Modeling, Identification and Control, Vol. 35, No. 2, 2014, pp. 79-91, ISSN 1890-1328

An Approach to Automated Model Composition
lllustrated in the Context of Design Verification

Wladimir Schamai! Lena Buffoni? Peter Fritzson 2

! Airbus Group Innovations, Hamburg, Germany E-mail: wladimir.schamai@airbus.com

2 Linképing University, SE-581 83 Linképing, Sweden. E-mail: {lena.buffoni, peter.fritzson} @liu.se

Abstract

Building complex systems form models that were developed separately without modifying existing code
is a challenging task faced on a regular basis in multiple contexts, for instance, in design verification.
To address this issue, this paper presents a new approach for automating the dynamic system model
composition. The presented approach aims to maximise information reuse, by defining the minimum set
of information that is necessary to the composition process, to maximise decoupling by removing the
need for explicit interfaces and to present a methodology with a modular and structured approach to
composition. Moreover the presented approach is illustrated in the context of system design verification
against requirements using a Modelica environment, and an approach for expressing the information
necessary for automating the composition is formalized.

Keywords:

Bindings, model composition, requirement formalization, design verification

1. Introduction

With the increasing complexity of cyber-physical sys-
tems, determining whether a particular system design
fulfills or violates requirements that are imposed on
the system under development can no longer be done
manually and requires formalizing a requirement into
some computable form. For such a formalized require-
ment to be verified, it will need to obtain the necessary
information from the system model that is being veri-
fied, that is, it needs to be combined together with the
system. In complex systems with large numbers of re-
quirements, there is a need for an automated approach
for composing the requirements with a given system
design for the purpose of verification. This task is fur-
ther complicated by the fact that the requirement mod-
els and the physical models are developed separately,
and can operate on different quantities and data-types
therefore combining them together in order to enable
design verification is far from trivial.

This paper builds upon a new approach that en-

doi:10.4173/mic.2014.2.2

ables automated composition of models by expressing
the minimum information necessary to compose the
models in the form of bindings (Schamai, 2013a). It
presents a proposal for implementing the bindings con-
cept in a Modelica-based environment (Modelica Asso-
ciation, 2013). In contrast to an approach that is based
on defining interfaces that models have to implement,
our approach enables the integration or composition of
models without the need for modifying those models.

Although the concepts proposed in this paper are
designed to bind any kinds of components together,
we illustrate them in the context of design verifica-
tion (IEEE1220, 2005; NCOSE, 2006; Kapurch, 2010).
More specifically, bindings are used in vVDR (Vir-
tual Verification of Designs against Requirements), a
method that enables model-based design verification
against requirements. In our examples we wish to ver-
ify a particular system design, represented by a Mod-
elica model, against requirements that are formalized
as requirement violation monitors models in Modelica.

(© 2014 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2014.2.2

Modeling, Identification and Control

The need for the bindings concept, presented in this
paper, was identified in Schamai (2013a) when try-
ing to find a way to automatically compose simula-
tion models that can be used for design verification.
The approach in Schamai (2013a) shows how natural-
language requirements (see Hull et al. (2005) for exam-
ples) are formalized in order to monitor their violations
during simulations. The formalization approach of re-
quirements into monitors is inspired by concepts from
run-time verification (Leucker and Schallhart, 2009).

In order to compose simulation models ' automati-
cally, i.e., to combine the formalized requirements (i.e.,
violation monitor models), system design models and
scenario models, the bindings concept is elaborated in
Schamai (2013a) and prototyped in the ModelicaML
language (Schamai, 2013b). ModelicaML enables us-
ing UML (OMG, 2013) diagram notations for modeling
complex physical system and using Modelica for simu-
lations. It supports the model-based design verification
method proposed in Schamai (2013a).

The main contribution of this paper is a proposal for
leveraging the bindings concept in Modelica directly.
The new feature is expected to avoid modeling errors,
to reduce the manual modeling effort for integrating
models, to enable automated model composition of
Modelica models, as well as to establish traceability
between models.

In order to illustrate the use of bindings in Model-
ica, we use the simplified example of a cooling system
containing a number of pumps. For the purpouse of
this paper, the pumps are modeled in a very simplis-
tic manner, as we are only interested in whether the
pumps are turned on or off. However, even such a
simple property can be modeled in different ways for
different kinds of pumps. We will use this setup to il-
lustrate how the requirement model can be decoupled
from the way that a specific property is modeled in the
physical representation of the system.

This paper is organized as follows: Section 2 presents
the basic concepts. Sections 3 and 4 present two dif-
ferent alternatives for capturing bindings and explain
through the use of examples how the model compo-
sition can be automated. Section 5 discusses use of
bindings in the context of the vVDR methodology and
finally Section 6 sums up the work presented and dis-
cusses further research directions.

2. Basic Concepts

In this section we give the definitions of the basec con-
cepts used in our approach, and illustrate them by us-

Hn Schamai (2013a), requirement violation monitor models and
other models are ultimately translated into Modelica models
for simulations.

80

ing simple examples of water pumps from a cooling
system. To this end we introduce the notions of clients
and providers. Clients require certain data; providers
can provide the required data. However, clients and
providers do not know each other a priori.

Moreover, there may be multiple clients that require
the same information. On the other hand, data from
several providers may be needed in order to compute
data required by one client. This results in a many-to-
many relation between clients and providers.

clients mediator providers

Figure 1: Concept of clients, mediator and providers

In order to associate the clients and the providers to
each other we introduce the mediator > concept, which
is an entity that can relate a number of clients to a
number of providers, as illustrated in Figure 1. Refer-
ences to clients and providers are stored in mediators in
order to avoid the need for modifying client or provider
models.

The purpose of the presented concepts is to capture
all the information needed for inferring (i.e., generat-
ing) binding expressions for clients. We define a bind-
ing as follows:

client instance reference = binding expression

A binding is a causal relation, which specifies that, at
any point in simulated time, the value of the referenced
client instance shall be the same as the value computed
by the right-hand expression. When composing mod-
els, the right-hand side, i.e., the binding expression for
the client at hand, is inferred using the corresponding
mediator and its referenced providers.

Mediator, client or provider references may have at-
tached template. Templates are code snippets that
contain placeholders for context sensitive information.
These placeholders or macros are replaced or expanded
when the binding expression is generated. For example,

2The idea of mediators is similar to mediator pattern from the
software development domain (Gamma et al., 1995), which
promotes the idea of a loose coupling of objects to enable
their communication without them explicitly knowing each
other’s details.

Schamai et al., ”An Approach to Automated Model Composition”

a template attached to a mediator can contain macros
for either reducing lists of providers to a single element
(e.g. min(:), max(:), sum(:), etc.) or to return ar-
rays (e.g. toArray(:)) or information about the array
(e.g. size(:)). Templates attached to client or provider
references can contain code snippets for unit or type
conversion or references to sub-components.

3. Alternative 1: Binding
Specification in Modelica

This section presents the approach for capturing infor-
mation required for an automated model composition
using an extended version of the Modelica language.

Assume that we have a system that contains sev-
eral pumps, and an informal requirement, such as, At
least 2 pumps shall be in operation at any time”. In-
dependent of a specific system design (i.e., the number
and type of pumps contained in the system model),
this requirement can be formalized into a requirement
violation monitor Modelica model as follows:

package Requirements

model Req

input Integer numberO0fOpPumps = 0
number of operating pumps";

constant Integer minNumberOfOpPumps
= 2 number of operating
pumps";

output Integer status(start=0,fixed=
true) "indication of requirement
violation, O = not evaluated";

equation
if numberO0fOpPumps <
minNumberO0f0OpPumps then

n

"min.

status = 2 "2 means violated";
else
status = 1 "1 means not
violated";
end if;
end Req;

end Requirements;

This requirement violation monitor model has as an
input number0f0pPumps (that is, the number of oper-
ating pumps). When this requirement violation mon-
itor model will be used (i.e., instantiated within an-
other model) in simulations, this input component will
need to be bound to some expression that calculates
the number of operating pumps within the system for
a given system design. Simulating the requirement vio-
lation monitor model is pointless without binding it to
an expression that calculates this information during
simulation.

Further, assume we have the following system design
model that contains 3 pumps of 2 different types.

package Design
model System
PA pumpl;
PB pump2;
PB pump3;
end System;

model PA

input Boolean on = false

"to turn the pump on or off";
end PA;

model PB
input Boolean switchedOn = false
"to switch the pump on or off";
Real volFlowRate
"volume flow rate of the pump";

equation
if switchedOn then volFlowRate =
1;
else volFlowRate = O;
end if;
end PB;

end Design;

Additionally, there is a scenario® model that can be
used for stimulating the system model, e.g., it will turn
on and off different pumps during simulation.

package Scenarios
model Scenario
output Boolean pumplactive
pumpl = true,
false";
output Boolean pump2active

"turn on
turn off pumpl =

"turn on

pump2 = true, turn off pump2 =
false";
output Boolean pump3active "turn on
pump3 = true, turn off pump3 =
false";
algorithm
if time > 0 and time <= 10 then
pump3active := false;
elseif time > 0 and time <= 20
then pump2active := false;
elseif time > 0 and time <= 30
then pump2active := true;

else
pumplactive
pump2active :=

true;
true;

3In Schamai (2013a) such models are referred to as verification
scenarios. They are used to stimulate the system model such
that a set of requirement violation monitors can be evaluated.

81

Modeling, Identification and Control

pump3active :=
end if;
end Scenario;
end Scenarios;

true;

We create a new model (e.g. AnalysisModel?) that
contains instances of the requirement monitor model
(reql), the system model (sys), and the scenario
model (scen). Now we wish to automatically find all
components (i.e., clients) that require data from other
components (i.e., providers) and bind them.

Design Verification Context

Req. E
Monitor

Figure 2: Integrating models for design verification

In Modelica there are two possible ways to inte-
grate models: acausal and causal. Acausal connec-
tions (Modelica connect equations) are typically used
for modeling physical energy or material flow. In our
setting there is no need for acausal connections because
requirement monitors are observers (i.e., they must not
impact the system model) and scenarios stimulate the
system and may observe it. Causal connections (Mod-
elica connect equations, component modifiers) are suf-
ficient for connecting requirement monitors, system de-
sign and scenarios.

Another question that we need to answer, is how we
want to connect models in Modelica: using equations
(that require ports of predefined compatible types to
be connected) or using component modifiers (i.e., by
replacing the declaration equations for input compo-
nents)? Connections, i.e., connected ports with pre-
defined interfaces, would require an extension or mod-
ification of the involved models. This approach may
clutter up models with instrumentation code that is
not part of the system design, requirement or scenar-
ios. In contrast to pre-defined interfaces, component
modifiers can be added when needed and adapted to
the context. In the following we will apply the later
approach: we will integrate models in a causal way
using Modelica component modifiers. The reasons for
this decision are twofold. First of all a physical model
needs to be designed separately as a standalone model,
and therefore having unconnected connectors that are

4In Schamai (2013a) such models are referred to as verification
models

82

only used in the presence of the requirement model,
which would be an issue. Moreover, the binding ex-
pressions are generated automatically; therefore their
complexity does not impact the user, however if we
use connectors, which are in turn used to automati-
cally generate connection equations we add an extra
level of complexity to the computation model.

In our example, binding expressions shall
be generated for the input component
Requirements.Req.number0fOpPumps, and for

the pump components within the system. What we
want to achieve is shown below:

model AnalysisModel
Requirements.Req reql(
number0fO0pPumps = sum ({
(if sys.pumpl.on then 1 else
0),
(if sys.pump2.volFlowRate > 0
then 1 else 0),
(if sys.pump3.volFlowRate > 0
then 1 else 0)}));
Design.System sys(
pumpl (on = scen.pumplactive),
pump2 (switchedOn =
scen.pump2active),
pump3 (switchedOn =
scen.pump3active));
Scenarios.Scenario scen;
end AnalysisModel;

In AnalysisModel the component number0f0pPumps
of the instantiated requirement model is now bound to
an expression that will calculate the number of oper-
ating pumps within the system during simulations by
obtaining data from the system model. The system
model components pumpl, pump2 and pump3 are bound
to the scenario model instance.

In order to do this automatically, the following infor-
mation will need to be captured by experts because it
cannot be deduced automatically. Experts (i.e., people
that are familiar with either clients or provider models)
will need to specify:

e which models or components are clients,

e which models or components are the correspond-
ing providers,

e and, in case there is no 1:1 compatible mapping
of client and provider components, what template
should be used to generate the appropriate binding
expressions?

In the following section we present a proposal for a
Modelica concrete syntax for capturing this minimum
set of information required to enable such automated
generation of binding expressions.

Schamai et al., ” An Approach to Automated Model Composition”

3.1. Modelica Extension for Defining
Mediators

As mentioned in Section 2, we suggest storing all in-
formation, required to enable inferring binding expres-
sions, in a so called mediator. This concept does not
exist in Modelica. All Modelica code hereafter is a new
proposed extension to the Modelica concrete syntax.

In order to modularize the process, the information
captured by mediators can be defined in multiple me-
diators that use inheritance (i.e., extends relation in
Modelica).

Assume that in our process we have the role of
a requirement analyst, a person in charge of elicita-
tion, negotiation and formalization of requirements.
When formalizing the requirements, the requirement
analyst will define mediators in order to expose the
information needed by the clients. For example,
the requirement analyst would create the mediator
NumberOfOperatingPumps_C and associate the compo-
nent number0f0pPumps (the input component of the
requirement violation monitor model) to it as follows:

package PartialMediators
mediator NumberOfOperatingPumps_C
requiredType Integer;
clients
mandatory Requirements.
Req.number0f0pPumps;
end NumberOfOperatingPumps_C;
end PartialMediators;

Note, that the only way to reference a
client is to wuse its model qualified name (e.g.,
Requirements.Req.number0f0pPumps). The model
Requirements.Req may be used in different context,
i.e., instantiated in another model and will be given
an instance path (e.g., reql.numberOfOpPumps in
the context of AnalysisModel). However, we cannot
know the instance path a priori.

So far, the mediator only contains references to
clients, i.e., models or components that require the in-
formation, however, no description of how to get this
information yet. In that sense this mediator is incom-
plete.

For the sake of simplicity, there is only one client
model that requires the number of operating pumps
within the system in our current example. In a larger
example there are likely to be more models (e.g. other
requirement violation monitors) that will also need the
same information. In that case there will still be only
one mediator that would then contain references to
more clients in the clients section. This way, me-
diators allow a grouping of models or components that
require the same information and enable a concise def-
inition of bindings.

This mediator also indicates the type of data to be
provided to the clients, the requiredType reference,
which must be compatible with the type of all associ-
ated clients. This way, the mediator reflects what is
needed by clients. There is no need to analyze each
client anymore, it is sufficient to only look at media-
tors. This is especially useful if a different person, with
no knowledge of the requirement model is in a charge
of defining the providers in the model.

Moreover, the client reference can have the prefix
mandatory, to indicate that this client must be bound®.
In our example it is the input of the requirement viola-
tion monitor model that has to receive the correspond-
ing value during simulation.

At some point in time, another person, e.g., system
designer will specify which models can provide the in-
formation required by clients and how to compute it
from a particular provider model. As mentioned above,
for doing so, system designer will only need to look at
mediators. There is no need to analyze the referenced
clients (which may be many in larger models) because
the mediator unambiguously reflects the content and
the type of required data.

To this end, system designer creates a new mediator
NumberOfOperatingPumps_P, that extends the media-
tor Number0fOperatingPumps_C. By using inheritance,
the new mediator obtains all client references. Now
system designer can add references to provider models
and specify how the binding expression should be gen-
erated in case there is no 1:1 mapping between clients
and providers.

mediator NumberOfOperatingPumps_P
extends PartialMediators.
NumberOfCaviatingPumps_C;
template sum(:) end template;
providers
Design.PA.on
template if getPath() then
1 else 0 end template
Design.PB.volFlowRate
template if getPath() > O
then 1 else O end
template;
end NumberOfOperatingPumps_P;

If there is no 1:1 mapping, in addition to the client
or provider references, templates can be used to specify
how the expression code should look like and where to
insert context-sensitive data.

For example, a template can be attached to the me-
diator in order to either specify how to aggregate in-

5An example for a not mandatory client is shown at the end of
this section.

83

Modeling, Identification and Control

formation in case several providers are in place, or to
specify that it only should contain constant data.

In our example, the mediator will be used to gen-
erate an expression that will calculate the number of
operating pumps for any design, i.e., for any number
and type of pumps contained in a particular system
design model. The strategy for computing this infor-
mation in this example is the following. Each provider
model (i.e., a model of a pump) shall indicate whether
the pump is in operation by returning 1 if it does and 0
otherwise. Then the sum(:) operator, specified in the
mediator "template sum(:) end template;", will be
turned into an expression to calculate the total number
of operating pumps in the system during simulations.

The colon in sum(:) indicates that this operator ex-
pects an array of unordered items. In our example
sum(:) will be mapped to the Modelica array reduc-
tion function sum(A) where A is an array of expres-
sions each calculating whether a pump instance is in
operation. Note that such expressions may be different
for different pump model instances within the system
model at hand. In general, the mediator templates are
allowed to include any template function that accepts
as input an unordered list.

Now, for each referenced provider model of a
pump (i.e., in our example there are Design.PA and
Design.PB), we specify how to determine whether
the pump is in operation using the provider tem-
plate. Based on the strategy of the mediator, the
following template for the provider model component
Design.PA.on "if getPath() then 1 else 0" spec-
ifies that 1 is returned if the pump is in opera-
tion and 0 otherwise. This is different for the sec-
ond pump type. Here we will be using the compo-
nent Design.PB.volFlowRate and the template if
getPath() > O then 1 else 0.

For referencing provider model sub-components, the
getPath() operator is used. It is a placeholder that
will be replaced® by the instance path of the provider
model in a particular context (i.e., in our example in
the context of AnalysisModel, see below).

The mediator Number0fOperatingPumps_P is com-
plete. It contains all the information needed to auto-
matically generate the binding expression for all ref-
erenced clients”. Note that this mediator is indepen-
dent from the number of pump instances in a given
design. As long as the referenced provider models (i.e.,
Design.PA and Design.PB) are used in a system de-
sign model, this mediator can cope with any number

6The getPath() operator will be replaced with the instance
paths of providers when the binding expression will be gen-
erated for a particular client.

"Recall, in our example we associated clients in the
NumberOfOperatingPumps_C mediator that is extended by
NumberOfOperatingPumps_P

84

of pump instances (e.g., 20 pumps instead of 3 pumps
in our example model Design.Systen).

The inferred binding expression will then be passed®
to each client that requires the information about the
number of pumps that are in operation during a simu-
lation run.

Also, note that the purpose of creating another me-
diator is to show that this approach can be used for
separating concerns and making definitions reusable.
In the same way, we could use the first mediator
NumberOfOperatingPumps_C and add the missing in-
formation to it. Separating concerns may be necessary
because different people will be the owners of different
mediator models, or because the same mediator, that
contains client references, may be reused for different
designs with provider models specific to the design at
hand. Figure 3 summarizes the information that needs
to be captured in abstract syntax.

name

type e
template
client client

reference reference

provider
reference

/N

providerid template

provider
reference

isMandatory clientid template

Figure 3: The information that needs to be captured
in abstract syntax.

The mediator name® reflects what is needed by

clients. The mediator requiredType must be compat-

ible to each of its clients'".

Client or provider id is
of the client or provider model or component
(e.g. Requirements.Modell.compl). The attribute
mandatory (true by default) indicates whether the
client must be bound. If not, the client component
must have a default value.

All templates are optional. For example, if there is
only one provider that returns exactly what is needed
by clients, there will be no need for neither the media-
tor template nor for the provider template.

In contrast, if the binding expression will refer to
several provider models for which the code for access-
ing the right data is different (like in our running exam-
ple), then probably a mediator template and a provider
template will be necessary. A client template will be

the qualified mname

8In our proposal the generated binding expression will be passed
via the Modelica component modifier to the client compo-
nent.

9Comments may be included like for any Modelica model.

10In addition, the mediator should indicate the lowest variability
of its clients (this is not discussed in this paper).

Schamai et al., ” An Approach to Automated Model Composition”

needed as soon as the actual client is not the referenced
client model but a sub-component of it.

Client or provider templates are expressions that can
contain instance paths (e.g. in Modelica using the dot-
notation) for referencing sub-components within the
client or provider models. A mediator template can
only contain predefined macros or built-in functions
(e.g. sum(:), toArray(:), card(:), min(:), max(:), etc.)
or constant data.

A client template is needed in order to enable point-
ing to sub-components. For example, in our system
model there are several pumps that can be turned on
or off. System designer can expose the potential stimuli
of the system by creating a new mediator and associ-
ating the clients as shown below. The provider refer-
ences will be added by the tester who will be creat-
ing the scenario models. Now, the client template in
the mediator Pump1IsOn is necessary because we need
to point) a particular pump instance within the sys-
tem model, in this case the pumpl component within
Design.System.

package Mediators

mediator PumplIsOn
requiredType Boolean;
clients
Design.System.pumpl
template getPath().on =
getBinding () ;
end template;
providers
Scenarios.Scenario.pumplactive

end PumplIsOn;

end Mediators;

If there will be more scenario models that turn on
and off the pumpl, the mediator will still be the same
and will only need to include the additional scenario
model references in the providers section. Similarly,
if there is a new design alternative, say one that con-
tains 20 pumps of the same type instead of 3 like in the
example above, the bindings will still be generated cor-
rectly. If there will be another type of pump (i.e., other
than the two types from the example above), then we
will merely need to add a new provider reference to the
mediator.

To sum up, in order to integrate the binding con-
cept into the Modelica language, we define a new type
of class, mediator, which has a particular structure.
However the scope of these extensions is limited, as
all the extensions are confined to within the media-
tor, and moreover, once the bindings are generated the
models only contains standard Modelica, which means

that they will be compatible with any Modelica tools.

3.2. Generating Binding Expressions

In this section we illustrate how we use the information
contained in the mediators to automatically generate
binding expressions.

3.2.1. Templates

Let us first come back to the question why we need
client, mediator, and provider templates. A template
defines the form of the binding expression to be gen-
erated. It specifies where to insert context-sensitive
information, such as the instance path of components
(i.e., which will replace the placeholder getPath()) in
order to enable pointing to particular client or provider
subcomponents.

The purpose of the mediator template is to specify
how to reduce arrays to a single value, or to specify
that constant data should be passed to the associated
clients. Client and provider templates are primarily
used to enable pointing to sub-components. Client
templates are also used for overwriting binding defi-
nitions. A consideration of possible cases and general
validation rules for templates can be found in Schamai
(2013a). They are used for generating valid bindings.
A binding is said to be wvalid if the binding expression
can be inferred for client ciy and the resulting type of
the right-hand binding expression is compatible with
the left-hand-side expression.

Models

model V package PA
model A

package PB
model B

package PC
model C
Real cvarl;
Real cVar2;

package PD
model D

Real dvarl;

Real dvar2;
end D;
end PD;

A al;
C cl;
D dl;
end V;

Real bVarl;
end B;
end PB;

B bl;
B b2;
end A;
end PA;

Instance Hierarchy

Instantiated V (root node) v

Instantiated A

al c1 d1
) ™ £ 2
Instantiated B b1 b2 cVaricvar2 dvaridvar2

4 N

Leaf node bvar1 bvar1

component model qualified name: PB.B.bVar 1
componentinstance path: V.a1.b2.bVar1

Figure 4: The information that needs to be captured
in abstract syntax.

85

Modeling, Identification and Control

3.2.2. Instantiation Tree

Let us first now introduce a structure, called instanti-
ation tree, which is used for inferring binding expres-
sions. It is a tree that starts with the root node repre-
senting the model being instantiated (see Figure 4).

Each child node represents a component of the par-
ent model. The recursive tree construction stops at leaf
nodes. Leaf nodes represent components of primitive
types, which do not have any further internal struc-
ture. Figure 4 shows an example of Modelica models**
and the correspondent instance hierarchy.

Model qualified name is the path (structured name)
of a model element - e.g. a class or an attribute of a
class - that identifies the element within the structure
used to organize the model (e.g., by means of packages
or nested classes). Instance path identifies a compo-
nent within an instantiated model (for example, in our
setting, within AnalysisModel).

Each tree node contains all the relevant information
about the element (e.g. the component model qual-
ified name, component instance path etc., see Figure
4). They are necessary in order to match clients and
provider instances based on the model qualified names
within mediators.

3.2.3. Algorithm

In AnalysisModel, we first import mediators
that should be wused for generating the bind-
ing expressions (i.e., we add an import clause
import Mediators.* to import the media-
tors Mediators.NumberOfOperatingPumps_P,
Mediators.Pump1IsOn, etc.).

Now, in order to generate binding expressions for
each client in AnalysisModel we trigger the new tool
feature ”Update bindings”. Figure 5 below shows how
such an invocation could look in a Modelica tool!?.

The algorithm will first create an instantiation tree'®
and collect all client components, mediators to be used
for inferring binding expressions and all the referenced
provider components contained'* in AnalysisModel.

While creating the instantiation tree (see Figure 6
) the algorithm takes the imported mediators into ac-
count in order to identify (i.e., match) nodes (i.e., com-
ponents) that are clients or providers. Clients and

11Tn Modelica the primitive types, such as Real, Integer, String,
and Boolean, still have one level of internal structure of pre-
defined properties, see Modelica Association (2013).

12Such as the OpenModelica graphical editor OMEdit [4]

13The algorithm for constructing the instantiation tree is not
shown in this paper. It is a traversal that is straight forward
to implement.

4Note that a mediator may contain much more client or
provider references. However, now, in a specific context, the
algorithm will only consider those that are contained in the
model at hand.

86

model AnalysisModel
import Mediators.*;
Requirements.Reqreq1;
Design.System sys;
Scenarios.Scenario scen;
end AnalysisModel;

v | Eabeiiceel o View Class

+ [E PartialMediators

+ E] Mediators

[B] Dokumentation

9 Neu Modelica Klasse)

E Instanziiere Modell
€2 Modell prifen 1

| % Simulieren
1 & Entladen 1

‘s Exportiere FMU
‘> Exportiere XML

Update bindings

Updated model:

model AnalysisModel
import Mediators.*;
Requirements.Reqreq1(
numberOfOpPumps = sum({
(if sys.pump1.onthen 1 else 0),
(if sys.pump2.volFlowRate > 0 then 1 else 0),
(if sys.pump3.volFlowRate > 0 then 1 else 0)}));
Design.System sys(
pumpi(on =
pump2(switchedOn =
pump3(switchedOn =
Scenarios.Scenario scen;
end AnalysisModel;

scen.pumpactive),
scen.pump2active),
scen.pump3active));

Figure 5: The information that needs to be captured
in abstract syntax.

AnalysisModel
req1
numberOfOpPumps pumpiactive pump2active
(client) sys (provider) (provider)

oumot ﬂpumpz\purnps

switchedOn volFlowRate switchedOn volFlowRate

(cllent) (client) (provider) (client) (provider)

(provider)

Figure 6: The information that needs to be captured
in abstract syntax.

Schamai et al., ”An Approach to Automated Model Composition”

providers are identified by comparing the model quali-
fied name of each component node in the instantiation
tree with client and provider references of the imported
mediators.

For example, reql.number0f0pPumps
is a client because there is a mediator
(Mediators.NumberOfOperatingPumps P1) that ref-
erences this component using its model qualified name
(mandatory Requirements.Req.number0QfOpPumps).
Moreover, it is a mandatory client. This client must
be bound to some expression. This means that if no
binding expression can be inferred for that client, an
error should be reported.

Now the algorithm for inferring the binding expres-
sion can be triggered. It is described in pseudo-code in
the Appendix '°. The algorithm requires as input an
instantiation tree node which is a client, and the set of
mediators to be used for inferring binding expressions.

Mediator that contains client references:

__

I mediator NumberOfOperatingPumps_C

i requiredType Integer;

: clients

i mandatory Pack1.Req.numberOfOpPumps;

i mediator NumberOfOperatinggPumps_P1
i extends NumberOfOperatingPumps_C;
I template sum(:) end template;

: providers

i Pack2.PA.on

template ifjgetPath() then 1 else 0 end template;

Model with updated bindings:

model AnalysisModel
import Mediators.*;
Pack1.Req req1(
numberOfOpPumps = sum({
(if[sys.pumpT.on]then 1 else 0),
(if sys.pump2.volFlowRate > 0 then 1 else 0),
(if sys.pump3.volFlowRate > 0 then 1 else 0)}));

éﬁd AnalysisModel,

Figure 7: The information that needs to be captured
in abstract syntax.

The algorithm first identifies the actual client'® and
finds the corresponding mediator. Then, based on

15In Schamai (2013a)] templates are referred to as operations.

16When looking for the client ¢ there may be component at a
higher hierarchy level that uses its client template to point
to it . This is the actual client because, similar to Modelica
component modification mechanism, the higher-level compo-
nents overwrite definitions for lower-level components.

the mediator template, the associated providers (e.g.
sys.pumpl.on, sys.pump2.volFlowRate, etc.), and
the provider templates (e.g. template if getPath()
then 1 else O end template for provider model
component Design.PA.on) the algorithm tries to gen-
erate the binding expression.

For the requirement model component client
Requirements.Req.number0fOpPumps the binding ex-
pression can be inferred. Figure 6 explains which parts
of the mediator specification were used to generate
which parts of the binding expression that is passed to
the client via Modelica component modifier (see com-
ponent modification for number0f0OpPumps in reql).

Note that all placeholder occurrences of getPath()
are now replaced by the corresponding instance path
(e.g. "sys.pumpl.") of the corresponding components
within AnalysisModel. The mediator template tem-
plate sum(:) end template; is mapped to the Mod-
elica built-in function sum(A) where A is the array
of values, which in our example results from providers
and expressions generated based on their templates.

Finally, the inferred binding expression is
passed to the client (e.g. to the instance of
Requirements.Req.number0fOpPumps) via the
Modelica component modifier in its first-level com-
ponent (i.e., reql). The updated AnalysisModel is
shown in Figure 5.

4. Alternative 2: Binding
Specification in XML

-Requirements.Nunber_of_operating_pumps.punpsonStatus”/>
onoustiotor.marche">

Generated
binding
expression

Figure 8: Bindings specification is used to generate
binding expressions.

In this Section we present an alternative approach
for capturing binding specification. In contrast to the
approach presented in Section 3, instead of writing the
bindings specification (i.e., the mediator classes) in an
extended version of Modelica, we capture this informa-
tion using XML (W3C, 2013).

87

Modeling, Identification and Control

Assume we have the following requirement 7013 -
When the system is in operation, there should be no less
than two pumps in operation for more than 2 seconds”.
The Modelica requirement violation monitor may have
the following inputs:

model Number_of_operating_pumps
input Boolean isNormalOperatingMode
input parameter Integer
number0fPumps=0;
input Boolean pumpsOnStatus|[
number0fPumps];

Consider the input pumpsOnStatus[:]. It is an ar-
ray of type Boolean. It’s size is equal to the number of
pumps within the system. Each array entry indicates
whether the pump is in operation (i.e., = true) or not
(i.e., = false). This array will need to be constructed
based on the system model at hand, i.e., based on the
pumps within the system, and passed to the instance
of the requirement violation monitor model above.

Figure 8 shows an example of an XML file that cap-
tures the bindings specification (only for the part rele-
vant for our example). Inferring of binding expressions
would work same as for the Modelica-based version de-
scribed in Section 3. However, instead of parsing the
extended version of Modelica here the tool will need
to parse XML. The advantage of this approach is that
there is no need for extending the Modelica language.
The only thing to be agreed on is the XML Schema,
i.e., the structure of such XML files.

5. Further Applications for Bindings

This section mentions one possible application for using
the presented bindings concept. Assume that we wish
to combine a given system design model with a scenario
model and a set of requirements the design shall be
verified against. Such a combination is a new model,
called verification model.

To do so, first, we need to find combinations of one
system design model, one scenario model, and a set of
requirements. Thereby, we want to ensure that only
those scenarios should be considered which can stim-
ulate the system model. In addition, we want only to
consider requirements that are already addressed in the
design.

Figure 9 illustrates'” how bindings can be leveraged
to create such verification models. It starts with the
one design alternative selected by the user. Then it

7Pseudo code for this algorithm can be found in Schamai
(2013a)

88

iterates over all found scenarios'®.

For each of the scenarios it checks whether all
mandatory clients of the design and this particular sce-
nario model can be satisfied. If yes, the scenario is se-
lected because we can assume that it will stimulate the
system design model and it will receive all necessary
feedback from the design model. If not all mandatory
clients can be satisfied, then this scenario is discarded.

Satisfying a client means that based on the given set
of mediators and providers in place, for this client it is
possible to infer a valid binding expression.

Further, having selected a scenario, the algorithm it-
erates over all requirements that are referenced by this
particular scenario with a relation indicating that this
scenario can be used to verify designs against this par-
ticular requirement. For each requirement, again the
algorithm checks whether all mandatory requirement
violation monitor clients can be satisfied. If yes, the
requirement is added to the combination. If no, then
we assume that this requirement is not completely or
not correctly addressed in the given design and cannot
be evaluated yet.

An outer-loop iteration terminates with a selected
scenario and one or more requirements. This combi-
nation can be translated into a verification model by
instantiating the design, selected scenario, and require-
ments and passing the inferred bindings to clients.

* Abort if no scenario
More sgenarios N v
oD D =
@2 <> SEIECESCENANIQ [
YaseX R
an man&atory clients * Next scenario if no requirement
of design and Analyze (Next) Requirement P
scenario satisfied?
More req. N v
? Select Requirement
w2 @ =
! More requirements @

Requirement is referenced by else
scenario and all mandatory
requirement clients satisfied?

Figure 9: : Illustration of the verification models gen-
eration algorithm.

6. Conclusion

In this paper we have presented a new concept that en-
ables the automation of Modelica model composition.
We have proposed two different approach to support
the process of expressing the information necessary to

18Scenarios are models that are annotated to be a scenario.
Such, for example, Modelica models stimulate the system
model during simulation in order to enable evaluation of re-
quirement violation monitors.

Schamai et al., ”An Approach to Automated Model Composition”

enable the automated generation of binding expres-
sions: one based on an extension version of the Mod-
elica language and one based on XML. We illustrated
the concept on examples in the context of design ver-
ification. In particular, we have shown how bindings
of components can be generated for a given Modelica
model.

This approach does not rely on an interface mech-
anism and therefore increases the decoupling of the
models as it does not require prior knowledge of the
interfaces by the models. Just as with classic inter-
faces, the binding concept respects the encapsulation
principle, and only the information that is displayed
publicly by the model can be bound. If a private at-
tribute of a system model is required in order to ob-
tain the information required for the composition of
the models, then the model should be rethought, and
eventually the required information made public. Fur-
thermore, the possibility to define mediators in several
steps means that the information can be provided by
different people at different stages of the design process
resulting in a more flexible and modular approach.

The advantages of using such an automated genera-
tion of binding expressions are the following:

1. Exposing and grouping of information about what
data is needed by clients will reduce analysis work
because the number of mediators will be smaller
than the number of clients. The more clients will
require the same information the greater will be
the gain in terms of information reuse.

2. Automated generation of binding expressions will
reduce modeling errors and the manual model-
ing effort. This is in particular true for mod-
els with highly interrelated components, or for
complex binding expressions (e.g., Modelica com-
ponent modifiers) too complicated to be written
manually.

3. The binding concept enables a number of applica-
tions. For example, it enables automated composi-
tion of verification models from Schamai (2013a).
Furthermore, it enables a formal traceability be-
tween client and provider models. For example, to
determine which requirements are implemented in
the system design model at hand, can be achieved
by looking at the bindings for mandatory require-
ment clients.

References

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. Design Patterns: Elements of Reusable Object-

oriented Software. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1995.

Hull, E., Jackson, K., and Dick, J. Requirements En-
gineering. Springer, 2005.

IEEE1220. Ieee standard for application and man-
agement of the systems engineering process. IEEE,
2005.

Kapurch, S. NASA Systems Engineering Handbook.
DIANE Publishing Company, 2010. URL http://
books.google.se/books?id=2CDrawe5AvEC.

Leucker, M. and Schallhart, C. A brief account of
runtime verification. The Journal of Logic and
Algebraic Programming, 2009. 78(5):293 — 303.
doi:10.1016/j.jlap.2008.08.004. The 1st Workshop
on Formal Languages and Analysis of Contract-
Oriented Software (FLACOSO07).

Modelica Association. Modelica 3.2 revision 2 specifi-
cation. 2013. URL www.modelica.org.

NCOSE. Systems Engineering Handbook (Version 3
ed.). INCOSE., 2006.

OMG. Object Management Group (OMG). 2013. URL

WWW.Omg.org.

Schamai, W. Model-Based Verification of Dynamic
System Behavior against Requirements. Ph.D.
thesis, Method, Language, and Tool Linkoping:
Link6ping University Electronic, PressDissertations,
1547, 2013a.

Schamai, W. ModelicaML - UML Profile for Modelica.
2013b. URL www.openmodelica.org/modelicaml.

W3C. Extensible Markup Language (XML).
URL www.w3.org/XML.

2013.

89

http://books.google.se/books?id=2CDrawe5AvEC
http://books.google.se/books?id=2CDrawe5AvEC
http://dx.doi.org/10.1016/j.jlap.2008.08.004
www.modelica.org
www.omg.org
www.openmodelica.org/modelicaml
www.w3.org/XML

Modeling, Identification and Control

Appendices

A. Algorithm for Generating Binding Expressions
Algorithm: inferBinding(ci, M_S): Infer binding for a client

10

11

12
13

14
15

16

17

18
19

20

21

22
23

24
90

input : Client ¢i (node in instantiation I) for which binding is to be inferred

Set of mediators M _S that should be used

output: bindingExpression (binding expression, i.e., the right-side expression)

isBindingPossible (is possible to infer binding including manual decisions?)
ciq (actual client used, i.e., ci or one of its parents in I)

m, actual mediator used

Po-.-pn set of providers referenced by m. and contained in I

begin

// Set all to undefined or false

isBindingPossible = false;

bindingEa?pTession, Clq, m = null ; // Set all to null (meaning they are undefined)
dataCollection = empty ; // Empty list
// Get the instantiation (starting from root node) that contains ci

I = getInstantiation(ci) ;

// Find the actual client (ether ci itself or an upper level node in /). Note that upper level client

templates may over-write bindings from lower levels.

{no...nn = Ci} = getParentsTopDown(ci)) // Get parents top-down including ci
for ny, in {ng...n,} do
mg...My = gethﬁedjators(nk, hd_S)) // Ordered list of mediators that reference ny

// For each nj find those mediators with client references containing specifications for ci.

for my, in {mkoy...mk,} do

ncoy, = getClientTemplate(my, nk) ; // Get client template for my

// If the left-side expression (placeholder replaced with instancePathO0f(ng)) is equal to
instancePathOf (ci) — then select. If there are there multiple matches, select only the
topmost entry because this overwrites lower entries. If we reached ci then select ci to be
the actual client.

if specifiesBindingFor(ncoy, instancePathOf(ci)) or ny, == ci then

// Check whether the client template and client reference are valid. A client template
must contain the placeholder (e.g. getPath()) to be replaced by a concrete client
instance path in 7.

// If ny is ci the client template is discarded because it can only specify lower-level
clients, which are not of interest at this point.

assert (isValidClientTemplate(ncoy)) — abort otherwise

‘ "INVALID: Client template ncog, attached to ny specifying ci is not valid.”

// Ensure that there is only one reference from mediator to client.

assert (getClientReferences(my, ni) ==1) — abort otherwise

‘ ?INVALID: my, references client ny several times.”

// Continue if asserts are true.

Clq = N ; // Actual client found.

// Get providers (and their templates) that are referenced by mj and contained in I.

{po...pn},{0po...0pn} = getProviders(my, I) O, = getMediatorTemplate(my,)

// Mediator template can be empty or can contain reduction function macros.

assert (isValidMediatorTemplate(O,y, , sizeOf({po...pn}))) — abort otherwise

‘ "INVALID: Mediator template O,,, , of my, is not valid for inferring binding for ci.”

// Continue if asserts are true.

dataCollection.add(ci, ciq, 0ci,, Mk, Omy, {{P0---Pn}: {0p0---0pn}}) ; // Add a raw to

dataCollection.

// It will be possible to infer binding assuming manual selection.

isBindingPossible = true;

end if

end for

// End of iteration over mediators.
end for

// Top-down iteration looking for c;a.

Schamai et al., ”An Approach to Automated Model Composition”

25
// Check that there is only one entry, i.e., only one valid mediator.
26 assert (sizeOf(dataCollection) == 1) — abort otherwise
27 ‘ or ask for manual decision ”Select a mediator from {...} for inferring binding for ci.”

// Check whether the mediator template can handle multiple providers or if providers should be selected
manually.

28 if sizeOf({po...pn}) > 1 and not (isMultiProviderMediator Template(O,,,) or

preferredBindingExists(ci, {po...pn})) then

29 abort or ask for manual decision ”Select provider from {pg...p, } for inferring binding for
ci.”
30 optionally store the selection in preferred bindings by using instancePathOf{(ci),

modelQualifiedNameOf(ci) and instancePathOf(py), modelQualifiedNameOf(py,)

31 end if

// Continue if assertions are true.

// If there is only one mediator, or it was selected manually, the first row contains all relevant
data.

32 Cla, Ociy s Ma, 0Mg, {{P0---Pn}, {0po...0pn } } < the first row in dataCollection

// A provider template may be empty or must contain placeholder (e.g. getPath()) for future provider
instance path otherwise.

33 assert (areAllValidProvider Templates({{po...pn}, {0po-.-0pn}}) — abort otherwise

34 ‘ ”Selected providers ... have invalid templates ...”

// If the actual client and the mediator are found and it is possible to infer binding.

35 assert (isDefined(ci,) and isDefined (m,) and isBindingPossible) — abort otherwise

36 ‘ ”No binding could be inferred for ci.”

// Continue if assertions are true.

// At this point we have found the actual client, mediator, providers, and all templates. Now we can
generate the binding expression.

// In all provider templates, replace the placeholder with the concrete provider instance path in I.

37 {otpo...0tpn } = translateProviderTemplates({po...pn })

// Expand reduction function macros in the mediator template.

38 ot,, = translateMediatorTemplate(my, {otpo...0tpn })

// Replace the placeholder with the client instance path in I; replace the placeholder with the

inferred binding expres-sion.

39 binding Expression = translateClient Template(ciq, 0ci, , 0t)
40 return bindingExpression, isBindingPossible, ciq, mq, {po...pn}
41 end

Any abort in the algorithm above means that the function returns the current status of the outputs. Functions
such as isValidClientTemplate(...) test the validity of the template as described in Schamai (2013a). The
preferredBindingExists(...) function (not explained in this paper, see Schamai (2013a) for more details)
determines whether, in the given set of providers, there is one provider that should be used for the given client.

91

http://creativecommons.org/licenses/by/3.0

	Introduction
	Basic Concepts
	Alternative 1: Binding Specification in Modelica
	Modelica Extension for Defining Mediators
	Generating Binding Expressions
	Templates
	Instantiation Tree
	Algorithm

	Alternative 2: Binding Specification in XML
	Further Applications for Bindings
	Conclusion
	Appendices
	Algorithm for Generating Binding Expressions

