii~Ωi = ~τi

where

~fi = ~fext,i +
∑
j

~fcont,j +
∑
k

~fjoint,k

and

~τi = ~τext,i +
∑
j

~ri,j × ~fcont,j +
∑
k

~ri,k × ~fjoint,k

where ~fcont,j is the contact force on body i from body

j, ~fjoint,k is the joint force on body i from joint k, ~ri,j
is the vector from body’s i center of mass to the witness
point of contact j and ~ri,k is the vector from body’s i
center of mass to the force application point of joint
k. Ii = RIbodyi RT is the inertia tensor of body i in the
global frame, obtained by transforming the diagonal
inertia tensor Ibodyi from the principal axes of the body
using its rotation matrix R.

The Newton-Euler equations can be written in ma-
trix form:

Mi
d~ui
dt

= ~Fi

where

Mi =

(
miI3×3 0

0 Ii

)
∈ R6×6

is the generalized mass matrix of body i, ~ui =
(~v Ti ,

~ΩT
i )T ∈ R6×1 is the generalized velocity vector

of body i and ~Fi = (~f Ti , (~τi − ~Ωi × Ii~Ωi)T )T ∈ R6×1 is
the generalized force vector of body i.

From classical mechanics principle of virtual work
it is known that the generalized joint force on body
i in a single constraint k can be expressed as follows:
~Fjoint,k = JTjoint,ik

~λjoint,k, where ~λjoint,k ∈ Rm×1 is a
vector of Lagrange multipliers which account for the
reaction forces coming from the joint bearings. These
multipliers can take any real value, both positive and
negative. The dimension m of the Lagrange multi-
plier vector is equal to the amount of degrees of free-
dom removed by the joint. For example, the pris-
matic joint removes 5 degrees of freedom, so m = 5.

Jjoint,ik ∈ Rm×6 is the joint constraint Jacobian which
ensures satisfaction of the locking condition for the
connected bodies i and j: (Jjoint,ik, Jjoint,jk)~uk = 0,
where ~uk = (~uTi , ~u

T
j )T ∈ R12×1 is the velocity of joint

k. For example, the prismatic joint connecting the tow-
ing carriage to the vessel in the numerical model is a
slider along the Zg axis, and its Jacobians are (accord-
ing to Chapter 4.9.3 in Erleben (2005)):

Jjoint,ik =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 xaxis,x xaxis,y xaxis,z
0 1 0 yaxis,x yaxis,y yaxis,z



Jjoint,jk =


0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
−1 0 0 xaxis,x xaxis,y xaxis,z
0 −1 0 yaxis,x yaxis,y yaxis,z


where ~xaxis = 0.5(~ri − ~rj) × (1, 0, 0)T and ~yaxis =
0.5(~ri − ~rj)× (0, 1, 0)T

Contact forces can also be expressed using the Jaco-
bian notation. The generalized contact force on body
i from body j can be expressed as follows: ~Fcont,j =

JTcont,ij
~λcont,j , where ~λcont,j ∈ R3×1 is the vector of La-

grange multipliers which account for the normal pres-
sure and frictional forces in contact j and Jcont,ij is the
contact constraint Jacobian:

Jcont,ij =

−~nTij −(~ri,j × ~nij)T
−~tTij,1 −(~ri,j × ~tij,1)T

−~tTij,2 −(~ri,j × ~tij,2)T

 ∈ R3×6

where ~nij ∈ R3×1 is the contact normal, re-
ported by the narrow phase collision detection system;
~tij,1,~tij,2 ∈ R3×1 are 2 orthogonal vectors in the tan-
gential contact plane, produced by the narrow phase
collision detection system for the respective contact
point. According to the Newton’s third law, the con-
straint Jacobian for body j in the same contact is:

Jcont,ji =

~nTij (~rj,i × ~nij)T
~tTij,1 (~rj,i × ~tij,1)T

~tTij,2 (~rj,i × ~tij,2)T

 ∈ R3×6

Complementarity condition for the normal contact
force states that the normal contact force can be pos-
itive only if the normal contact velocity is zero, and
vice versa:

(Jcont,ij~ui)x ≥ 0 ⊥ 0 ≤ (~λcont,j)x ≤
plim,j
4t
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where plim,j is the ice crushing constraint limit for the
normal pressure force in contact i ⇔ j. If the contact
does not have an assigned ice crushing constraint limit
(e.g. a contact between unbreakable ice floes), the limit
value is set to: plim,j = +∞.

Complementarity condition for the frictional force
direction states that the frictional force shall be oppo-
site to the sliding velocity:

λaux,j + (Jcont,ij~ui)y ≥ 0 ⊥ (~λcont,j)y ≥ 0

λaux,j + (Jcont,ij~ui)z ≥ 0 ⊥ (~λcont,j)z ≥ 0

where λaux,j is an auxiliary Lagrange multiplier with-
out a real physical meaning, but an approximation to
the magnitude of the relative tangential velocity in con-
tact j.

Finally, complementarity condition for the frictional
force magnitude (Coulomb dry friction law) states that
the frictional force cannot be greater than the normal
force multiplied by the friction coefficient µ:

µ(~λcont,j)x − (~λcont,j)y ≥ 0 ⊥ λaux,j ≥ 0

µ(~λcont,j)x − (~λcont,j)z ≥ 0 ⊥ λaux,j ≥ 0

where it is assumed that µs = µk = µ is the friction
coefficient for all contacts in the multibody system.

Now it is possible to state the full system equations
in matrix form:

M
d~u

dt
= ~F

where

M =


M1 0 · · · 0
0 M2 · · · 0

· · · · · ·
. . .

...
0 · · · · · · MNbody

 ∈ R6Nbody×6Nbody

is the inertia matrix of the Nbody-system;

~u = (~uT1 , ~u
T
2 , · · · , ~uTNbody

)T ∈ R6Nbody×1

is the system velocity vector;

~F = ~Fext + JTjoint
~λjoint + JTcont

~λcont ∈ R6Nbody×1

is the system force vector, where

~Fext = (~f T1 , (~τ1 − ~Ω1 × I1~Ω1)T )T ,

~f T2 , (~τ2 − ~Ω2 × I2~Ω2)T )T , · · · , ~f TNbody
,

(~τNbody
− ~ΩNbody

× INbody
~ΩNbody

)T )T ∈ R6Nbody×1

is the external force vector of the system,

Jjoint =
Jjoint,11 Jjoint,21 · · · Jjoint,Nbody1

Jjoint,12 Jjoint,22 · · · Jjoint,Nbody2

· · · · · ·
. . .

...
Jjoint,1Njoint

Jjoint,2Njoint
· · · Jjoint,NbodyNjoint


∈ RK×6Nbody

is the system joint Jacobian, where Njoint is the to-
tal amount of joints in the system and K is the to-
tal amount of degrees of freedom restricted by the
joints. In the current numerical model, Njoint = 1
and K = 5, so the Jjoint matrix is extremely sparse
with only 2 sub-matrices Jjoint,jk being non-zero (the

ones for the vessel and the towing carriage). ~λjoint =

(~λTjoint,1,
~λTjoint,2, ...,

~λTjoint,Njoint
)T ∈ RK×1 is the sys-

tem vector of Lagrange multipliers which account for
joint reaction forces.

Jcont =
Jcont,11 Jcont,21 · · · Jcont,Nbody1

Jcont,12 Jcont,22 · · · Jcont,Nbody2

· · · · · ·
. . .

...
Jcont,1Ncont

Jcont,2Ncont
· · · Jcont,NbodyNcont


∈ R3Ncont×6Nbody

is the system contact Jacobian, where Ncont is the to-
tal amount of contacts in the system. Jcont is also
extremely sparse, because all Jcont,ii are equal to zero
(the body cannot be in contact with itself) and ev-
ery row of the matrix corresponds to only one con-
tact which involves just 2 bodies, i.e. only two Jcont,ij
and Jcont,ji sub-matrices are non-zero in each row.
~λcont = (~λTcont,1,

~λTcont,2, ...,
~λTcont,Ncont

)T ∈ R3Ncont×1

is the system vector of Lagrange multipliers which ac-
count for contact forces.

Joint lock condition on the system level can be stated
simply as Jjoint~u = 0, while complementarity condition
for the normal contact forces in the whole system can
be expressed as follows:

(Jcont~u)n ≥ 0 ⊥ 0 ≤ (~λcont)n ≤
~plim
4t
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where ~plim = (plim,1, plim,2, · · · , plim,Ncont
)T ∈

RNcont×1 is the system vector of the ice crushing con-
straints and (~λcont)n ∈ RNcont×1 are the normal con-
tact forces.

Complementarity condition for the frictional force
direction on the system level can be expressed as fol-
lows:

E~λaux + (Jcont~u)t ≥ 0 ⊥ (~λcont)t ≥ 0

where ~λaux = (λaux,1, λaux,2, · · · , λaux,Ncont
)T ∈

RNcont×1 is the system vector of auxiliary Lagrange
multipliers accounting for the sliding velocity magni-
tude;

E =



1 0 · · · 0
1 0 · · · 0
0 1 · · · 0
0 1 · · · 0

· · · · · ·
. . .

...
0 · · · 0 1
0 · · · 0 1


∈ R2Ncont×Ncont

is an auxiliary unit matrix, and (~λcont)t ∈ R2Ncont×1

are the frictional forces in the system. Finally, comple-
mentarity condition for the frictional force magnitude
on the system level can be written as follows:

F (~λcont)n − ET (~λcont)t ≥ 0 ⊥ ~λaux ≥ 0

where

F =


µ 0 · · · 0
0 µ · · · 0

· · · · · ·
. . .

...
0 · · · 0 µ

 ∈ RNcont×Ncont

is the friction coefficient matrix of the multibody sys-
tem.

To formulate the solving process, the system accel-
eration vector is approximated as follows:

M
~unew − ~u old

4t
= ~Fext + JTjoint

~λjoint + JTcont
~λcont

The new velocity vector can be expressed as follows:

~unew = ~u old+

+M−14t(~Fext + JTjoint
~λjoint + JTcont

~λcont)

Inserting the last equation into the joint lock condition
gives:

Jjoint[~u
old +M−14t·

· (~Fext + JTjoint
~λjoint + JTcont

~λcont)] = 0

Rearranging the terms on both sides of the equation
leads to:

JjointM
−1JTjoint~pjoint + JjointM

−1JTcont~pcont+

+ Jjoint(~u
old +4tM−1 ~Fext) = 0

where ~pjoint = 4t~λjoint is the joint impulse vector and

~pcont = 4t~λcont is the contact impulse vector. Sim-
ilarly, complementarity condition for the normal con-
tact forces can be written as follows:

(JcontM
−1JTjoint~pjoint)n + (JcontM

−1JTcont~pcont)n+

+ [Jcont(~u
old +4tM−1 ~Fext)]n ≥ 0

and for the frictional force direction:

(JcontM
−1JTjoint~pjoint)t + (JcontM

−1JTcont~pcont)t+

+ [Jcont(~u
old +4tM−1 ~Fext)]t + E~λaux ≥ 0

Finally, the full complementarity conditions of the sys-
tem can be written in matrix form as shown in Fig-
ure 19. This mathematical formulation is a linear com-
plementarity problem (LCP) of the following form:

A~x+~b ≥ 0 ⊥ ~xlow ≤ ~x ≤ ~xhigh
The software framework solves the LCP using the

Projected Gauss-Seidel method of the Bullet engine
(as implemented in the btSequentialImpulseConstraint-
Solver class) described in Section 7.2 of Catto (2005)
and Section 6 of Erleben (2005). This method satisfies
the normal and frictional contact constraints together
with the joint constraints in a sequential impulse loop.
A limit of 10 iterations is placed on the solver in or-
der to achieve a fast yet stable simulation results. All
constraints are solved together, because satisfying one
constraint might violate another constraint (Coumans,
2014). Once the solving is finished, the software saves
the obtained impulses ~pjoint and ~pcont, because they
are re-used at the next simulation step as the initial
guess of the Projected Gauss-Seidel method (which im-
plements the so-called ”warm-starting” of the solver).

The unknown impulses obtained by the LCP solver
are used to compute the updated velocities of all ob-
jects in the system under assumption of no restitution
(e = 0), i.e. all collisions are treated as inelastic:

~unew = ~u old+

+M−14t(~Fext + JTjoint
~pjoint
4t

+ JTcont
~pcont
4t

)

The sleeping and damping features of the physical en-
gine, as well as stiffness and damping in constraints
(ks, kd), are deactivated for all bodies in the numerical
model in order to avoid compromising accuracy of the
simulations.
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5.5 Ice Fracturing

After all forces and updated velocities of the objects in
the system are found by the multibody solver, the ice
fracturing step is performed.

5.5.1 Fracture Initiation

As described in Section 5.2, at the end of the ice
crushing constraint formulation process every break-
able ice floe has an associated list of 2D intersection
patches between itself and the structural mesh. Fur-
thermore, every intersection patch has an associated
list of contact constraints from the physical engine
(Figure 20). The multibody solver provides the forces

in these contact constraints ~fcont, and the numerical
model adds these forces together into the accumula-
tive force vector exerted by the structure onto the ice
patch: ~fice =

∑
patch

~fcont. The PAL interface is used to

fetch the contact forces and to perform the summation
independently in every patch. In the current version of
the numerical model it is assumed that only the vertical
Zg-component of ~fice can lead to the global failure of a
breakable ice floe, which means that it is controlled by
initiation of radial cracks in the ice sheet (i.e. in-plane
ice splitting failure is not considered).

The fracture initiation algorithm starts by checking
if a radial crack can be nucleated at the current in-
tersection patch. To perform the check, the breakable
ice floe is idealized as a semi-infinite plate resting on
an elastic foundation and subjected to a uniformly dis-

Figure 20: Intersection patch between a breakable ice
floe and the vessel.


JjointM

−1JTjoint (JjointM
−1JTcont)n (JjointM

−1JTcont)t 0
(JcontM

−1JTjoint)n (JcontM
−1JTcont)n 0 0

(JcontM
−1JTjoint)t 0 (JcontM

−1JTcont)t E
0 F −ET 0


︸ ︷︷ ︸

A


~pjoint

(~pcont)n
(~pcont)t
~λaux


︸ ︷︷ ︸

~x

+

+


Jjoint(~u

old +4tM−1 ~Fext)
[Jcont(~u

old +4tM−1 ~Fext)]n
[Jcont(~u

old +4tM−1 ~Fext)]t
0


︸ ︷︷ ︸

~b

≥ 0 ⊥

⊥


−∞

0
0
0


︸ ︷︷ ︸
~xlow

≤ ~x ≤


+∞
~plim
+∞
+∞


︸ ︷︷ ︸
~xhigh

Figure 19: Complementarity conditions on system level in matrix form.
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tributed vertical load in a semi-circular area (Lubbad
and Løset, 2011). The radius of the loaded area is equal
to Rload =

√
(2Apatch)/π, and the areal density of the

distributed load is equal to qload = fice,z/Apatch, where
Apatch is the area of the current intersection patch. The
bending stress in the semi-infinite ice sheet σyy is cal-
culated using the analytical solution derived in Section
6.5 of Lubbad and Løset (2011). If the value of this
stress exceeds the flexural strength of the ice from the
user input file: σyy ≥ σf , a radial crack is nucleated
at the point of the ice floe polygon which is closest to
the vertical load application point ~r vertload of the current
intersection patch (which was found in Section 5.2).

The starting point of the nucleated crack ~r startcrack is
found by iterating over all edges of the polygon us-
ing Algorithm 6 and finding the shortest distance to
the vertical load application point ~r vertload . Then, the
potential crack propagation direction is found as fol-

lows: ~nbreak = − (npolygon,x,npolygon,y)
T

√
n2
polygon,x+n

2
polygon,y

, where ~npolygon

is the polygon normal vector found in Section 5.2. Fi-
nally, in order to avoid incorrect geometrical intersec-
tion and difference computations later in the algorithm,
the crack starting point is moved from the boundary of
the polygon in the negative crack propagation direction
by 0.1 mm: ~r startcrack ← ~r startcrack − 0.0001 · ~nbreak.

Algorithm 6 Closest point to an edge in 2D.

Input point ~r
Edge vertices ~r1, ~r2
~d = ~r2 − ~r1
if |~d|2 = d2x + d2y < 10−12 m then

Return ~r1
end if
t = [~d · (~r − ~r1)]/|~d|2
if t > 1 then

t = 1
else if t < 0 then

t = 0
end if
Return ~r1 + t(~r2 − ~r1)

Subsequent ice fracture computations require the
amount of possible ice wedges produced by potential
cracking of the breakable ice floe. This value is gen-
erated as a random variable Nwedges uniformly dis-
tributed between 3 and 5 (Lubbad and Løset, 2011;
Nevel, 1992). Finally, the wedge angle is also needed
for subsequent computations. It is found as follows:
αwedge = π/Nwedges.

5.5.2 Ice Splitting Fracture

The polar angle of the first possible splitting crack
θcrack is found according to Algorithm 7 and assigned

to the vector ~nsplit = (cos θcrack, sin θcrack)T . The
other Nwedges possible splitting crack directions are
computed by adding a step of αwedge to the angle ar-
gument of ~nsplit.

Algorithm 7 Crack angle computation in 2D.

Input ~nbreak
θcrack = atan2

nbreak,y

nbreak,x

if θcrack < 0 then
θcrack = θcrack + 2π

end if
θcrack = θcrack − 0.5π

Testing of the splitting possibility is performed by
shooting rays in the directions of every possible ~nsplit,
except the ones pointing outside the ice floe polygon
(Figure 21), and finding intersection points between
the rays and the polygon using Algorithm 8 on every
edge of the polygon. Degenerate geometrical condi-
tions, when a splitting ray starts exactly from one of
the polygon’s vertices, are handled by discarding inter-
section points which are closer to each other than 10−6

m.

�break

�split

�wedge

�split

Figure 21: Possible splitting cracks in the ice floe
polygon.

If more than 1 intersection point is found between
the splitting ray and the ice floe polygon, the one clos-
est to the crack starting point ~r startcrack becomes the new
crack starting point. Then, for all remaining intersec-
tion points ~rintersect the following value is computed:
p = (~rintersect − ~r startcrack) · ~nsplit. Intersection point with
the minimal positive p is then becoming the ending
point of the potential splitting crack ~r endcrack. This tech-
nique allows handling even concave ice floe polygons as
shown in Figure 22.
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Algorithm 8 Polygon edge - splitting ray intersection
in 2D.

Polygon edge vertices ~r1, ~r2
δ = nsplit,x(r1,y − r2,y) + nsplit,y(r2,x − r1,x)
if |δ| < 10−8 m then

Lines are parallel, no intersection
end if
t = [(r1,x − rstartcrack,x)(r1,y − r2,y)+

+(r1,y − rstartcrack,y)(r2,x − r1,x)]/δ

if t < −10−8 m or t > 1 + 10−8 m then
No intersection

end if
if −10−8m < t < 0 then

t = 0
end if
if 1 < t < 1 + 10−8 m then

t = 1
end if
Return ~r1 + t(~r2 − ~r1)

�⃗

�⃗

�⃗intersect

�⃗intersect

�⃗
intersect

crack
start

crack
end

Figure 22: Possible splitting points on a concave ice
floe polygon and the eventually selected
splitting crack (red).

Then, the shortest possible splitting crack is selected
as the splitting propagation candidate: min|~r startcrack −
~r endcrack|. The splitting crack is assumed to propagate if
Rbending < min|~r startcrack − ~r endcrack| < SkRbending, where
Rbending is the possible circumferential crack radius
found according to Nevel (1961), and Sk is the splitting
radius multiplication coefficient which can be adjusted
in the software (Figure 23).

�break
�bending

�k ,1�bending

�k ,2�bending

Figure 23: Splitting crack propagation criterion. Value
of Sk,1 produces no splitting, while Sk,2 does
lead to splitting.

If the splitting crack propagation is confirmed, two
split floe polygons are created from the original ice
floe (Figure 24). The first polygon contains all ver-
tices from ~r startcrack to ~r endcrack in counter-clockwise order
(blue and black vertices in Figure 24), while the sec-
ond polygon contains all vertices from ~r endcrack to ~r startcrack

in counter-clockwise order (black and red vertices in
Figure 24).

�break

�⃗crack
end

Figure 24: Generation of the split floe polygons.

Then, these 2 polygons are checked for validity as
follows. First, both polygons are checked for possible
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self-intersections by running Algorithm 8 on every edge
of the polygon and checking that edge for intersections
with all other edges constituting that same polygon.
If any self-intersections are found, the polygon is ren-
dered invalid and the splitting is not performed. The
same happens if the area of any of the 2 polygons is
below 2 · 10−4 m2, because creation of tiny ice flakes
is prohibited in the simulator for stability reasons. Fi-
nally, the object-aligned bounding boxes ~bbox of each
polygon are found using Algorithm 9. If the ratios
bbox,x/bbox,y or bbox,y/bbox,x are above Rsize for any of
the 2 polygons, the splitting is not performed. Rsize is
the user-defined floe narrowness parameter which is in-
troduced to avoid creation of unphysically narrow floes
in the simulator.

Algorithm 9 Object-aligned bounding box in 2D.

Amount of polygon vertices Nver
Coordinates of polygon vertices ~ri
j = Nver
Amin = 1016m2

for i = 1 : Nver − 1 do
~xaxis = (~ri − ~rj)/|~ri − ~rj |
~yaxis = (−xaxis,y,−xaxis,x)T

minx = miny = maxx = maxy = 0
for k = 1 : Nver do

~d = ~rk − ~rj
xproj = ~d · ~xaxis
minx ← min(minx, xproj)
maxx ← max(maxx, xproj)

yproj = ~d · ~yaxis
miny ← min(miny, yproj)
maxy ← max(maxy, yproj)

end for
A = (maxx −minx)(maxy −miny)
if A < Amin then

Amin = A
~bbox = (maxx −minx,maxy −miny)T

end if
j = i

end for
Return ~bbox

If the validity checks of the split floe polygons are
successful, the splitting is finally performed and the
fracture processing is finished. However, if the splitting
is not performed, the bending failure can still take place
as described in the following section.

5.5.3 Ice Bending Fracture

Bending fracture of a breakable ice floe is computed
by the model of adjacent wedge-shaped beams rest-
ing on an elastic foundation (Lubbad and Løset, 2011).

The circumferential crack is formed in the intersection
patch if σmaxwedge ≥ σf , where σmaxwedge is the maximal
bending stress in the wedge-shaped ice beam resting
on the elastic foundation, computed using the power
series solution of Nevel (1961).

If the circumferential crack formation criterion is ful-
filled, the polar angle of the first wedge crack θcrack is
found according to Algorithm 7. Then, a segmented
circular polygon divided into 2Nwedges wedges is cre-
ated by generating the following vertices in the 2D
plane (Figure 25):

(ri,x, ri,y)T =

= (Rbending cos iαwedge, Rbending sin iαwedge)
T

where i = 0 : 2Nwedges − 1. Then, these vertices are
transformed to the coordinates of the crack:

(
ri,x
ri,y

)
←
(
ri,x cos θcrack − ri,y sin θcrack + r startcrack,x

ri,x sin θcrack + ri,y cos θcrack + r startcrack,y

)

�wedge

�bending

Figure 25: Segmentation of a circle into ice wedges. An
example of Nwedges = 3 and αwedge = π/3.

Afterwards, this segmented polygon is subtracted
from the original ice floe polygon using the difference
function of the Boost.Geometry library (Figure 26).
This procedure may produce several polygons out of
the original one, as shown in Figure 27.

238



Metrikin I., “A Software Framework for Simulating Stationkeeping of a Vessel in Discontinuous Ice”

Figure 26: Bending failure polygon subtraction from a
relatively large floe.

Figure 27: Bending failure polygon subtraction from a
relatively small floe.

Next, the ice wedge triangles are created by gener-
ating the following 3 vertices:

(0, 0)T

(Rbending cos iαwedge, Rbending sin iαwedge)
T

(Rbending cos(i+ 1)αwedge, Rbending sin(i+ 1)αwedge)
T

where i = 0 : 2Nwedges − 1. Finally, these triangles are
transformed to the coordinates of the crack using the
above stated equations, and the intersections of each
triangle with the original ice floe polygon are found
using the intersection function of the Boost.Geometry
library. The resultant intersection polygons are saved
into the list of ice floe wedges for subsequent physical
creation in the numerical environment. For example, in
Figures 26 and 27, the light-blue polygons are the rem-
nants of the original ice floe which will be re-created;
the aquamarine polygons are the new ice wedges that
will be created; and the dark-blue polygons are the ar-
eas of the bending failure stencil that are discarded by
the intersection operation.

5.5.4 Generation of the Broken Ice Floes

After the initial polygons of the broken ice floes are
created in Sections 5.5.2-5.5.3, the cleaning and simpli-
fication of their geometrical shapes are performed ac-
cording to Algorithm 10. It removes polygonal edges
shorter than 5 mm, deletes ”spikes” and smoothens
corners of the newly created ice floes (Figure 28). Af-
ter the algorithm is finished, every processed polygon
is checked for self-intersections. If they are found, it
means that the cleaning algorithm has failed, and the
original vertices of the polygon (i.e. pre-cleaning) are
fully restored. Furthermore, if a processed polygon has
less than 3 vertices (this could happen when cleaning
very narrow triangles) or its area is below 2 · 10−4 m2,
the polygon is just deleted from the simulation.

After the cleaning process is finished, the original
breakable ice floe is fully deleted from the simulation
through the PAL interface, and the new ice floes are
introduced instead of it. To do that, every ice floe
polygon is checked for convexity by ensuring that all
cross products of consecutive edges have the same sign
(Algorithm 11). If the polygon is convex, it is just ex-
truded along the Zg axis on the value of hi in order to
create the collision mesh of the new ice floe (as in Sec-
tion 4.3). However, if the polygon is concave, it is first
triangulated using constrained Delaunay triangulation
library Poly2Tri (Green, 2013). During this process
the software discards triangles with areas below 10−5

m2 in order to avoid creation of degenerative collision
meshes in the physical engine. Triangle areas for this
check are computed as follows:
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Figure 28: Polygon cleaning: the green vertices will be
merged into 1, the red vertex is a ”spike”
which will be removed and the blue vertices
form a smooth corner which will be trans-
formed into a straight line by removing the
middle vertex.

Algorithm 10 Polygon cleaning.

Amount of polygon vertices Nver
Coordinates of polygon vertices ~ri
repeat

Vertex removed = false
i = 0
while i < Nver do

~e1 = ~ri+1 − ~ri
~e0 = ~ri − ~ri−1
κ = ~e1

|~e1| ·
~e0
|~e0|

if |~e1| < 0.005 or −0.99 > κ > 0.99 then
Vertex removed = true
Delete ~ri
Nver = Nver − 1

else
i = i+ 1

end if
end while

until Vertex removed = false

A4 =
1

2
[(r2,x−r1,x)(r3,y−r1,y)−(r3,x−r1,x)(r2,y−r1,y)]

where ~r1,2,3 are the 2D vertices of the triangle.

Algorithm 11 Polygon convexity check.

~eNver = ~rNver − ~rNver−1
~e1 = ~r1 − ~rNver

~e2 = ~r2 − ~r1
sNver

= eNver,xe1,y − eNver,ye1,x
s1 = e1,xe2,y − e1,ye2,x
if s1 · sNver < 0 then

Polygon is concave, exit algorithm
end if
sprev = s1
~eprev = ~e1
for i = 2 : Nver − 2 do

~e = ~ri+1 − ~ri
s = eprev,xey − eprev,yex
if sprev · s < 0 then

Polygon is concave, exit algorithm
end if
sprev = s
~eprev = ~e

end for
Polygon is convex

Then, each triangle of the concave ice floe is extruded
into a 3D prism of hi thickness, and the collision mesh
of the floe is constructed as a compound collection of
these triangular prisms, i.e. the final collision mesh is
the same as shown in Figure 9, c. It means that the
side faces of the collision mesh are not triangulated,
because it is needed only for the fluid mesh. As for
the actual fluid meshes of the new ice floes, they are
constructed using the same method and source code as
presented in Section 4.3.

The remainder of the fractured level ice sheet re-
mains a static body in the physical engine, while the
new broken ice pieces are introduced as dynamic bodies
with the same thicknesses and densities as the parent
ice sheet. Their initial linear velocities are computed
as follows:

~vnew = ~vold + ~Ω× (~r newCoM − ~r oldCoM )

where ~vold and ~Ω are the linear and angular velocities
of the original ice floe before fracture (but after the
multibody solving), ~r newCoM is the center of mass of the
newly broken ice floe in the global coordinate system
and ~r oldCoM is the center of mass of the original floe be-
fore breakage in the global coordinate system (i.e. the
velocity pivot point).
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5.6 Time Integration

The final step of the simulation loop is the time integra-
tion which updates the positions of all bodies and joints
in the simulation domain. The following fixed-time-
step integration scheme is implemented in the software:

~rnew = ~rold +4tH~unew
where ~r = (~r T1 , Q

T
1 , ~r

T
2 , Q

T
2 , · · · , ~r TNbody

, QTNbody
)T ∈

R7Nbody×1 is the generalized position vector of the sys-
tem and

H =



I3×3 0 0 0 · · · 0
0 G1 0 0 · · · 0
0 0 I3×3 0 · · · 0
0 0 0 G2 · · · 0

· · · · · · · · · · · ·
. . .

...
0 0 0 · · · I3×3 0
0 0 0 · · · 0 GNbody


∈ R7Nbody×6Nbody

is the kinematic map of the multibody system, where

Gi = 0.5


−Qix −Qiy −Qiz
Qiw Qiz −Qiy
−Qiz Qiw Qix
Qiy −Qix Qiw

 ∈ R4×3

is the transformation matrix between the angular ve-
locity and the quaternion derivative of body i. ~unew ∈
R6Nbody×1 is the updated system velocity vector from
Section 5.4.

Although the updated positions are supposed to re-
solve any penetrations between the bodies, due to dis-
crete nature of the collision detection system some un-
resolved penetrations may remain after the position up-
date step. These penetrations are corrected using the
”split impulse” position correction method of the Bul-
let engine. This method first solves the following LCP
using the same Projected Gauss-Seidel method as in
Section 5.4:

JcontM
−1JTcont~p

∗
cont −~bpen ≥ 0 ⊥ 0 ≤ ~p ∗cont ≤ +∞

where ~p ∗cont ∈ R3Ncont×1 is the ”pseudo”
contact impulse vector of the system and
~bpen = − β

4t (d
1
pen, 0, 0, d

2
pen, 0, 0, · · · , dNcont

pen , 0, 0)T ∈
R3Ncont×1 is the position correction vector of the
system. dipen is the penetration depth in contact
i reported by the narrow phase collision detection
system, β = min(β0, 1 − ~p ∗cont,n/plim) is the error
reduction parameter, β0 = 0.8 and plim is the ice
crushing constraint value introduced in Section 5.2.2.

Then, the ”pseudo” velocity vector of the system is
computed as follows:

~u ∗ = M−14tJTcont
~p ∗cont
4t

∈ R6Nbody×1

Finally, the position vector of the system is updated
using the ”pseudo” velocity:

~rnew = ~rold +4tH~u ∗

This means that moving objects out of penetrations
does not add any extra kinetic energy to the system.
An alternative to this method is the Baumgarte po-
sition correction scheme (Catto, 2005) enabled in the
Bullet engine by default. However, it was found to
generate unphysically high forces during ice breaking
simulations, which were leading to ”explosions” in the
ice field. Therefore, it was decided to use the ”split
impulse” method instead. However, the position cor-
rection is disabled for the contacts between the break-
able ice floes and the vessel, in order to avoid inter-
ference with the ice breaking force computations and
ensure correct contact response of the vessel. Tech-
nically, modification of the error reduction parameter
and disabling of the position correction for a subset of
contact constraints is implemented as a functional call-
back to the time integration step of the Bullet engine.

6 Simulator Output and
Post-processing

This section describes the output data of the software
tool. In addition to numerical (Section 6.1) and visu-
alization (Section 6.2) output data channels, the soft-
ware maintains an open console window throughout the
whole simulation process. This window displays the
simulation progress towards completion (in percent),
which is updated at every time step. Moreover, the
console window displays the logging messages gener-
ated by the simulator, such as exception messages or
any information messages coming from the underlying
physical engine. This logging process is managed by
the PAL library. Finally, the console window displays
to the user the total wall-clock time used by a simula-
tion at the end of the whole simulation process.

6.1 Numerical Data

At every time step the simulator writes into the out-
put CSV file the floating-point values, in fixed-point
notation, of the following quantities (all of them in
the {Xg, Yg, Zg} frame): contact loads, carriage joint
loads, thruster loads, position and orientation of the
structure and its linear and angular velocities. All
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these data can then be post-processed using a data
analysis package, e.g. Matlab.

The contact load channel contains the forces exerted
on the vessel by the ice floes, which are calculated by
adding together the contact forces and torques from
every contact point between the structure and the ice
floes (both breakable and unbreakable). The contact
force in a single contact point is computed as follows:
~fc = (pn~n + f1τ ~τ1 + f2τ ~τ2)/4t, where pn is the normal
constraint impulse computed by the multibody solver
of the physical engine, ~n is the contact normal from the
narrow phase collision detection system, f1τ , f

2
τ are the

frictional constraint impulses in 2 orthogonal directions
~τ1 and ~τ2, and 4t is the time step. The corresponding
contact torques on the structure and the ice floe are:
~τ 1
c = (~r 1

c − ~r 1
CoM ) × ~fc and ~τ 2

c = −(~r 2
c − ~r 2

CoM ) × ~fc,
where ~r 1

c and ~r 2
c are the witness points on the vessel

and the contacting ice floe, and ~r 1
CoM and ~r 2

CoM are
the center of mass positions of the contacting bodies.

The carriage joint load channel contains the reac-
tion force and torque applied to the structure by the
carriage joint: ~fjoint and ~τjoint. They are computed
by the multibody solver (Section 5.4). The CSV chan-

nel contains ~fjoint for the force and ~τjoint + (~rCoM −
~rjoint)× ~fjoint for the torque, where ~rCoM is the center
of mass position of the vessel and ~rjoint is the position
of the joint. The hull loads CSV channel contains the
same force values, but the torque is calculated relative
to the center of mass of the structure, i.e. the pure
value of ~τjoint is reported to the user.

The thruster loads channel contains the forces and
torques produced by the propellers of the vessel in free
running or DP simulation modes.

The position of the structure is reported into the
corresponding CSV channel directly from ~rCoM , while
its orientation yaw-pitch-roll angles are computed from
the orientation quaternion as follows:

y = atan2
2(QxQy +QwQz)

Q2
w +Q2

x −Q2
y −Q2

z

p = sin−1 2(QwQy −QxQz)

r = atan2
2(QyQz +QwQx)

Q2
w −Q2

x −Q2
y +Q2

z

The linear velocity of the vessel is reported directly
from ~vCoM into the output CSV file, while the angu-
lar velocity is converted into roll-pitch-yaw rates using
the method of Ardakani and Bridges (2010) as follows.
First, the inverse unit-norm quaternion of the vessel is
computed:

Q−1 =
(−Qx,−Qy,−Qz, Qw)T

Q2
x +Q2

y +Q2
z +Q2

w

Then, the quaternion-vector multiplication is per-
formed to rotate the angular velocity vector of the ves-
sel:

Q−1~Ω =

= (Q−1w Ωx +Q−1y Ωz −Q−1z Ωy,

Q−1w Ωy +Q−1z Ωx −Q−1x Ωz,

Q−1w Ωz +Q−1x Ωy −Q−1y Ωx,

−Q−1x Ωx −Q−1y Ωy −Q−1z Ωz)
T

Next, this value is used to obtain the angular velocity
of the vessel in the local frame {Xs, Ys, Zs}:

~Ωloc =

(Qx(Q−1~Ω)w+Qw(Q−1~Ω)x+Qz(Q
−1~Ω)y−Qy(Q−1~Ω)z

Qy(Q−1~Ω)w+Qw(Q−1~Ω)y+Qz(Q
−1~Ω)x−Qz(Q

−1~Ω)x

Qz(Q
−1~Ω)w+Qw(Q−1~Ω)z+Qx(Q−1~Ω)y−Qx(Q−1~Ω)y)T

Finally, the roll-pitch-yaw rates of the vessel are com-
puted as follows:

ṙ = Ωloc,x +
Ωloc,y sin r sin p

cos p
+

Ωloc,z cos r sin p

cos p

ṗ = Ωloc,y cos r − Ωloc,z sin r

ẏ =
Ωloc,y sin r

cos p
+

Ωloc,z cos r

cos p

This algorithm fails if cos p = 0, because of the Gimbal
lock condition (when it is impossible to convert the
angular velocity into the roll-pitch-yaw rates). Then,
zero values are reported into the output CSV channel.

6.2 Visualization

The software utilizes the Irrlicht library version 1.7.3
(Gebhardt et al., 2012) for visualizing the numerical
scene. Every simulated object (the vessel, the ice floes,
the fluid domain, the walls of the ice tank and the
towing carriage) gets associated with a corresponding
”scene node” of the Irrlicht engine for this purpose.
The ice tank walls, the towing carriage and the fluid
domain are visualized as rectangular cuboids with a
certain color and transparency, while the vessel and
the ice floes are visualized by either their fluid or colli-
sion meshes, depending on the user’s choice (Figure 29,
a-b). Both mesh types can be visualized either in solid
or wireframe modes (Figure 29, c). Collision meshes
of the objects are visualized with random colors (Fig-
ure 29, b), while fluid meshes are always visualized
with white color (Figure 29, a). Finally, the contact
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normals reported by the narrow phase collision detec-
tion system of the physical engine can be visualized by
red patches connecting the witness points between the
colliding bodies (Figure 29, d).

At every time step the positions and orientations of
all dynamic bodies from the physical engine are syn-
chronized with their respective Irrlicht scene nodes to
advance the visualization in real time. However, the
ice tank walls and the fluid domain are static and do
not need to be updated. After the synchronization, all
scene nodes are redrawn by the Irrlicht engine at every
timestep. If an ice floe gets broken, its scene node is
deleted and scene nodes of the newly broken ice pieces
are created instead of it.

16bit OpenGL rendering configuration with the
user’s screen resolution is used by the software for the
visualization window. The colors of the ambient en-
vironment and the background can be adjusted in the
source code of the software. Furthermore, additional
light sources can be added to illuminate certain parts
of the simulated scene. By default, two light sources
are created: one above and one below the ice sheet.

A camera is added to the visualization window at
a certain elevation, heading and distance to the tar-
get point, as specified by the user in the input XML
file. It is possible to rotate, pan and zoom the camera
using the mouse (as implemented through the ISceneN-
odeAnimator class of the Irrlicht engine). The motion
speed of the camera is automatically adjusted by the
software according to the scale of the simulated scene.

Finally, an information palette is displayed in the
top-left corner of the visualization window (Figure 29,
a-d). It contains an information message on how to
control the camera and how to enable/disable the wire-
frame and collision geometry views in the simulated
scene. Furthermore, this window includes the timing
information of the various software modules. Namely,
the fluid force calculation time, the physics engine step
time (including ice force calculation) and the geometri-
cal ice breaking time (old floe deletion and new floe cre-
ation) are measured at every time step and displayed to
the user in [ms] for the purpose of rapid profiling. All
timings in the software are measured with the precision
of CPU frequency.

The user has a possibility of pausing the visualiza-
tion at any time to inspect the simulated scene. Other-
wise, the simulation will continue until the user either
closes the visualization window or the total amount of
simulation steps is reached.

7 Discussion

Although the presented software framework is a power-
ful tool for simulating vessels and offshore structures in

ice, it has several major limitations stemming from the
simplifying assumptions of the computational methods
used by the model. These limitations are discussed in
this Section of the paper.

The first major assumption of the numerical model is
that both the ice floes and the vessel are treated as rigid
bodies in the simulation. It means that local deforma-
tions of the objects, which arise in contact regions, are
not simulated. Although this could be an acceptable
assumption for the vessel, local plastic deformations of
the ice floes (e.g. crushing and creep) could be very
important to capture for estimating global ice actions
in certain environmental conditions (such as, for ex-
ample, in late autumn ice). Furthermore, local mate-
rial extrusion due to ice crushing and micro cracks in
the ice (material damage) are not modelled in the cur-
rent version of the simulator (they are bypassed with
a limiting value in the ice crushing constraint, as de-
scribed in Section 5.2.2). Although this approach could
be acceptable for sloping-sided structures, its validity
for vertically-sided structures could be questionable.
Therefore, additional research is suggested on the topic
of local ice deformations at the contact interface with
vertically-sided floating structures.

The fluid force model described in Section 5.3.1 has
several limitations: there are no free surface effects, no
volumetric deformations of the fluid and no interac-
tions of the objects through the fluid domain. More-
over, only buoyancy and drag forces are simulated,
while the added mass and damping effects are not cap-
tured. Although this model has produced reasonable
simulation results at low ice-structure interaction ve-
locities, improvements of the hydrodynamic formula-
tions and validation of the current drag model may
contribute to increased validity range of the simulation
tool.

Inertia tensor and center of mass of the vessel are
currently generated by the application assuming uni-
form mass distribution inside the fluid mesh. The user
does not have a possibility to assign a pre-defined iner-
tia tensor or change the position of the center of gravity
of the vessel. This aspect of the simulation tool should
be improved if more extensive engineering use is en-
visaged for the application. Furthermore, the mesh-
ing procedures of the pre-processor could be improved.
Namely, the automation of the convex decomposition
process and support of non-triangular faces in the col-
lision mesh of the vessel would increase the usage effi-
ciency of the software tool.

In the current version of the model the towing car-
riage joint is implemented as a single prismatic link
between the structure and the carriage. In real model
testing the joint consists of 6 load cells constituting the
force balance system. This discrepancy might lead to
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Figure 29: Visualization functionalities of the software framework. a - fluid mesh view, solid. b - collision mesh
view, solid. c - fluid mesh view, wireframe. d - contact normals in wireframe view.

imprecise simulation of the towing process and, there-
fore, requires further attention when simulating oblique
towing tests.

The broken ice field generation algorithm described
in Section 4.3 suffers from a major deficiency: it takes
a very long time to produce ice concentrations above
80%. Additional research in this field would, therefore,
be beneficial to increase the efficiency and applicability
range of the ice field generation module.

Currently all ice floes in the ice field have uniform
and constant properties (thickness, density, strength).
In reality those properties are statistically distributed
throughout the ice sheet and even within individual
ice floes (including those in a model basin). Therefore,
implementation of a statistical routine to generate ice
property distributions could benefit the numerical tool.

Geometrical algorithms that compute intersections
between breakable ice floes and the vessel are based
on a simplified 2D treatment of the contact problem.
Furthermore, the fluid mesh of the structure is used in
those algorithms for computing the possible ice frac-
ture direction vectors. It could be advantageous to
use the native collision detection system of the physi-
cal engine to formulate the ice crushing constraint, be-
cause it would leave out the need to maintain 2 different
collision systems in 1 application. Moreover, it would

be more natural to use the collision mesh of the ves-
sel for the ice breaking algorithms instead of the fluid
mesh. However, the current collision detection system
used by the physical engines is discrete, i.e. the sim-
ulation suffers from unavoidable penetrations between
the objects. Implementation of a continuous collision
detection routine may improve the overall simulation
accuracy and stability. Finally, line segments shorter
than 10−6 m are currently not allowed in the simulator
to avoid geometrical routine degeneracies. As a con-
sequence, very small length scales cannot be handled
correctly by the model. Therefore, additional research
on the above mentioned geometrical and collision de-
tection aspects of the software tool is suggested.

In the current implementation of the ice fracture rou-
tines it is assumed that cracks in the ice propagate in-
stantly and along straight lines without any curvature.
In reality, however, there can be curved cracks going
along the ridges embedded into ice floes. Moreover,
the ice splitting is currently treated as a geometrical
problem rather than physical problem, which limits
the realism of the simulation tool. Recently, a large
body of novel research work related to ice fracture ini-
tiation, fracture propagation and breakability criteria
has been reported by Lu (2014). It is expected that
incorporation of these new results into the simulator
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would substantially improve the realism and physical
correctness of the ice breaking module in the numerical
tool.

Finally, the multibody solver described in Section 5.4
uses a 2-directional friction pyramid instead of the full
Coulomb cone (see Section 4.6 in Erleben (2005)). This
simplification leads to anisotropy of the frictional forces
and may substantially decrease the validity of simula-
tion results. Furthermore, the static friction coefficient
is assumed to be always equal to dynamic friction co-
efficient, which is not a fully realistic assumption of
the ice material. Moreover, the Bullet physical engine
disables the gyroscopic torque term for all bodies in
the simulation domain, which may lead to even further
decreased accuracy of the simulation results. A bet-
ter multibody model, such as the one of Tasora and
Anitescu (2011), could improve this aspect of the sim-
ulator. Furthermore, a rolling friction model might
be needed to model dense ice accumulations and rub-
ble fields. The method of Tasora and Anitescu (2013)
seems very promising for addressing this challenge.
Furthermore, the currently utilized Projected Gauss-
Seidel iterative multibody solver does not guarantee
convergence of the solving loop with a fixed amount
of iterations. A better LCP solving method could im-
prove simulation results substantially, for example the
one described in Heyn et al. (2013). Alternatively, an
error control routine of the Projected Gauss-Seidel loop
could be implemented in the future version of the sim-
ulator. Finally, the split impulse position correction
method of the Bullet engine perturbs the energy of the
physical system and may lead to incorrect simulation
results. A better stabilization method should be imple-
mented, e.g. the one of Tasora and Anitescu (2011), in
order to improve the realism of the simulated contact
response.

8 Conclusions

This paper presents a software package developed by
the Norwegian University of Science and Technol-
ogy for simulating stationkeeping operations of ves-
sels and offshore structures in discontinuous floating
sea ice. The package has been successfully used and
cross-checked against experimental data in various aca-
demic and industrial projects: Metrikin et al. (2013b);
Kerkeni et al. (2013b,a); Kerkeni and Metrikin (2013);
Metrikin and Løset (2013); Metrikin et al. (2013a);
Kerkeni et al. (2014); Scibilia et al. (2014); Østhus
(2014); Kjerstad and Skjetne (2014).

Both theoretical and software implementation as-
pects of the numerical model have been elucidated in
the paper:

• Input file structure

• Mesh preparation process

• Creation of the vessel and the towing carriage in
the physical engine

• Ice field generation

• Collision detection

• Ice fracture

• Fluid force computation

• Multibody solving process

• Position correction and time stepping routines

Finally, several limitations of the computational
techniques have been exposed and discussed. The most
important ones, from the author’s perspective, are:

• Collision detection system of the physical engine

• Iterative multibody solver of the physical engine

• Split impulse position correction method of the
physical engine

• Anisotropic and simplified friction model of the
physical engine

• Simplified treatment of the ice fracture problem

• Absence of local material extrusion due to ice
crushing

• Crude hydrodynamic model
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