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Abstract

In this paper, we present a novel two-step strategy for static output-feedback controller design. In the
first step, an optimal state-feedback controller is obtained by means of a linear matrix inequality (LMI)
formulation. In the second step, a transformation of the LMI variables is used to derive a suitable LMI
formulation for the static output-feedback controller. This design strategy can be applied to a wide range
of practical problems, including vibration control of large structures, control of offshore wind turbines,
control of automotive suspensions, vehicle driving assistance and disturbance rejection. Moreover, it allows
designing decentralized and semi-decentralized static output-feedback controllers by setting a suitable zero-
nonzero structure on the LMI variables. To illustrate the application of the proposed methodology, two
centralized static velocity-feedback H∞ controllers and two fully decentralized static velocity-feedback H∞
controllers are designed for the seismic protection of a five-story building.

Keywords: Static Output-feedback; Decentralized Control; Structural Vibration Control

1 Introduction

Nowadays, a wide variety of sophisticated state-
feedback controller designs can be formulated as linear
matrix inequality (LMI) optimization problems [Boyd
et al. (1994); Huang and Mao (2009); Amato et al.
(2010); Oishi and Fujioka (2010); Wang et al. (2010);
Dhawan and Kar (2011); Du et al. (2011); Liu et al.
(2011); Chen and Wang (2012)], which can be effi-
ciently solved using standard computational tools as
those provided by the MATLAB Robust Control Tool-
box [Balas et al. (2011)]. Moreover, LMI-based control
design strategies allow including complex information
constraints by setting a suitable zero-nonzero struc-

ture on the LMI optimization variables [Wang et al.
(2009)]. This feature can be particularly relevant in
control problems with a large number of sensors and
actuation devices. In this case, decentralized and semi-
decentralized strategies help to improve the perfor-
mance and robustness of the control system by reduc-
ing the amount of information exchange and the com-
putational burden in real-time operation [Šiljak (1991);
Lunze (1992); Chen and Stanković (2005); Rossell et al.
(2010); Zečević and Šiljak (2010); Palacios-Quiñonero
et al. (2010, 2011, 2012a); Karimi et al. (2013)].

It must be highlighted, however, that having access
to the full state information is a quite uncommon sit-
uation in practice and, usually, the information avail-

doi:10.4173/mic.2014.3.4 c© 2014 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2014.3.4


Modeling, Identification and Control

able for feedback purposes consists of a reduced set of
observed output variables that can be expressed as lin-
ear combinations of the states. In this context, static
output-feedback controllers constitute a very interest-
ing option [Syrmos et al. (1997); Crusius and Trofino
(1999); Prempain and Postlethwaite (2001); Zečević
and Šiljak (2004); Bara and Boutayeb (2005); Feng
et al. (2011)]. In its simplest formulation, a static
output-feedback controller can be written in the fol-
lowing form:

u(t) = Ky(t), (1)

where K is a constant matrix that allows obtaining the
vector of control actions u(t) from the vector of ob-
served outputs y(t) by means of a simple matrix prod-
uct. The practical advantages provided by this kind
of controllers, however, are balanced by the challeng-
ing theoretical and computational problems associated
with static output-feedback controller design [Moerder
and Calise (1985); Cao et al. (1998); Toscano (2006);
Gadewadikar et al. (2007); Feng et al. (2011)].

Recently, a two-step computational strategy for
static output-feedback controller design was presented
in Palacios-Quiñonero et al. (2014b). In the first step,
an optimal state-feedback controller is computed by
solving an LMI optimization problem Ps. Next, the
static output-feedback controller is obtained by solv-
ing a second LMI optimization problem Po, which is
derived from Ps by means of a suitable transformation
of the LMI variables [Rubió-Massegú et al. (2013b)].
This approach is conceptually simple and computation-
ally effective, it allows taking advantage of the wide lit-
erature on LMI-based state-feedback controller design
strategies and, moreover, makes it possible to synthe-
size static output-feedback controllers with information
constraints by setting a proper zero-nonzero structure
on the variables of Po.

The definition of the variables transformation used
to derive the output-feedback LMI optimization prob-
lem Po involves a constant matrix L that plays an im-
portant role in the applicability and effectiveness of the
computational strategy. Preliminary works with the
simplified choice L = 0 have produced interesting re-
sults in the fields of vibration control of large structures
[Rubió-Massegú et al. (2012); Palacios-Quiñonero et al.
(2012b,c, 2013, 2014e)], control of offshore wind tur-
bines [Bakka and Karimi (2013); Bakka et al. (2014)],
control of active vehicle suspensions [Rubió-Massegú
et al. (2013a); Palacios-Quiñonero et al. (2014a)], vehi-
cle driving assistance [Oufroukh and Mammar (2014)]
and disturbance rejection [Ballesteros et al. (2013)].
More advanced choices of the L matrix, motivated
by the theoretical results in Palacios-Quiñonero et al.
(2014b), have been recently applied to the fields of vi-
bration control of large structures [Palacios-Quiñonero

et al. (2014c)] and control of vehicle suspensions
[Rubió-Massegú et al. (2014)] with positive results.

This paper makes a twofold contribution: Firstly,
we provide a complete, well structured and prac-
tical presentation of the main elements involved in
the two-step design strategy for output-feedback con-
troller design. Secondly, we introduce an advanced L-
matrix choice that allows computing fully decentralized
velocity-feedback H∞ controllers for vibration control
of large structures. To enhance the practical aspects,
the theoretical exposition is complemented with the de-
sign of four static velocity-feedback H∞ controllers for
the seismic protection of a five-story building. These
controllers include centralized and fully decentralized
designs and illustrate in detail the usage of null and
advanced L-matrices.

For clarity and simplicity, the discussion has been
restricted to the continuous-time H∞ approach. How-
ever, it has to be highlighted that the proposed de-
sign methodology can also be applied to other con-
trol strategies that admit an LMI formulation. For ex-
ample, discrete-time H∞ applications can be found in
Palacios-Quiñonero et al. (2012b, 2014a); Ballesteros
et al. (2013), and continuous-time energy-to-peak ap-
plications have been presented in Palacios-Quiñonero
et al. (2014c,e)

The paper is organized as follows: Sect. 2 provides
a detailed description of the state-feedback LMI opti-
mization problem Ps and the derivation of the output-
feedback LMI optimization problem Po. In Sect. 3,
the two-step procedure for output-feedback controller
design is presented, and some relevant aspects associ-
ated with the usage of null and advanced L-matrices
are discussed. In Sect. 4, a mathematical model of a
five-story building subject to seismic disturbances and
equipped with a full set of interstory actuation devices
is introduced. For the seismic protection of this build-
ing, three different controllers are designed in Sect. 5:
an optimal state-feedback H∞ controller and two cen-
tralized velocity-feedback H∞ controllers, which are
computed using a null L-matrix and the advanced L-
matrix choice proposed in Palacios-Quiñonero et al.
(2014b). In Sect. 6, information constraints are dis-
cussed and two fully decentralized velocity-feedback
H∞ controllers are designed, using a null L-matrix
and a new L-matrix choice specially devised for the
H∞ approach. To demonstrate the effectiveness of the
proposed static velocity-feedback controllers, numer-
ical simulations of the five-story building vibrational
response are conducted in Sect. 7, using the full scale
North–South El Centro 1940 and North–South Kobe
1995 seismic records as ground acceleration inputs. Fi-
nally, in Sect. 8, some conclusions and future research
lines are briefly presented.
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2 Theoretical background

In this section, we introduce some fundamental con-
cepts, results and notations that will be used through-
out the paper. First, the main elements of state-
feedback H∞ controller design are summarized. Next,
the general results presented in Rubió-Massegú et al.
(2013b) are applied to the particular case of static
output-feedback H∞ controller design.

2.1 State-feedback H∞ controller

Let us consider the system

S :

{
ẋ(t) = Ax(t) +Bu u(t) +Bw w(t),

z(t) = Cz x(t) +Dz u(t),
(2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, w(t) ∈ Rr is the disturbance input, z(t) ∈ Rd is
the controlled output and A, Bu, Bw, Cz and Dz are
constant matrices with appropriate dimensions. For a
given static state-feedback controller

u(t) = Gx(t), (3)

with state gain matrix G ∈ Rm×n, we obtain the fol-
lowing closed-loop system:

Scl :

{
ẋ(t) = AG x(t) +Bw w(t),

z
G

(t) = CG x(t),
(4)

where the matrices AG and CG have the form

AG = A+BuG, CG = Cz +DzG. (5)

The H∞-norm of the state-feedback controller defined
by the control gain matrix G is the largest energy gain
from the disturbance input to the controlled output

γG = sup
‖w‖2 6=0

‖z
G
‖

2

‖w‖
2

, (6)

where ‖ · ‖
2

is the usual continuous 2-norm

‖f‖
2

=

[∫ ∞
0

{f(t)}Tf(t) dt

]1/2
. (7)

The value γG can be computed using the closed-loop
transfer function from the disturbance input w(t) to
the controlled output z

G
(t)

TG(s) = CG(sI −AG)−1Bw. (8)

More precisely, the value γG can be expressed as the
H∞-norm of TG

γG =
∥∥TG∥∥∞ = sup

f
σmax

[
TG(2πfj)

]
, (9)

where j =
√
−1, f is the frequency in Hz and σmax[ · ]

denotes the maximum singular value.
In theH∞ approach, the objective consists of obtain-

ing a control gain matrix G̃ that produces an asymp-
totically stable closed-loop matrix AG̃ and, simultane-
ously, attains an optimally small H∞-norm γG̃. An
effective method to compute the optimal gain matrix
G̃ is based on the Bounded Real Lemma [Boyd et al.
(1994)] which, for a prescribed γ > 0, states the equiv-
alence of the following conditions:

1. ‖TG‖∞ < γ, and AG is asymptotically stable.

2. There exists a symmetric positive-definite matrix
X ∈ Rn×n such that the matrix inequality[

AGX +XATG + γ−2BwB
T
w ∗

CGX −I

]
< 0 (10)

holds, where ∗ denotes the transpose of the ele-
ment in the symmetric position and the matrix in-
equality indicates that the corresponding matrix is
negative definite.

From eqs. (5) and (10), we obtain the nonlinear matrix
inequality[
AX+XAT+BuGX+XGTBTu+ γ−2BwB

T
w ∗

CzX+DzGX −I

]
< 0

(11)
which, by introducing the new variables

Y = GX, η = γ−2, (12)

can be converted into the following LMI:[
AX +XAT +BuY + Y TBTu + ηBwB

T
w ∗

CzX +DzY −I

]
< 0.

(13)
The optimal state-feedback H∞ controller can now be
computed by solving the following LMI optimization
problem:

Ps :


maximize η

subject to X > 0, η > 0,

and the LMI in eq. (13),

(14)

where the matrices X and Y are the optimization vari-
ables. If this optimization problem attains an optimal
value η̃s for the pair of matrices

(
X̃s, Ỹs

)
, then the gain

matrix

G̃s = Ỹs X̃
−1
s (15)

defines a state-feedback controller

u(t) = G̃s x(t) (16)
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AQXQ
QT +QX

Q
QTAT +ARX

R
RT +RX

R
RTAT +BuYRR

T +RY T
R
BTu + ηBwB

T
w ∗

CzQXQ
QT + CzRXR

RT +DzYRR
T −I

 < 0

Figure 1: Linear matrix inequality for the static output-feedback H∞ controller design

with an asymptotically stable closed-loop matrix AG̃s
,

and an optimal H∞-norm

γG̃s
= (η̃s)

−1/2. (17)

Remark 1 For a given state gain matrix Ĝ, the γ-
value corresponding to the state-feedback controller

u(t) = Ĝx(t) (18)

can be computed by considering the closed-loop matri-
ces

AĜ = A+BuĜ, CĜ = Cz +DzĜ, (19)

and the LMI[
AĜX +X

(
AĜ
)T

+ ηBwB
T
w ∗

CĜX −I

]
< 0. (20)

If the auxiliary optimization problem

Pa :


maximize η

subject to X > 0, η > 0,

and the LMI in eq. (20)

(21)

attains an optimal value η̃a, then AĜ is asymptotically
stable and the H∞-norm of the controller in eq. (18)
has the value

γĜ = (η̃a)−1/2. (22)

Note that the matrices AĜ and CĜ have fixed values in
the problem Pa and, consequently, the matrix inequal-
ity in eq. (20) is linear. Moreover, if the LMI optimiza-

tion problem Ps admits an optimal solution G̃s, then
we have the inequality

γG̃s
≤ γĜ. (23)

2.2 Static output-feedback H∞ controllers

Let us consider the vector of observed outputs y(t) ∈
Rp that can be written in the form

y(t) = Cy x(t), (24)

where Cy ∈ Rp×n is a matrix with row-rank p < n.
In this case, we are interested in obtaining a static
output-feedback controller of the form

u(t) = Ky(t), (25)

which uses a constant gain matrix K ∈ Rm×p to com-
pute the control actions u(t) from the observed-output
information y(t). By substituting eq. (24) into eq. (25),
we obtain the associated state-feedback controller

u(t) = GK x(t), (26)

with state gain matrix

GK = KCy. (27)

The H∞-norm of the static output-feedback controller
in eq. (25) can be defined using the associated state
gain matrix GK as follows:

γK = γGK
=
∥∥TGK

∥∥
∞, (28)

and the problem of designing an optimal static output-
feedback H∞ controller can be seen as a constrained
state-feedback control problem, where the state gain
matrix G must admit the factorization G = KCy.
More precisely, a static output-feedback H∞ controller
of the form given in eq. (25) can be computed by solv-
ing the following optimization problem:

Pc :


maximize η

subject to X > 0, η > 0, (X,Y ) ∈M,

and the LMI in eq. (13),

(29)

whereM is a set that contains all the pairs of matrices
(X,Y ) for which there exists a matrix K ∈ Rm×p such
that

Y X−1 = KCy. (30)

An effective computational strategy to deal with the
non-convex optimization problem Pc has been formu-
lated in Rubió-Massegú et al. (2013b). This strategy
introduces the following transformations of the LMI
variables:

X = QX
Q
QT +RX

R
RT , Y = Y

R
RT , (31)

where Q ∈ Rn×(n−p) is a matrix whose columns are
a basis of Ker(Cy), and R ∈ Rn×p has the following
form:

R = C†y +QL, (32)

where

C†y = CTy
(
Cy C

T
y

)−1
(33)
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is the Moore-Penrose pseudoinverse of Cy, and L ∈
R(n−p)×p is a constant matrix. The transformations in
eq. (31) introduce, as new LMI variables, two symmet-
ric matrices X

Q
∈ R(n−p)×(n−p) and X

R
∈ Rp×p, and a

general matrix Y
R
∈ Rm×p.

By substituting the variable transformations given
in eq. (31) into the LMI in eq. (13), we obtain the
LMI presented in Fig. 1 and, according to the results
obtained in Rubió-Massegú et al. (2013b), a static
output-feedback controller can be computed by solv-
ing the following LMI optimization problem:

Po :


maximize η

subject to X
Q
> 0, X

R
> 0, η > 0,

and the LMI in Fig. 1.

(34)

If the LMI optimization problem Po can be properly
solved, producing an optimal value η̃o for the triplet(
X̃

Q
, X̃

R
, Ỹ

R

)
, then the output gain matrix

K̃ = Ỹ
R

(
X̃

R

)−1
(35)

defines a static output-feedback controller

u(t) = K̃ y(t) (36)

with asymptotically stable closed-loop matrix

AK̃ = A+BuK̃Cy (37)

and an associated H∞-norm γK̃ that satisfies

γK̃ ≤ γ̃o = (η̃o)
−1/2. (38)

Remark 2 As indicated in eq. (38), the LMI optimiza-
tion problem Po only provides an upper bound of the γ-
value corresponding to the static output-feedback con-
troller given in eq. (36). According to the discussion in
Remark 1, the actual value of γK̃ can be computed by
considering the associated state-feedback gain matrix

GK̃ = K̃Cy (39)

and solving the LMI optimization problem Pa in
eq. (21) with Ĝ = GK̃ . If this auxiliary LMI optimiza-
tion problem attains the optimal value η̃a, then the
H∞-norm of the output-feedback controller in eq. (36)
satisfies

γK̃ = (η̃a)−1/2. (40)

Moreover, looking at eqs. (23) and (38), we also have
the inequality

γG̃s
≤ γK̃ ≤ γ̃o. (41)

3 Design strategies

The LMI variable transformations defined in eqs. (31) –
(33) contain a constant matrix L, which can provide an
important design flexibility and, at the same time, can
exert a critical influence in the applicability of the de-
sign strategy. In this section, we take advantage of
this property to define a versatile and effective two-
step design procedure for static output-feedback H∞
controllers. First, the two-step design procedure is pre-
sented. Next, some feasibility issues associated with
the case L = 0 are discussed and a numerical line of
solution is proposed. Finally, some recent theoretical
results obtained in Palacios-Quiñonero et al. (2014b)
are applied to introduce a more advanced choice of the
L-matrix.

3.1 General two-step design procedure

Considering the discussion presented in Sect. 2, the
output-feedback H∞ controller design procedure can
be summarized as follows:

Step 1. State-feedback H∞ controller design

(S1.1) Solve the optimization problem Ps in eq. (14)

to compute the optimal state gain matrix G̃s
and the optimal cost γG̃s

.

(S1.2) Check that the design requirements are sat-
isfied by the state-feedback controller u(t) =

G̃sx(t).

Step 2. Output-feedback H∞ controller design

(S2.1) Choose a suitable L-matrix to define the R-
matrix in eq. (32) and formulate the LMI opti-
mization problem Po in eq. (34).

(S2.2) Solve the optimization problem Po to compute

the output gain matrix K̃ and the upper bound
γ̃o.

(S2.3) Compare the optimal cost γG̃s
and the subop-

timal output-feedback cost γK̃ .

(S2.4) Assess the performance of the output-feedback

controller u(t) = K̃ y(t), taking as a reference
the optimal state-feedback controller obtained
in Step 1.

Remark 3 In Step 1, we assume that a satisfactory
state-feedback controller can be designed for the prob-
lem under consideration. We also assume that this
state-feedback controller can be computed by solving
an LMI optimization problem. These two conditions
are positively satisfied in a large number of practical
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 ÂQXQ
QT +QX

Q
QT ÂT + ÂRX

R
RT +RX

R
RT ÂT +BuYRR

T +RY T
R
BTu + ηBwB

T
w ∗

CzQXQ
QT + CzRXR

RT +DzYRR
T −I

 < 0

Figure 2: Perturbed linear matrix inequality for static output-feedback H∞ controller design

control problems, for which effective LMI-based state-
feedback controller design strategies can be found in
the literature.

Remark 4 Step 1 can be considered as an exploratory
step. The state-feedback controller has a complete ac-
cess to the state information. If no suitable controller
can be found under full-information conditions, then
the possibility of obtaining a satisfactory static output-
feedback controller should be seriously reconsidered.

Remark 5 The underlying idea in the proposed de-
sign procedure consists of obtaining a static output-
feedback controller that satisfies γK̃ ≈ γG̃s

. It has
been observed in practice that, frequently, the perfor-
mance of these almost optimal output-feedback con-
trollers is very similar to the performance of the op-
timal state-feedback controller. Accordingly, the op-
timal cost γG̃s

and the output-feedback cost γK̃ are
compared in step (S2.3) to assess the degree of opti-
mality attained by the output-feedback controller. To
this end, an approximate comparison can be made us-
ing the upper bound γ̃o in eq. (38) and the inequality
in eq. (41). When a more precise comparison is neces-
sary, the actual value of γK̃ can be computed by solving
the auxiliary LMI optimization problem Pa discussed
in Remark 2. It should be highlighted that the op-
timal state-feedback controller and the static output-
feedback controller are both designed using the same
controlled output z(t) = Czx(t) + Dzu(t) and, conse-
quently, the γ-value comparison is meaningful.

3.2 Design strategy with L = 0

From an algebraic point of view, the choice L = 0 is a
natural option that produces the simplified R-matrix

R = C†y (42)

in the design step (S2.1). In this case, no information
from the optimal state-feedback controller is used to
compute the static output-feedback controller. This
approach has been applied in Rubió-Massegú et al.
(2013a) to design an output-feedback H∞ controller for
vehicle suspensions with positive results. The choice
L = 0 has also been successfully used to compute
static velocity-feedback controllers for seismic protec-
tion of large structures in Rubió-Massegú et al. (2012);

Palacios-Quiñonero et al. (2012b,c, 2014e). In these ap-
plications to structural vibration control, however, the
output-feedback LMI optimization problem Po is ini-
tially reported to be unfeasible by the MATLAB LMI
solver and the design step (S2.2) cannot be completed.

To overcome the encountered feasibility issues, we
introduce a slightly perturbed state matrix

Â = A− εIn, (43)

where ε is a small positive number, and consider the
following LMI optimization problem:

P̂o :


maximize η

subject to X
Q
> 0, X

R
> 0, η > 0,

and the LMI in Fig. 2.

(44)

In all the aforementioned applications to structural vi-
bration control, the MATLAB LMI solver fails to solve
the corresponding LMI optimization problem Po but,
quite surprisingly, it has no difficulties to deal with the
perturbed LMI problem P̂o. Taking advantage of this
computational trick, we can solve the LMI problem P̂o
to obtain an optimal triplet

(
X̂

Q
, X̂

R
, Ŷ

R

)
with an as-

sociated cost η̂o. We can also obtain the output gain
matrix

K̂ = Ŷ
R

(
X̂

R

)−1
(45)

and define the static output-feedback controller

u(t) = K̂ y(t), (46)

with associated state-feedback matrix

GK̂ = K̂ Cy. (47)

Remark 6 It should be noted that the value

γ̂o = (η̂o)
−1/2 (48)

is not an upper bound of γK̂ and can only be considered
as an estimate. Additionally, the feasibility of the per-
turbed LMI problem P̂o neither implies the asymptotic
stability of the closed-loop state matrix

AK̂ = A+BuK̂ Cy. (49)

To give a proper response to these issues, we can follow
the ideas presented in Remark 1 and consider the LMI
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optimization problem Pa in eq. (21) with Ĝ = GK̂ . If
this auxiliary LMI problem can be solved and attains
the optimal value η̂a, then the closed-loop matrix AK̂ is
asymptotically stable and the actual H∞-norm of the
static output-feedback controller defined by the output
gain matrix K̂ can be computed as

γK̂ = (η̂a)−1/2. (50)

Remark 7 The feasibility issues mentioned in this
section constitute a strange and poorly understood
phenomenon. From a practical perspective, exten-
sive numerical simulations show that using a perturbed
state matrix of the form given in eq. (43) is an effec-
tive strategy to overcome the problem. This line of
solution with ε = 0.01 is used in Sect. 5.2 and Sect. 6.1
with positive results.

3.3 Advanced choice of the L-matrix

The choice L = 0 has the obvious advantage of simplic-
ity. However, this option also has the important draw-
back of ignoring the particular characteristics of the
problem under consideration. In order to obtain more
advantageous choices of the matrix L, the properties of
the LMI variable transformations in eqs. (31)–(33) have
been investigated in detail. Next, we summarize some
results presented in Palacios-Quiñonero et al. (2014b),
which lead to a more advanced choice of the matrix L.

For a given matrix L ∈ R(n−p)×p, let us consider the
variety of matrices

VL=
{
X=QX

Q
QT+RX

R
RT
∣∣X

Q
∈ Pn−p, XR

∈ Pp
}
,

where Pk =
{
X ∈ Sk×k |X > 0} denotes the set of

all k×k symmetric positive-definite matrices. The fol-
lowing assertions hold (for details, see Theorem 1 and
Theorem 2 in Palacios-Quiñonero et al. (2014b)):

1. The family V =
{
VL

∣∣ L ∈ R(n−p)×p} defines a
partition of Pn.

2. For a given X ∈ Pn, there exists a unique LX ∈
R(n−p)×p such that X ∈ VLX . This unique L-
matrix can be explicitly written in the following
form:

LX = Q†XCTy
(
CyXC

T
y

)−1
, (51)

where Q† =
(
QTQ

)−1
QT denotes the Moore-

Penrose pseudoinverse of Q.

After selecting a particular matrix L, the LMI opti-
mization problem Po in eq. (34) can be seen as a con-
strained version of the LMI optimization problem Pc
in eq. (29) with the additional condition X ∈ VL. The
expression in eq. (51) suggests a natural choice of the

matrix L, which consists of selecting the L-matrix cor-
responding to the optimal X-matrix obtained in the
state-feedback problem Ps. More precisely, if an op-
timal solution to the problem Ps in the design step
(S1.1) has been attained with the optimal LMI matri-

ces
(
X̃s, Ỹs

)
, then we choose the following L-matrix in

step (S2.1):

L̃ = Q†X̃sC
T
y

(
CyX̃sC

T
y

)−1
, (52)

and solve the output-feedback LMI optimization prob-
lem Po in step (S2.2) using the R-matrix

R̃ = C†y +QL̃. (53)

This advanced choice of the L-matrix has been used
in Palacios-Quiñonero et al. (2014b) and Palacios-
Quiñonero et al. (2014d) to design static velocity-
feedback H∞ controllers for seismic protection of large
structures. According to the results reported in these
works, the new approach has a double advantage: (i) it
can help to avoid the feasibility issues associated with
the choice L = 0 and, simultaneously, (ii) it can also
help to reduce the value γK̃ producing, in some cases,
static output-feedback controllers that are practically
optimal.

4 Five-story building mathematical
model

In this section, we provide a state-space model for
the lateral motion of a five-story building, which will
be used in the controller designs presented in Sect. 5
and Sect. 6 and the numerical simulations conducted
in Sect. 7. The building motion can be described by
the second-order differential equation

Mq̈(t) + Cd q̇(t) +Ksq(t) = Tu u(t) + Tw w(t), (54)

where

q(t) = [q1(t), q2(t), q3(t), q4(t), q5(t)]T (55)

is the vector of displacements relative to the ground
and qi(t), for i = 1 . . . 5, represents the lateral displace-
ment of the ith story si with respect to the ground level
s0. The vector of control actions is

u(t) = [u1(t), u2(t), u3(t), u4(t), u5(t)]T . (56)

The control action ui(t) is applied by the actuation
device ai, which produces a pair of opposite structural
forces as indicated in Fig. 3. The seismic ground ac-
celeration is denoted by w(t). M , Cd, and Ks are the
mass, damping and stiffness matrices, respectively. Tu
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Figure 3: Five-story building mechanical model: actu-
ation scheme and external disturbance

is the control location matrix and Tw is the excitation
location matrix. In the different controllers designs
and numerical simulations conducted in this paper, the
following particular values of the mass, damping and
stiffness matrices have been used:

M = 103 ×


215.2 0 0 0 0
0 209.2 0 0 0
0 0 207.0 0 0
0 0 0 204.8 0
0 0 0 0 266.1

 , (57)

Cd = 103×


260.2 −92.4 0 0 0
−92.4 219.6 −81.0 0 0

0 −81.0 199.5 −72.8 0
0 0 −72.8 186.7 −68.7
0 0 0 −68.7 127.4

 ,
(58)

Ks = 106 ×


260 −113 0 0 0
−113 212 −99 0 0

0 −99 188 −89 0
0 0 −89 173 −84
0 0 0 −84 84

 , (59)

where masses are in kg, damping coefficients in Ns/m,
and stiffness coefficients in N/m. The mass and stiff-
ness values are similar to those presented in Kurata
et al. (1999), and Cd is a Rayleigh damping matrix
with a 2% damping ratio on the first and fifth modes

[Chopra (2007)]. The control location matrix, corre-
sponding to the actuation scheme depicted in Fig. 3,
and the excitation location matrix have the following
form:

Tu =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

 , Tw = −M


1
1
1
1
1

 . (60)

By considering the vector of interstory drifts

r(t) = [q1, q2 − q1, q3 − q2, q4 − q3, q5 − q4]
T
, (61)

and the state vector

x(t) =

[
r(t)
ṙ(t)

]
, (62)

we can derive a first-order state-space model

ẋ(t) = Ax(t) +Buu(t) +Bww(t), (63)

with

A = PA
I
P−1, Bu = P (Bu)

I
, Bw = P (Bw)

I
, (64)

A
I

=

[
[0]

5×5
I
5

−M−1Ks −M−1Cd

]
, (65)

(Bu)
I

=

[
[0]

5×5

M−1Tu

]
, (Bw)

I
=

[
[0]

5×1

−[1]5×1

]
, (66)

where [0]n×m represents a zero-matrix of the indicated
dimensions, In is the identity matrix of order n, [1]n×1
denotes a vector of dimension n with all its entries
equal to 1, and P is the change of basis matrix

P=



1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 1


(67)

corresponding to the state transformation[
r(t)
ṙ(t)

]
= P

[
q(t)
q̇(t)

]
. (68)

For the particular building matrices M , Cd, Ks, Tu
and Tw given in eqs. (57)–(60), the values of the corre-
sponding system matrices A, Bu and Bw are displayed
in Fig. 4.
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A =103 ×



0 0 0 0 0 0.0010 0 0 0 0
0 0 0 0 0 0 0.0010 0 0 0
0 0 0 0 0 0 0 0.0010 0 0
0 0 0 0 0 0 0 0 0.0010 0
0 0 0 0 0 0 0 0 0 0.0010

−0.6831 0.5251 0 0 0 −0.0008 0.0004 0 0 0
0.6831 −1.0652 0.4732 0 0 0.0006 −0.0011 0.0004 0 0
0 0.5402 −0.9515 0.4300 0 0 0.0004 −0.0010 0.0004 0
0 0 0.4783 −0.8645 0.4102 0 0 0.0004 −0.0009 0.0003
0 0 0 0.4346 −0.7258 0 0 0 0.0004 −0.0008


,

Bu =10−5 ×



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.4647 −0.4647 0 0 0
−0.4647 0.9427 −0.4780 0 0

0 −0.4780 0.9611 −0.4831 0
0 0 −0.4831 0.9714 −0.4883
0 0 0 −0.4883 0.8641


, Bw =



0
0
0
0
0
−1
0
0
0
0


.

Figure 4: System matrices of the first-order model with interstory drifts and interstory velocities as state
variables

5 Centralized controllers

In this section, the design strategies discussed in Sect. 3
are applied to compute centralized velocity-feedback
H∞ controllers for the seismic protection of the five-
story building presented in Sect. 4. The controller de-
signs and numerical simulations are conducted with the
system

S :

{
ẋ(t) = Ax(t) +Bu u(t) +Bw w(t),

z(t) = Cz x(t) +Dz u(t),
(69)

defined by the system matrices A, Bu and Bw given in
Fig. 4, and the controlled output matrices

Cz =

[
I
10

[0]5×10

]
, Dz = 10−6.3

[
[0]

10×5

I5

]
. (70)

All the computations have been carried out with MAT-
LAB and a relative error of 10−6 has been set in the
function mincx() to solve the different LMI optimiza-
tion problems.

5.1 Centralized state-feedback controller

According to the general design procedure presented
in Sect 3.1, we begin by obtaining a suitable state-
feedback H∞ controller, which uses the full state in-
formation to compute the control actions and plays a
twofold role in the design procedure: (i) serving as a
natural reference in the performance assessment of the
output-velocity controllers and (ii) providing an ap-
propriate X-matrix for the advanced choices of the L-
matrix. As indicated in step (S1.1), we solve the LMI

optimization problem Ps in eq. (14) with the matrices
A, Bu, Bw, Cz, Dz given in Fig. 4 and eq. (70), obtain-
ing an optimal state-feedback H∞ controller

u(t) = G̃s x(t) (71)

with an associated γ-value

γG̃s
= 0.7466. (72)

The state gain matrix G̃s and the corresponding opti-
mal matrix X̃s are displayed in Fig. 5.

To demonstrate the good behavior of the state-
feedback controller defined by the gain matrix G̃s,
the maximum singular values of the closed-loop pulse
transfer function

TG̃s
(2πfj) = CG̃s

(
2πfjI −AG̃s

)−1
Bw (73)

and the open-loop pulse transfer function

T (2πfj) = Cz(2πfjI −A)−1Bw (74)

are presented in Fig. 6. The graphic of the open-loop
transfer function (dash-dotted black line) shows the
frequency response characteristics of the uncontrolled
building. In particular, it can be clearly appreciated
the building resonant frequencies, which are located at
1.0082, 2.8246, 4.4929, 5.7974, and 6.7735 Hz. The
graphic of the closed-loop transfer function TG̃s

(2πfj)
(solid blue line) shows the ability of the state-feedback
H∞ controller to mitigate the building vibrational re-
sponse at the resonant frequencies. This graphic has
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G̃s = 107 ×


−0.4776 0.2153 −0.0534 −0.0054 0.0166 −0.3387 −0.0845 −0.0678 −0.0446 −0.0235
0.3146 −0.1359 −0.3397 0.1789 0.0198 −0.1190 −0.3263 −0.1172 −0.0576 −0.0280
0.5122 0.0742 −0.4065 −0.0928 0.1560 −0.0972 −0.1233 −0.3229 −0.0818 −0.0239
0.1288 0.0336 0.8589 −1.3026 0.6093 −0.0718 −0.0778 −0.0670 −0.3510 −0.0167
0.0293 0.0453 0.0710 1.0589 −1.5497 −0.0468 −0.0422 −0.0338 −0.0110 −0.3683

 ,

X̃s = 103 ×



0.0070 −0.0008 −0.0011 −0.0010 −0.0006 −0.0267 0.0320 0.0022 −0.0006 −0.0003
−0.0008 0.0085 −0.0008 −0.0012 −0.0008 0.0204 −0.0552 0.0381 0.0017 0.0010

−0.0011 −0.0008 0.0100 −0.0009 −0.0006 0.0018 0.0225 −0.0633 0.0401 0.0038

−0.0010 −0.0012 −0.0009 0.0126 −0.0007 0.0014 0.0011 0.0259 −0.0657 0.0350

−0.0006 −0.0008 −0.0006 −0.0007 0.0124 0.0012 −0.0005 −0.0010 0.0300 −0.0593
−0.0267 0.0204 0.0018 0.0014 0.0012 5.0702 −4.7629 −0.5036 0.0432 −0.0552
0.0320 −0.0552 0.0225 0.0011 −0.0005 −4.7629 9.3260 −4.2863 −0.4632 −0.0425
0.0022 0.0381 −0.0633 0.0259 −0.0010 −0.5036 −4.2863 9.8315 −5.2443 0.0163

−0.0006 0.0017 0.0401 −0.0657 0.0300 0.0432 −0.4632 −5.2443 11.3930 −5.9711
−0.0003 0.0010 0.0038 0.0350 −0.0593 −0.0552 −0.0425 0.0163 −5.9711 10.5260


.

Figure 5: State-feedback gain matrix and X-matrix corresponding to the optimal state-feedback H∞ controller
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Figure 6: Maximum singular values for the closed-loop
pulse transfer function TG̃s

(2πfj) (solid blue
line) and the open-loop transfer function
T (2πfj) (dash-dotted black line)

a single peak, whose magnitude corresponds to the γ-
value given in eq. (72).

To provide a more complete picture of the state-
feedback controller performance, we have also con-
ducted numerical simulations of the five-story building
vibrational response, using the full scale North–South
El Centro 1940 seismic record as ground acceleration
input (see Fig. 7). The maximum absolute interstory
drifts are displayed in Fig. 8(a), where the blue line
with circles corresponds to the state-feedback H∞ con-
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Figure 7: Full scale North-South El Centro 1940 seis-
mic record, with an absolute acceleration
peak of 3.42 m/s2

troller and the black line with rectangles presents the
vibrational response of the uncontrolled building. The
maximum absolute control efforts corresponding to the
state-feedback controller are displayed in Fig. 8(b). A
quick look at the graphics clearly shows that the pro-
posed state-feedback H∞ controller attains a good
level of reduction in the interstory drift peak-values
with moderate levels of control effort. In what fol-
lows, we will assume that G̃s defines a suitable state-
feedback controller for the five-story building intro-
duced in Sect. 4.

Remark 8 It has been observed that solving the LMI
optimization problem Ps in eq. (14) using different
MATLAB versions can produce small differences in the
matrix X̃s and substantial differences in some elements
of the control gain matrix G̃s. These differences have
also been observed when using the same MATLAB
version on different computers. However, in all the
cases the same optimal value γG̃s

= 0.7466 has been
obtained, and the corresponding graphics of singular
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Figure 8: (a) Maximum absolute interstory drifts and
(b) maximum absolute control efforts corre-
sponding to the uncontrolled building (black
line with rectangles) and the optimal state-
feedback H∞ controller (blue line with cir-
cles). The full scale North–South El Centro
1940 seismic record has been used as ground
acceleration disturbance

values, interstory drift peak-values and control effort
peak-values are practically identical to those shown in
Figs. 6, 8(a) and 8(b), respectively.

5.2 Centralized velocity-feedback
controller with L = 0

Now, we use the design methodology proposed in
Sect. 3.2 to obtain a centralized static velocity-feedback
H∞ controller. To this end, we consider an output-
feedback controller

u(t) = K y(t), (75)

where the observed-output is the vector of interstory
velocities

y(t) = [ṙ1(t), ṙ2(t), ṙ3(t), ṙ4(t), ṙ5(t)]T , (76)

which can be written in the form

y(t) = Cy x(t) (77)

with
Cy =

[
[0]

5×5
I
5

]
. (78)

To complete the design step (S2.1), we take a basis of
Ker(Cy) and obtain the matrix

Q =

[
I
5

[0]
5×5

]
(79)

and, by setting L = 0 in eq. (32), we also obtain the
R-matrix

R0 =

[
[0]5×5

I
5

]
. (80)

As indicated in Sect. 3.2, the LMI optimization prob-
lem Po corresponding to the matrices Q and R given
in eqs. (79) and (80) is reported to be infeasible by the
MATLAB LMI solver and produces no positive results.
To overcome this difficulty, we consider the perturbed
state matrix

Â = A− 0.01I10 (81)

and solve the perturbed LMI optimization problem P̂o
in eq. (44). In this case, no feasibility issues are en-
countered and we obtain the velocity gain matrix

K̂ = 106×
−5.5401 −0.7411 0.3965 0.2060 0.1017

−0.7496 −5.6394 1.0210 0.4926 0.1729

0.7814 0.7110 −6.8120 −0.3484 0.2644

0.3852 0.4091 −0.1740 −5.7953 −0.2354

0.1804 0.2339 0.3265 −0.2358 −6.2418

,
(82)

with an estimated H∞-norm

γ̂o = 0.7794. (83)

To guarantee the asymptotic stability and compute the
actual H∞-norm of the static velocity-feedback con-
troller

u(t) = K̂ y(t), (84)

we solve the auxiliary LMI problem Pa discussed in
Remark 6, obtaining the γ-value

γK̂ = 0.7539. (85)

Comparing γK̂ with the optimal γ-value in eq. (72), we
can see that the H∞-norm increment produced by the
velocity-feedback controller in eq. (84) is inferior to 1%.
Moreover, looking at the plots of singular values dis-
played in Fig. 9, it can also be appreciated that the
response similarities between the proposed velocity-
feedback controller and the optimal state-feedback con-
troller in eq. (71) are not restricted to the peak value,
but rather encompasses the full frequency range.

5.3 Centralized velocity-feedback
controller with advanced L-matrix

Following the ideas presented in Sect. 3.3, we now con-
sider the matrix Cy in eq. (78), the matrix Q in eq. (79),

the optimal matrix X̃s displayed in Fig. 5 and the ex-
pression

L̃ = Q†X̃sC
T
y

(
CyX̃sC

T
y

)−1
(86)
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Figure 9: Centralized velocity-feedback controller with
L = 0. Maximum singular values of the
closed-loop pulse transfer functions corre-
sponding to the centralized velocity-feedback
controller u(t) = K̂ y(t) (red dashed line) and
the optimal state-feedback controller u(t) =

G̃s x(t) (blue solid line)

to compute the L-matrix

L̃=


0.0028 0.0080 0.0062 0.0045 0.0025

0.0013 −0.0034 0.0039 0.0026 0.0016

−0.0023 −0.0021 −0.0073 0.0004 0.0006

−0.0039 −0.0041 −0.0039 −0.0085 −0.0015

−0.0034 −0.0035 −0.0033 −0.0028 −0.0073

,
(87)

which produces the R-matrix

R̃ =

[
L̃

I
5

]
. (88)

Next, we solve the LMI optimization problem Po cor-
responding to the matrix Q in eq. (79) and the matrix
R given in eq. (88), obtaining the following velocity-
feedback gain matrix:

K̃ = 106×
−2.7372 −0.9491 −0.5118 −0.9908 −0.7746

−1.0267 −3.2689 −1.1102 −0.6310 −0.4555

−1.2465 −0.1394 −5.3464 0.6938 −0.0092

−1.4048 −1.7622 1.2444 −3.7717 −0.2013

−0.9325 −0.8565 −0.0779 −0.0167 −2.6777

,
(89)

with an associated γ-value that satisfies

γK̃ ≤ 0.7467. (90)

It is worth highlighting that the advanced choice of the
L-matrix in eq. (86) allows solving the LMI optimiza-
tion problem Po with no feasibility issues. Moreover,
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Figure 10: Centralized velocity-feedback controller
with L = L̃. Maximum singular values of
the closed-loop pulse transfer functions
corresponding to the centralized velocity-
feedback controller u(t) = K̃ y(t) (red
dashed line) and the optimal state-feedback

controller u(t) = G̃s x(t) (blue solid line)

the γ-value in eq. (72) and the upper bound in eq. (90)
indicate that the velocity-feedback controller

u(t) = K̃ y(t) (91)

is practically optimal. Looking at the plots of singu-
lar values displayed in Fig. 10, we can appreciate that
the graphic corresponding to the velocity-feedback con-
troller in eq. (91) presents a small peak around the sec-
ond resonant frequency (2.8246 Hz). For all the other
frequencies, the proposed velocity-feedback controller
has virtually the same behavior as the optimal state-
feedback controller in eq. (71).

6 Structured velocity-feedback
controllers

Control gain matrices with a particular zero-nonzero
structure can be used to define decentralized or semi-
decentralized controllers, which can be operated using
restricted local feedback information. For vibration
control of large structures, fully decentralized static
velocity-feedback controllers constitute a case of sin-
gular interest. This kind of controllers can be defined
by a diagonal output gain matrix and can have the
outstanding property of admitting a passive implemen-
tation [Palacios-Quiñonero et al. (2012c)]. The main
objective of this section is to obtain fully decentralized
velocity-feedback controllers of the following form:

u(t) = K(d) y(t), (92)

180
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Figure 11: Decentralized velocity-feedback controller
with L = 0. Maximum singular values
of the closed-loop pulse transfer functions
corresponding to the decentralized velocity-
feedback controller u(t) = K̂(d)y(t) (red
dashed line) and the optimal state-feedback

controller u(t) = G̃s x(t) (blue solid line)

where y(t) is the vector of interstory velocities andK(d)

is a diagonal matrix. Considering the explicit expres-
sion of the output-feedback gain matrix in eq. (35), this
goal can be achieved by solving the LMI optimization
problem Po in eq. (34) with the additional zero-nonzero
structure constraints

X
R

=


� 0 0 0 0
0 � 0 0 0
0 0 � 0 0
0 0 0 � 0
0 0 0 0 �

 , (93)

Y
R

=


� 0 0 0 0
0 � 0 0 0
0 0 � 0 0
0 0 0 � 0
0 0 0 0 �

 , (94)

where the black squares represent the allowed positions
for nonzero elements.

6.1 Decentralized velocity-feedback
controller with L = 0

In the decentralized design, the choice L = 0 leads
us to the same initial feasibility issues discussed in
Sect. 5.2. However, as it happened in the centralized
case, these difficulties can be overpassed by considering
the perturbed state matrix Â in eq. (81) and by solving

the perturbed LMI optimization problem P̂o in eq. (44)
with the additional zero-nonzero structure constraints
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Figure 12: Decentralized velocity-feedback controller

with L = L
(d)
δ∗,µ∗ . Maximum singular values

of the closed-loop pulse transfer functions
corresponding to the decentralized velocity-
feedback controller u(t) = K̃(d)y(t) (red
dashed line) and the optimal state-feedback

controller u(t) = G̃s x(t) (blue solid line)

given in eqs. (93) and (94). As a result, we obtain the
diagonal velocity gain matrix

K̂(d) = 106×
−8.0247 0 0 0 0

0 −5.4060 0 0 0

0 0 −4.3416 0 0

0 0 0 −3.6926 0

0 0 0 0 −3.3789

,
(95)

with an estimated H∞-norm

γ̂(d)o = 0.7816. (96)

Moreover, the resolution of the auxiliary LMI problem
Pa in eq. (21) with

Ĝ = K̂(d)Cy (97)

guarantees the asymptotic stability of the decentralized
static velocity-feedback controller

u(t) = K̂(d) y(t), (98)

and produces the γ-value

γK̂(d) = 0.7768. (99)

In this case, we obtain a γ-value increment of 4.05%
with respect to the optimal value γG̃s

= 0.7466 at-
tained by the state-feedback controller in eq. (71). De-
spite this γ-value increment, the plots of singular values
in Fig. 11 show that the overall behavior of the decen-
tralized velocity-feedback controller in eq. (98) is still
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quite similar to the behavior exhibited by the optimal
state-feedback controller, especially if we consider the
magnitude of the uncontrolled frequency response dis-
played by the dash-dotted black line in Fig. 6.

6.2 Decentralized velocity-feedback H∞
controller with advanced L-matrix

In contrast to what happens in the L = 0 case, the
L-matrix choice used in Sect. 5.3 to obtain centralized
static velocity-feedback controllers produces no posi-
tive results in decentralized designs. However, we have
observed that satisfactory decentralized controllers can
be designed by considering slightly variations of the
matrix L̃ in eq. (52). In particular, a fully decentralized
static velocity-feedback energy-to-peak controller with
excellent properties has been computed in Palacios-
Quiñonero et al. (2014c) using the L-matrix

L̃
(d)
etp = Q†X̃sC

T
y

(
CyX̃

(d)
s CTy

)−1
, (100)

where X̃s is the optimal X-matrix corresponding to
the optimal state-feedback controller obtained in the

design step (S1.1) and X̃
(d)
s is a diagonal matrix that

contains the diagonal elements of X̃s.

In this section, we present a new L-matrix choice
suitable for decentralized velocity-feedback controllers
under the H∞ approach. To this end, we consider the
following family of tridiagonal matrices:

X̃
(td)
δ,µ = δ

{
X̃(d)
s + µ

[
X̃(d1)
s +

(
X̃(d1)
s

)T]}
, (101)

where δ and µ are real numbers and X̃
(d1)
s is a matrix

that contains the above 1-diagonal of X̃s. More pre-

cisely, denoting by x̃i,j and x̃
(d1)
i,j the elements of X̃s

and X̃
(d1)
s , respectively, we have:x̃

(d1)
i,i+1 = x̃i,i+1 for i = 1, . . . , n− 1,

x̃
(d1)
i,j = 0 otherwise.

(102)

From the matrix X̃
(td)
δ,µ , we define the L-matrix

L
(d)
δ,µ = Q†X̃sC

T
y

(
CyX̃

(td)
δ,µ C

T
y

)−1
, (103)

which allows completing the design steps (S2.1) and
(S2.2) with the zero-nonzero structure constraints
given in eqs. (93) and (94) for different values of δ and
µ. In our five-story building control problem, we select
the particular values

δ∗ = 0.14, µ∗ = 0.85, (104)

which produce the L-matrix

L
(d)
δ∗,µ∗ =
−0.0224 0.0191 0.0109 0.0049 0.0021

0.0025 −0.0329 0.0210 0.0123 0.0066

0.0072 0.0059 −0.0370 0.0150 0.0098

0.0059 0.0049 0.0038 −0.0371 0.0059

0.0020 0.0005 −0.0001 0.0010 −0.0397

.
(105)

By completing the design steps (S2.1) and (S2.2) with

the matrix L
(d)
δ∗,µ∗ and the structure constraints in

eqs. (93) and (94), we obtain the control gain matrix

K̃(d) = 106×
−6.3640 0 0 0 0

0 −5.7753 0 0 0

0 0 −5.3282 0 0

0 0 0 −5.2014 0

0 0 0 0 −6.1716


(106)

and the upper bound

γK̃(d) ≤ 0.7560, (107)

which indicates that the decentralized velocity-
feedback controller

u(t) = K̃(d)y(t) (108)

produces a γ-value increment inferior to 1.26% with
respect to the optimal value γG̃s

= 0.7466. In fact,
by solving the LMI optimization problem Pa discussed
in Remark 2 with Ĝ = K̃(d)Cy, we obtain the actual
γ-value

γK̃(d) = 0.7525, (109)

which exceeds the optimal value γG̃s
in only 0.79%.

Looking at the plots of singular values displayed in
Fig. 12, it can be appreciated the good behavior of
the decentralized velocity-feedback controller defined
by the diagonal gain matrix K̃(d) when compared with
the optimal state-feedback controller.

Remark 9 Let us denote by P(d)
o (δ, µ) the LMI opti-

mization problem Po in eq. (34) corresponding to the L-

matrix L
(d)
δ,µ and the zero-nonzero structure constraints

given in eqs. (93) and (94). A suitable pair of parame-
ter values δ∗ and µ∗ can be computed as follows: First,
we select by inspection four boundary values

δ` < δu, µ` < µu, (110)

for which the LMI optimization problems

P(d)
o (δ`, µ`), P(d)

o (δ`, µu), P(d)
o (δu, µ`), P(d)

o (δu, µu)
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Table 1: Percentages of increment in the γ-values pro-
duced by the static velocity-feedback con-
trollers with respect to the optimal value
γG̃s

= 0.7466

Information structure

L-matrix Centralized Decentralized

L = 0 0.94% 4.05%
Advanced L 0.01% 0.79%

are all feasible. Next, we consider the points

δi = δ` + i (δu − δ`)/nδ, i = 0, . . . , nδ, (111)

µj = µ` + j (µu − µ`)/nµ, j = 0, . . . , nµ, (112)

and solve the optimization problem

min
i,j

γ̃(d)o (δi, µj), (113)

where γ̃
(d)
o (δ, µ) is the optimal γ-value corresponding to

the LMI optimization problem P(d)
o (δ, µ). For our five-

story building control problem, we take the boundary
values

δ` = 0.05, δu = 0.50, µ` = 0.50, µu = 1.00, (114)

and the grid of pairs (δi, µj) defined by

nδ = nµ = 10. (115)

In this case, we obtain the LMI optimization problems

P(d)
o (δi, µj), i = 0, . . . , 10, j = 0, . . . , 10, (116)

which produce the minimum γ-value

γ̃(d)o (δ∗, µ∗) = 0.7560 (117)

for the parameter values δ∗ and µ∗ given in eq. (104).

Remark 10 Besides producing a suitable pair of pa-
rameter values δ∗ and µ∗ for the problem under consid-
eration, the rudimentary computational strategy pro-
posed in Remark 9 also illustrates the important role
that can be played by the L-matrix in the design pro-
cess. To compute the controller in eq. (108), we take
advantage of the design flexibility provided by the L-
matrix and explore a total number of 121 different con-
trollers corresponding to the L-matrices

L
(d)
δi,µj

, i = 0, . . . , 10, j = 0, . . . , 10, (118)

obtaining a fully decentralized velocity-feedback con-
troller that exceeds the optimal γ-value attained by
the optimal state-feedback controller in less than 1%.

Moreover, it is worth highlighting that after select-
ing the boundary parameter values in eq. (114), the
LMI optimization problems in eq. (116) are all feasible
and the minimization problem in eq. (113) can be com-
pleted in about 8 seconds using an ordinary personal
computer.

Remark 11 As indicated in Remark 5, the proposed
design strategy for static output-feedback controllers
relies on the following heuristic principle: the behav-
ior of static output-feedback controllers with an almost
optimal γ-value is similar to the behavior exhibited by
the optimal state-feedback controller. Looking at the
γ-value increments collected in Table 1 and the plots of
singular values presented in Figs. 9 –12, it becomes ap-
parent that this heuristic principle holds for the differ-
ent velocity-feedback controllers computed in Sects. 5
and 6. However, it should be noted that a smaller
γ-value does not necessarily imply a uniformly better
performance over the complete frequency range. Thus,
for example, we can see in Table 1 that the minimum γ-
value increment is attained by the centralized velocity-
feedback controller with L = L̃ computed in Sect. 5.3,
whereas the maximum γ-value increment corresponds
to the decentralized velocity-feedback controller with
L = 0 obtained in Sect. 6.1. In contrast, looking at
the graphics in Figs. 10 and 11, it can be appreciated
that the decentralized controller has a better behavior
in the frequency range 2–3 Hz.

Remark 12 Analogously as it happened in the state-
feedback case, solving the LMI optimization problems
Po and P̂o using different computers or MATLAB ver-
sions can produce different control gain matrices. Con-
sequently, the particular values obtained for the matri-
ces K̂, K̃, K̂(d) and K̃(d) can differ significantly from
those presented in eqs. (82), (89), (95) and (106), re-
spectively. Additionally, if the X-matrix obtained in
the design step (S1.1) is distinct from the matrix X̃s

presented in Fig. 5, then the values of the matrix L̃
in eq. (87), the values of the parameters δ∗ and µ∗ in

eq. (104), and the matrix L
(d)
δ∗,µ∗ in eq. (105) will also be

affected and, probably, a new set of boundary values
δ`, δu, µ`, µu will need to be selected in the optimiza-
tion procedure described in Remark 9. However, it has
to be highlighted that despite the differences observed
in the control gain matrices, the obtained γ-values are
very similar and the corresponding graphics of singu-
lar values are practically identical to those shown in
Figs. 9 –12.

7 Numerical results

To complement the frequency response information
provided by Figs. 9 –12, in this section we carry out
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Figure 13: Full-scale North–South 1995 Kobe seismic
record with an absolute acceleration peak
of 8.18 m/s2

numerical simulations of the five-story building vibra-
tional response using two different ground accelera-
tion inputs: (i) the full scale North–South El Centro
1940 seismic record (see Fig. 7), employed previously in
Sect. 5.1 in the performance assessment of the optimal
state-feedback controller and (ii) the full scale North–
South Kobe 1995 seismic record displayed in Fig. 13,
which is a larger seismic disturbance with an absolute
acceleration peak of 8.18 m/s2.

In Fig. 14, we present the maximum absolute inter-
story drifts and maximum absolute control efforts cor-
responding to the centralized velocity-feedback con-
trollers designed in Sects. 5.2 and 5.3. The graphics
corresponding to the decentralized velocity-feedback
controllers computed in Sects. 6.1 and 6.2 are displayed
in Fig. 15. In the different subfigures, the green lines
with triangles represent the graphics associated with
velocity-feedback controllers designed with a null L-
matrix, which are denoted as “velocity-feed.L = 0”
in the legends, and the red lines with asterisks show
the graphics pertaining to velocity-feedback controllers
computed using more advanced L-matrix choices,
which are denoted as “velocity-feed. adv.L” in the leg-
ends. Additionally, to facilitate proper references for
the performance assessment of the proposed velocity-
feedback controllers, plots corresponding to the uncon-
trolled building and the optimal state-feedback H∞
controller have also been included, using black lines
with rectangles and blue lines with circles, respectively.

For the North–South El Centro 1940 seismic distur-
bance, the graphics in Figs. 14(a) and 14(b) show that
the behavior of the centralized velocity-feedback con-
troller defined by the output gain matrix K̃ in eq. (89)
is very similar to the behavior exhibited by the opti-
mal state-feedback controller. Looking at the graphics
in Figs. 14(c) and 14(d), we can also see that the be-
havior of both controllers is practically the same in
the case of the North–South Kobe 1995 seismic distur-
bance. For the centralized velocity-feedback controller
defined by the output gain matrix K̂ given in eq. (82),

the graphics in Fig. 14 indicate that this controller, de-
signed with the simplified choice L = 0, presents an
overall good behavior but the differences with respect
to the optimal state-feedback controller are quite sig-
nificant, specially for the larger seismic disturbance.

Regarding the decentralized controllers, the graphics
in Fig. 15 show that the performance of the decentral-
ized velocity-feedback controller defined by the diag-
onal output gain matrix K̃(d) in eq. (106) is certainly
remarkable. Looking at the plots in Figs. 15(a) and
15(b), we can see that, for the North–South El Centro
1940 seismic disturbance, the decentralized controller

computed with the advanced L-matrix L
(d)
δ∗,µ∗ attains

practically the same level of reduction in the interstory
drift peak-values as the optimal state-feedback con-
troller, presenting only a small increment of the control
effort peak-value in the first actuation device. For the
North–South Kobe 1995 seismic record, the differences
increase but the behavior of the decentralized velocity-
feedback controller is still quite close to the behav-
ior exhibited by the optimal state-feedback controller.
The plots in Fig. 15 also indicate that the decentral-
ized velocity-feedback controller defined by the diago-
nal output gain matrix K̂(d) in eq. (95) and computed
with a null L-matrix has a remarkably good behavior.
This decentralized controller attains levels of reduction
in the interstory drift peak-values that are quite sim-
ilar to those achieved by the optimal state-feedback
controller, requiring control efforts with smaller peak
values for the upper four actuation devices but a signif-
icantly larger peak value in the first actuation device.

Remark 13 It has to be highlighted that the decen-
tralized velocity-feedback controllers defined by the di-
agonal output gain matrices K̃(d) and K̂(d) can be
implemented by means of a system of passive linear
dampers with no sensors, no communication system
and null power consumption [Palacios-Quiñonero et al.
(2012c)]. The performance of the proposed decentral-
ized velocity-feedback controllers, illustrated by the
plots in Fig. 15, should be evaluated in the light of this
important property.

8 Conclusions and future directions

In this work, a two-step procedure to design static
output-feedback controllers has been proposed. This
novel design methodology, based on recent theoreti-
cal results presented in Rubió-Massegú et al. (2013b),
can be applied to a wide variety of control problems
for which satisfactory state-feedback controllers can be
obtained using a linear matrix inequality formulation.
In particular, the new approach has proved to be effec-
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tive in providing suitable solutions to large-scale con-
trol problems with information constraints. The design
procedure includes the choice of a matrix L that plays
an important role in the effectiveness of the method.
In some cases, positive results can be achieved with
the simplified choice L = 0. Also, more sophisticated
L-matrices can be obtained by applying the theoretical
results presented in Palacios-Quiñonero et al. (2014b).
In this paper, an advanced L-matrix choice specially
devised for fully decentralized velocity-feedback H∞
controller design is provided.

To illustrate the flexibility and effectiveness of the
two-step design procedure, a set of five different H∞
controllers for the seismic protection of a five-story
building has been designed. This set includes a central-
ized state-feedback controller, which uses the full state
as feedback information and is taken as a reference
in the performance assessment; two centralized static
velocity-feedback controllers, which can operate using
only the interstory velocities as feedback information;
and two fully decentralized static velocity-feedback
controllers, which can be implemented by means of
a system of passive linear dampers. To assess the
performance of the static velocity-feedback controllers,
the building frequency response has been investigated
for the different control configurations. Also, numer-
ical simulations of the building vibrational response
have been conducted, using the full scale North–South
El Centro 1940 and North–South Kobe 1995 seismic
records as ground acceleration inputs. The numerical
data indicate that, despite the restricted access to the
state information, the behavior of the proposed static
velocity-feedback controllers is similar to the behav-
ior exhibited by the optimal state-feedback controller.
Moreover, improved performance levels can be attained
with advanced choices of the L-matrix.

The positive results obtained to date, clearly indi-
cate that further research effort should be addressed
to apply the proposed design methodology in more
complex control problems, such as simultaneous sta-
bilization [Shi and Qi (2009)], switching systems [Hou
et al. (2012); Attia et al. (2012); Xiang et al. (2014);
Li et al. (2014)], networked control [Yang et al. (2011);
Zhang and Wang (2012)], robust control [Toscano and
Lyonnet (2010); Vaselý et al. (2011); Dong and Yang
(2013); Aouaouda et al. (2014)], fuzzy systems [Ho
et al. (2012); Zhang et al. (2014)] and finite frequency
control [Chen et al. (2010); Wang et al. (2014)]].

Acknowledgments

This work was partially supported by the Spanish Min-
istry of Economy and Competitiveness through the
grant DPI2012-32375/FEDER; by a Grant from Ice-

land, Liechtenstein and Norway through the EEA Fi-
nancial Mechanism, operated by Universidad Com-
plutense de Madrid; and by the Norwegian Cen-
ter of Offshore Wind Energy (NORCOWE) under
Grant 193821/S60 from the Research Council of Nor-
way (RCN). NORCOWE is a consortium with part-
ners from industry and science, hosted by Christian
Michelsen Research.

References

Amato, F., Cosentino, C., and Merola, A. Suffi-
cient conditions for finite-time stability and stabi-
lization of nonlinear quadratic systems. IEEE Trans-
actions on Automatic Control, 2010. 55(2):430–434.
doi:10.1109/TAC.2009.2036312.

Aouaouda, S., Chadli, M., and Karimi, H. Ro-
bust static output-feedback controller design against
sensor failure for vehicle dynamics. IET Con-
trol Theory and Applications, 2014. 8(9):728–737.
doi:10.1049/iet-cta.2013.0709.

Attia, S., Salhi, S., and Ksouri, M. Static switched
output feedback stabilisation for linear discrete-time
switched systems. International Journal of Inno-
vative Computing, Information and Control, 2012.
8(5):3203–3213.

Bakka, T. and Karimi, H. H∞ static output-
feedback control design with constrained informa-
tion for offshore wind turbine system. Journal
of the Franklin Institute, 2013. 350(8):2244–2260.
doi:10.1016/j.jfranklin.2013.05.028.

Bakka, T., Karimi, H., and Christiansen, S. Linear
parameter-varying modelling and control of an off-
shore wind turbine with constrained information.
IET Control Theory and Applications, 2014. 8(1):22–
29. doi:10.1049/iet-cta.2013.0480.

Balas, G., Chiang, R., Packard, A., and Safonov, M.
MATLAB Robust Control Toolbox 3. User’s Guide.
The MathWorks, Inc., Natick, USA, 2011.

Ballesteros, P., Shu, X., Heins, W., and Bohn,
C. Reduced-order two-parameter pLPV controller
for the rejection of nonstationary harmonically re-
lated multisine disturbances. In Proceedings of the
2013 European Control Conference (ECC). Zürich,
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Rubió-Massegú, J. Sequential design of multiover-
lapping controllers for structural vibration control of
tall buildings under seismic excitation. Proceedings
of the Institution of Mechanical Engineers, Part I:
Journal of Systems and Control Engineering, 2013.
227(2):176–183. doi:10.1177/0959651812464026.

Kurata, N., Kobori, T., Takahashi, M., Niwa, N., and
Midorikawa, H. Actual seismic response controlled
building with semi-active damper system. Earth-
quake Engineering and Structural Dynamics, 1999.
28(11):1427–1447.

Li, Z., Gao, H., and Karimi, H. Stability anal-
ysis and H∞ controller synthesis of discrete-
time switched systems with time delay. Sys-
tems and Control Letters, 2014. 66:85 – 93.
doi:10.1016/j.sysconle.2013.12.010.

Liu, A., Yu, L., and Zhang, W. H∞ con-
trol for network-based systems with time-varying
delay and packet disordering. Journal of
the Franklin Institute, 2011. 348(5):917–932.
doi:10.1016/j.jfranklin.2011.03.002.

Lunze, J. Feedback Control of Large-Scale Systems.
Prentice Hall, Upper Saddle River, NJ, USA, 1992.

Moerder, D. and Calise, A. Convergence of
a numerical algorithm for calculating optimal
output feedback gains. IEEE Transactions
on Automatic Control, 1985. 30(9):900–903.
doi:10.1109/TAC.1985.1104073.

186

http://dx.doi.org/10.1016/S0005-1098(98)80021-6
http://dx.doi.org/10.1016/S0005-1098(98)80021-6
http://dx.doi.org/10.1016/j.nonrwa.2011.08.006
http://dx.doi.org/10.1016/j.automatica.2005.01.020
http://dx.doi.org/10.1016/j.mechatronics.2009.11.001
http://dx.doi.org/10.1109/9.763227
http://dx.doi.org/10.1016/j.sigpro.2010.07.014
http://dx.doi.org/10.1016/j.automatica.2013.02.047
http://dx.doi.org/10.1016/j.jsv.2011.04.025
http://dx.doi.org/10.1002/rnc.1575
http://dx.doi.org/10.1016/j.automatica.2007.02.005
http://dx.doi.org/10.1016/j.automatica.2009.01.004
http://dx.doi.org/10.1177/0959651812464026
http://dx.doi.org/10.1016/j.sysconle.2013.12.010
http://dx.doi.org/10.1016/j.jfranklin.2011.03.002
http://dx.doi.org/10.1109/TAC.1985.1104073
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Palacios-Quiñonero, F., Rubió-Massegú, J., Rossell,
J., and Karimi, H. Optimal design of com-
plex passive-damping systems for vibration control
of large structures: an energy-to-peak approach.
Abstract and Applied Analysis, 2014c. 2014:1–9.
doi:10.1155/2014/510236.
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Vaselý, V., Rosinová, D., and Kucera, V. Ro-
bust static output feedback controller LMI
based design via elimination. Journal of the
Franklin Institute, 2011. 348(9):2468–2479.
doi:10.1016/j.jfranklin.2011.04.020.

Wang, R., Jing, H., Yan, F., Karimi, H., and Chen,
N. Optimization and finite-frequency H∞ control of
active suspensions in in-wheel motor driven electric
ground vehicles. Journal of the Franklin Institute,
2014. In press. doi:10.1016/j.jfranklin.2014.05.005.

Wang, Y., Lynch, J., and Law, K. Decentralized
H∞ controller design for large-scale civil structures.
Earthquake Engineering and Structural Dynamics,
2009. 38(3):377–401. doi:10.1002/eqe.862.

Wang, Z., Liu, Y., Wei, G., and Liu, X. A
note on control of a class of discrete-time stochas-
tic systems with distributed delays and nonlinear
disturbances. Automatica, 2010. 46(3):543–548.
doi:10.1016/j.automatica.2009.11.020.

Xiang, M., Xiang, Z., and Karimi, H. Stabilization
of positive switched systems with time-varying de-
lays under asynchronous switching. International
Journal of Control, Automation and Systems, 2014.
12(5):939–947. doi:10.1007/s12555-013-0486-x.

Yang, R., Shi, P., Liu, G.-P., and Gao, H. Network-
based feedback control for systems with mixed
delays based on quantization and dropout com-
pensation. Automatica, 2011. 47(12):2805–2809.
doi:10.1016/j.automatica.2011.09.007.
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Figure 14: Maximum absolute interstory drifts and maximum absolute control efforts corresponding to the
centralized velocity-feedback controllers defined by the control gain matrices K̂ (green line with

triangles) and K̃ (red line with asterisks). The plots corresponding to the uncontrolled building
(black line with rectangles) and the optimal state-feedback H∞ controller (blue line with circles) are
also included as a reference. The full scale North–South El Centro 1940 seismic record has been
used as ground acceleration input to obtain the plots in Figs. (a) and (b). For the plots in Figs. (c)
and (d), the full scale North–South Kobe 1995 seismic record has been taken as ground acceleration
input
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Figure 15: Maximum absolute interstory drifts and maximum absolute control efforts corresponding to the
decentralized velocity-feedback controllers defined by the diagonal control gain matrices K̂(d) (green

line with triangles) and K̃(d) (red line with asterisks). The plots corresponding to the uncontrolled
building (black line with rectangles) and the optimal state-feedback H∞ controller (blue line with
circles) are also included as a reference. The full scale North–South El Centro 1940 seismic record
has been used as ground acceleration input to obtain the plots in Figs. (a) and (b). For the plots
in Figs. (c) and (d), the full scale North–South Kobe 1995 seismic record has been taken as ground
acceleration input
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