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Abstract

This paper presents the explicit dynamic equations of a mechanical system. The equations are presented
so that they can easily be implemented in a simulation software or controller environment and are also
well suited for system and controller analysis. The dynamics of a general mechanical system consisting
of one or more rigid bodies can be derived from the Lagrangian. We can then use several well known
properties of Lie groups to guarantee that these equations are well de�ned. This will, however, often
lead to rather abstract formulation of the dynamic equations that cannot be implemented in a simulation
software directly. In this paper we close this gap and show what the explicit dynamic equations look like.
These equations can then be implemented directly in a simulation software and no background knowledge
on Lie theory and di�erential geometry on the practitioner's side is required.

This is the �rst of two papers on this topic. In this paper we derive the dynamics for single rigid bodies,
while in the second part we study multibody systems. In addition to making the equations more accessible
to practitioners, a motivation behind the papers is to correct a few errors commonly found in literature.
For the �rst time, we show the detailed derivations and how to arrive at the correct set of equations. We
also show through some simple examples that these correspond with the classical formulations found from
Lagrange's equations. The dynamics is derived from the Boltzmann�Hamel equations of motion in terms
of local position and velocity variables and the mapping to the corresponding quasi-velocities. Finally we
present a new theorem which states that the Boltzmann�Hamel formulation of the dynamics is valid for
all transformations with a Lie group topology. This has previously only been indicated through examples,
but here we also present the formal proof.
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1 Introduction

There are many motivations for deriving the explicit
dynamic equations of mechanical systems. Firstly, the
equations are needed for system and controller anal-
ysis. This analysis can to some extent be based on
an abstract formulation of the dynamics, for example

by writing the con�guration space in terms of abstract
Lie groups. For a complete analysis, however, the ex-
plicit dynamics is required. This is for example the
case when representation or implementation issues af-
fect the stability of the mechanical system.

Secondly, the dynamics is important in simulations
and controller implementation. In this case it is of vital
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importance that the obtained equations reproduce the
actual behavior of the real system as closely as pos-
sible. In this case we need the dynamics written ex-
plicitly in closed or recursive form. One major concern
in this setting is to obtain a set of equations without
the presence of representation singularities, which may
arise when transforming an abstract formulation into
the explicit dynamic equations. In an abstract formu-
lation of the dynamics the representation singularities
are not present simply because the representation, i.e.,
the choice of coordinates, have not yet been made. This
is important to keep in mind when choosing the state
variables of the system.

We see that singularities may appear in the dynamics
if an unfortunate set of variables is chosen to represent
the state space. Examples of systems that often su�er
from singularities are ships and marine vehicles, space-
craft and aircraft, robotic manipulators, and so on. It
is, however, well known that if an appropriate set of
state variables is used to represent the state space of
the system, the singularities are avoided. The most
common way to do this is to use the quaternion rep-
resentation to represent orientation or to represent the
state space as the tangent bundle, i.e., the position as
an element of the Lie group and the velocity variables
as an element of the tangent space transformed by an
action of the Lie group, i.e., an element of the Lie al-
gebra.

The quaternion representation is a popular represen-
tation because we obtain a global representation of the
attitude by using four variables to represent orienta-
tion instead of the minimal representation with three
variables (From et al., 2010). Quaternions are there-
fore both appropriate and a popular choice for repre-
senting the rigid body orientation in kinematic equa-
tions. When we are to derive the dynamics, however,
the quaternions are not always suited because they are
not a minimal representation. The Lagrangian formal-
ism, for example, requires a minimal representation of
the generalized coordinates of the system, which the
quaternions are not. Even so, it is important to note
that the quaternions can often be used in the imple-
mentation for attitude representation even though we
often use more general formulations in the derivation.

Another solution that removes the singularities from
the equations is to represent the state space as a tan-
gent bundle. The position of the system is then repre-
sented by an element of the Lie group, which for con-
�guration spaces of higher dimensions are represented
as matrix Lie groups. Common examples are free mo-
tion represented by the Special Euclidean group SE(3),
rotations around a point in space represented by the
Special Orthogonal group SO(3), planar motion rep-
resented by SE(2), and free translation and rotation

around one �xed axis represented by the Schön�ies
group X .
Lie groups are the mathematical basis for several dif-

ferent approaches used to derive the dynamics of multi-
body systems (Selig, 2000; Park et al., 1995; Bullo and
Lewis, 2000; Arnold, 1989; Bullo and Murray, 1999;
Murray et al., 1994). The state space is then repre-
sented by the tangent bundle, i.e., the position of the
rigid body is described by an element of the Lie group,
and the velocity state is described by an element of
the Lie algebra. For this approach to be valid for all
con�gurations, the con�guration space needs to be cov-
ered by an atlas of local coordinate patches. This leads
to several di�erent sets of equations, one for each co-
ordinate patch. The appropriate equations must then
be chosen for the current con�guration. For example,
the geometric approach presented in Bullo and Lewis
(2000) can be used to obtain a globally valid set of
dynamic equations on a single Lie group, such as an
underwater vehicle or spacecraft.

Deriving the dynamics in this way does unfortu-
nately require quite a few tools from di�erential ge-
ometry and the �nal equations are often written in a
rather abstract form. This is particularly the case with
multibody dynamics. The equations are abstract in the
sense that the con�guration space is given by "some
matrix Lie group", often without specifying what the
matrix looks like and how to represent it mathemat-
ically. Several of the properties that can be associ-
ated with the matrix depend on its representation and
this must therefore be taken into account when writ-
ing the equation explicitly. Similarly, the transforma-
tions needed are represented by adjoint maps on the
Lie groups or Lie algebras, but it is not always straight
forward to see what these transformations and their
derivatives look like. We will see some examples of
such transformations in this paper. We will also see
how we can use the structure of the Lie groups to sim-
plify the �nal expressions.

One particular transformation for which it may be
di�cult to �nd a mathematical representation is the
mapping from local to global velocity variables: When
taking a Lie theoretical approach to deriving the sys-
tems dynamics, the equations are derived on the tan-
gent space. However, using our approach, the dynam-
ics is derived in terms of local velocity variables which
are in general di�erent from the twists. The transfor-
mation from the local coordinates to the twists is thus
important because we want to write the �nal equations
in terms of the globally de�ned twists, and not the lo-
cal state variables. In this way we derive the dynamics
in terms of the local variables in Rm to avoid singular-
ities, but we obtain a �nal set of equations written in
terms of the global velocity and position variables. We
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need both this mapping and its derivative to �nd the
explicit dynamic equations.

The singularity-free dynamic equations of multi-
body systems were derived in Duindam and Strami-
gioli (2007, 2008) for mechanisms with general joints.
The Boltzmann�Hamel formulation used allows us to
derive the dynamics in terms of velocity variables v
that are di�erent from the time derivative of the po-
sition variables q. These velocity variables are nor-
mally referred to as quasi-coordinates. Duindam and
Stramigioli (2008) showed that this transformation can
be derived in terms of the local position variables of the
system, which again allows us to �nd a well de�ned ve-
locity transformation matrix. In From et al. (2010) the
same equations were used to derive the singularity-free
dynamic equations of vehicle-manipulator systems. In
From et al. (2012), a few mistakes in the above men-
tioned papers were corrected and the correct dynamic
equations were presented. In this paper we will de-
rive in detail the explicit dynamic equations based on
the correct formulation �rst presented in brief in From
et al. (2012).

The �nal expressions written in terms of the global
variables are rather simple but the derivations and
computations are somewhat complex, and it is there-
fore important to show that the formulation of the
Boltzmann�Hamel equations of motions presented in
From et al. (2012) is in fact correct. We will therefore
derive the explicit dynamic equations for several di�er-
ent con�guration spaces and show that, when reduced
to single rigid body dynamics, these are equivalent to
the standard formulation for single rigid bodies found
in the classical literature, such as Euler's equations and
Newton�Euler equations of motion. It is an important
principle that even though there are many di�erent ap-
proaches to deriving the dynamic equations, we should
arrive at the same �nal equations when written out ex-
plicitly. If we were to �nd the explicit expressions for
the dynamics based on the formulation in Duindam
and Stramigioli (2007, 2008), for example, we would
�nd that these are di�erent from the standard formu-
lation of the dynamics and, more importantly, nor can
they be reformulated into these. The equations pre-
sented in Duindam and Stramigioli (2007, 2008) and
From et al. (2010) are therefore wrong, which is not
easy to see without comparing them to the standard
formulation and certainly not easy to see from the
derivation. We use this as a motivating example to
show the importance of writing out the equations ex-
plicitly, especially in the case when the derivations are
complex and lengthy. We show that using the formula-
tion presented in this paper we arrive at the dynamic
equations traditionally presented in literature to calcu-
late the dynamics of these systems.

The dynamic equations for the most important Lie
groups are found in Section 4 and compared to the
standard formulation. It is however also important to
show that the equations found are general. In Section
5 we therefore �nd a general theorem valid for all con-
�guration spaces with a Lie group topology. We show
for the �rst time that the Boltzmann�Hamel equations
derived from exponential coordinates �rst presented in
From et al. (2012) are in fact valid for all Lie groups.
Even though the derivation of the dynamic equations

is not standard, the �nal expressions that we arrive at
are well known from literature. It is, however, impor-
tant to derive these simple dynamic equations because
the formulation used allows us to combine these into
the dynamics of multibody systems. The expressions
presented in this paper can therefore be used as a basis
for implementing more complex systems. For example,
for a multibody system we can consider the expressions
presented in this paper a list of available con�guration
spaces, and we can simply pick the correct con�gura-
tion space for each transformation in the multibody
system. In fact, one of the reasons that we derive the
dynamics in terms of quasi-velocities in this way is that
we are then able to automatically generate multibody
dynamics based on the properties of the con�guration
space of each joint or transformation looked at sepa-
rately. Moreover, we will see that when deriving the
mechanics of a general multibody mechanism we can
use the results obtained for single rigid bodies directly
because the velocity transformation matrices can be
combined into one big block-diagonal velocity trans-
formation matrix representing the whole system. Also,
deriving the dynamics in terms of local coordinates al-
lows us to write the dynamics without the presence of
singularities also when the con�guration space is not
Euclidean.

2 Rigid Body Dynamics

In this section we present the dynamic equations of a
single rigid body. We derive the dynamics from the La-
grangian in the classical way which results in the well
known dynamic equations of single rigid bodies, such as
Euler's equations for rotational motion in R3 and the
Euler�Lagrange equations for free motion in R3. We
will use these equations to show that the equations that
we obtain from the Boltzmann�Hamel formulation in
Section 3 are identical to the Euler and Newton�Euler
equations found in the classical literature on mechani-
cal systems (Goldstein et al., 2001; Arnold, 1989).
In Section 2.3 we present the dynamic equations as

presented in Duindam and Stramigioli (2008) and show
that these do not correspond with the dynamic equa-
tions found in the classical literature. We start with
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a short overview of the dynamics of single rigid bodies
for the most important con�guration spaces.

2.1 Motion of Single Rigid Bodies

The dynamic equations of a single rigid body can be
derived using the Lagrangian framework. Considering
kinetic energy only this will lead to the dynamic equa-
tions

Mω̇B0b = (MωB0b)× ωB0b (1)

for a con�guration space SO(3). These equations are
known as Euler's equations of motion. Here M is the
inertia matrix of the rigid body and ωB0b is the angular
velocity of the rigid body frame Fb with respect to the
inertial frame F0 as seen from Fb. We can further allow
external forces τ to act on the rigid body and write the
equations explicitly as

Ixṗ− (Iy − Iz)qr = τp (2)

Iy q̇ − (Iz − Ix)rp = τq (3)

Iz ṙ − (Ix − Iy)pq = τr (4)

where ωB0b =
[
p q r

]T
, τ =

[
τp τq τr

]T
and the

inertia matrix is written as M = diag(Ix, Iy, Iz) which
is possible if we choose the body frame so that its origin
is in the center of gravity of the rigid body and its axes
are aligned with the principal axes of inertia. These
equations can then be written as

Mω̇B0b + C(ωB0b)ω
B
0b = τ

Mω̇B0b + ω̂B0bMωB0b = τ (5)

where p̂ ∈ R3×3 is the skew-symmetric matrix such
that p̂x = p× x for all p, x ∈ R3. In this case we have

ω̂B0b =

 0 −r q
r 0 −p
−q p 0

 . (6)

Similarly, for the con�guration space SE(3) the La-
grangian formalism will result in the equations

d

dt

(
∂K
∂V B0b

)
− adT

V

(
∂K
∂V B0b

)
= τ (7)

where V B0b =
[
(vB0b)

T (ωB0b)
T
]T

and

adV =
[
ω̂B

0b v̂
B
0b

0 ω̂B
0b

]
. (8)

These equations are normally referred to as the
Newton�Euler equations of motion. Note that if we
write adω = ω̂ the formulation in (7) reduces to (5)
for SO(3) by using that ω̂T = −ω̂. In this paper we
will for the �rst time show that this is in fact a general
result.

If we write τ =
[
τTv τTω

]T
we get the well known

Kirchho�'s equations of rigid body motion

d

dt

(
∂K
∂vB0b

)
+ ω̂B0b

(
∂K
∂vB0b

)
= τv (9)

d

dt

(
∂K
∂ωB0b

)
+ v̂B0b

(
∂K
∂vB0b

)
+ ω̂B0b

(
∂K
∂ωB0b

)
= τω. (10)

These equations can also be written as

MV̇ B0b + C(V B0b )V B0b = τ

MV̇ B0b − adT
V MV B0b = τ (11)

with adV as in (8).

2.2 The Boltzmann�Hamel Equations of
Motion

The Boltzmann�Hamel formulation of the dynamics of
a rigid body allows us to write the velocity state in
terms of quasi-velocities. Quasi-velocities are velocity
variables v that are not necessarily the time derivative
of the position variables q. They are related to the time
derivative of the position variables by a linear relation
in the form

v = S(q)q̇. (12)

Because both the velocity and position variables are
written in vector form, singularities tend to arise in
this type of expressions, for example in velocity trans-
formation matrices relating the time derivative of the
Euler angles and the body velocity variables.
The Lagrangian can be written in terms of the gen-

eralized coordinates x and the velocity variable v in the
body frame Fb, as

L(x, v) =
1

2
vTMv − U(x). (13)

The partial derivatives of the Lagrangian in (13) are
given explicitly as

∂L

∂v
= Mv, (14)

d

dt

(
∂L

∂v

)
= Mv̇, (15)

∂L

∂x
= −∂U(x)

∂x
. (16)

We can also write the velocity v in terms of the time
derivative of the generalized velocity as v = S(x)ẋ.
This allows us to write the Lagrangian as a function of
generalized coordinates x and generalized velocities ẋ
as

L̄(x, ẋ) =
1

2
ẋTS(x)TMS(x)ẋ− U(x) (17)
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which can be substituted into Lagrange's equations

d

dt

(
∂L̄

∂ẋ

)
− ∂L̄

∂x
= B(x)τ (18)

for some B(x) yet to be determined. We �nd the par-
tial derivatives as

∂L̄

∂ẋ
= ST(x)MS(x)ẋ

= ST(x) Mv︸︷︷︸
∂L
∂v

= ST(x)
∂L

∂v
(19)

d

dt

(
∂L̄

∂ẋ

)
= ṠT(x)

∂L

∂v
+ ST(x)

d

dt

(
∂L

∂v

)
(20)

∂L̄

∂x
=
∂T(S(x)ẋ)

∂x
MS(x)ẋ− ∂U

∂x

=
∂T(S(x)ẋ)

∂x
Mv︸︷︷︸
∂L
∂v

−∂U
∂x︸ ︷︷ ︸

∂L
∂x

=
∂L

∂x
+
∂T(S(x)ẋ)

∂x

∂L

∂v
. (21)

The Euler�Lagrange equations are found by the par-
tial derivatives of the Lagrangian L̄(x, ẋ) as

d

dt

(
∂L̄

∂ẋ

)
− ∂L̄

∂x
= B(x)τ (22)

ST(x)
d

dt

(
∂L

∂v

)
+ ṠT(x)

∂L

∂v

−∂L
∂x
− ∂T(S(x)ẋ)

∂x

∂L

∂v
= B(x)τ (23)

and can thus be written in terms of the Lagrangian L.
The torques τ are de�ned so that they are collocated
with v (represented in the body frame) and we can
therefore write the work W as

W = vTτ = (S(x)ẋ)Tτ = ẋTST(x)τ (24)

which gives B(x) = ST(x) as expected. We therefore
pre-multiply (23) with S−T(x) to get the dynamics in
the right form:

Proposition 2.1. For a mechanical system with La-
grangian

L̄(x, ẋ) =
1

2
ẋTS(x)TMS(x)ẋ− U(x) (25)

we can �nd the dynamic equations in terms of the La-
grangian L(x, v) in (13) with v = S(x)ẋ as

d

dt

(
∂L

∂v

)
− S−T(x)

∂L

∂x

+ S−T(x)

(
ṠT(x)− ∂T(S(x)ẋ)

∂x

)
∂L

∂v
= τ. (26)

Proof. The proof follows directly by substituting the
expressions in Equations (19-21) into (22) and pre-
multiplying with S−T(x).

We can simplify these equations by writing

d

dt

(
∂L

∂v

)
− S−T ∂L

∂q
+

(∑
k

γkvk

)
∂L

∂v
= τ (27)

where γk is a function of S(q). The formulation of
the dynamics shown in (26) was correctly presented
in Duindam and Stramigioli (2008), however the �nal
expression for the Coriolis matrix was not presented
correctly. One of the objectives of this paper is to
show how to arrive at the correct explicit expression for
Coriolis matrix from the formulation of the dynamics
given in (27).
To avoid singularities it is possible to use local po-

sition and velocity variables ϕ ∈ Rm and ϕ̇ ∈ Rm.
We refer to Duindam and Stramigioli (2008) for details
on this topic. In the context of this paper is su�ces
to know that we can �nd the mapping from the time
derivative of the local position coordinate to the body
velocities

v = S(ϕ)ϕ̇ (28)

in terms of the local position variables as (Rossmann,
2002)

S(ϕ) =

(
I − 1

2
adϕ +

1

6
ad2
ϕ− . . .

)
∈ Rm×m (29)

where adϕ is the matrix representation of the Lie
bracket, which for SE(3) is shown in (8).
The dynamics in terms of the local parameterization

is found in the same way as above with

d

dt

(
∂L̄ϕ
∂ϕ̇

)
= ṠT(Q,ϕ)

∂L

∂v
+ ST(Q,ϕ)

d

dt

(
∂L

∂v

)
(30)

∂L̄ϕ
∂ϕ

=
∂L

∂ϕ
+
∂T(S(Q,ϕ)ϕ̇)

∂ϕ

∂L

∂v
. (31)

2.3 The Coriolis Matrix as Shown in
Duindam and Stramigioli (2008)

In order to avoid the singularities that normally arise
in the velocity transformation matrix S when the Euler
angles are used to represent the orientation, Duindam
and Stramigioli (2008) introduce local variables ϕ for
position and ϕ̇ for velocity. The dynamics are then
found by substituting v = S(ϕ)ϕ̇ into the expressions
above, di�erentiating with respect to ϕ, and evaluating
the equations at ϕ = 0 to obtain the global con�gura-
tion variables. We refer to Duindam and Stramigioli
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(2008) for more details on this topic. The dynamics
can now be written as

M(Q)v̇ + C(Q, v)v = τ (32)

where Q is the matrix representation of the con�gu-
ration space, for example a matrix representation of
SO(3) or SE(3), and C(Q, v) is the matrix describing
the Coriolis and centrifugal forces. The Coriolis matrix
is given in (Duindam and Stramigioli, 2008, Eq. (26))
as

Cij(Q, v) =
∑
k,l,m,s

(
S−1mi

(
∂Sjm
∂ϕs

− ∂Sjs
∂ϕm

)
S−1sk Mkl

)∣∣∣∣∣∣
ϕ=0

vl.

(33)

We will now look at what the dynamics will look like
for a single rigid body with con�guration space SE(3)
with the formulation above. We �rst �nd an expression
for S(ϕ), which for a single rigid body can be written
as (Rossmann, 2002)

S(ϕ) =

(
I − 1

2
adϕ +

1

6
ad2
ϕ− . . .

)
∈ Rm×m (34)

where adX is the adjoint map for a general Lie algebra
X of dimension m. Since we are to di�erentiate with
respect to ϕ and substitute ϕ = 0 we see from (34)
that we can simplify (33) slightly to

Cij(v) =
∑
k

(
∂Sji
∂ϕk

− ∂Sjk
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k. (35)

From the mapping in (34) we also note that after
di�erentiating and evaluating at ϕ = 0 the matrices{
∂Sji

∂ϕk

}
ij
are equal to − 1

2 adT
ek

where ek is a 6-vector

with 1 in the kth entry and zeros elsewhere. Similarly,{
∂Sjk

∂ϕi

}
ij

is equal to 1
2 adT

ek
. This is then multiplied

by the kth element of the vector Mv and the Coriolis
matrix is therefore given by

C(v) = − adT
(Mv) (36)

which gives the following dynamics:

Mv̇ + C(v)v = τ

Mv̇ − adT
(Mv) v = τ. (37)

We note that this is not the same as the Newton�Euler
equations in (11), nor can they be re-arranged into
these. We can therefore conclude that the formula-
tion in (33) is wrong. We will now present the correct
explicit expressions of the Coriolis matrix.

3 Derivation of the Coriolis

Matrix

In this section we derive the explicit dynamic equations
for a single rigid body from the Boltzmann�Hamel
equations of motion. A short version of the results
presented here is given in From et al. (2012), but in
this section we also present some more details in the
derivation and show how we arrive at the �nal equa-
tions.

Following the notation in Duindam and Stramigioli
(2007, 2008) we will write the dynamics as

d

dt

(
∂L

∂v

)
− S−T ∂L

∂q
+

(∑
k

γkvk

)
∂L

∂v
= τ (38)

so it only remains to �nd an expression for the matrix
γk. Comparing (38) with (26) gives

∑
k

γkvk =
∑
k

γk,1vk +
∑
k

γk,2vk

= S−T(q)ṠT(q)− S−T(q)
∂T(S(q)q̇)

∂q
. (39)

We will �rst look at
∑
k γk,1vk = S−T(q)ṠT(q). The

matrix S−T(q) can be written as

S−T(q) =


S−111 S−121 · · · S−1n1
S−112 S−122 · · · S−1n2
...

...
. . .

...
S−11n S−12n . . . S−1nn

 (40)

where S−1ij is to be interpreted as element (i, j) of the

matrix S−1 (not the inverse of the element Sij). The
transpose of the time derivative of the velocity trans-
formation matrix, i.e., ṠT(q), is given by

ṠT =


∑
m
∂S11

∂qm
q̇m

∑
m
∂S21

∂qm
q̇m · · ·

∑
m
∂Sn1

∂qm
q̇m∑

m
∂S12

∂qm
q̇m

∑
m
∂S22

∂qm
q̇m . . .

∑
m
∂Sn2

∂qm
q̇m

...
...

. . .
...∑

m
∂S1n

∂qm
q̇m

∑
m
∂S2n

∂qm
q̇m . . .

∑
m
∂Snn

∂qm
q̇m


(41)

We now rewrite q̇ = S−1(q)v as q̇m =
∑
k S
−1
mk(q)vk

which allows us to write the �rst part of γkvk, i.e.,
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∑
k γk,1vk = S−T(q)ṠT(q) as∑

k

(γk,1)ijvk =
∑
l

S−1li

∑
m

∂Sjl
∂qm

q̇m

=
∑
l,m

S−1li
∂Sjl
∂qm

q̇m

=
∑
l,m

S−1li
∂Sjl
∂qm

∑
k

S−1mkvk

=
∑
k

∑
l,m

S−1li
∂Sjl
∂qm

S−1mk


︸ ︷︷ ︸

(γk,1)ij

vk (42)

which eliminates q̇ from the �rst part of γk.
Similarly for the second part

∑
k γk,2vk =

−S−T(q)∂
T(S(q)q̇)
∂q we �rst write

∂(S(q)q̇)

∂q
=


∂(Sq̇)1
∂q1

∂(Sq̇)1
∂q2

· · · ∂(Sq̇)1
∂qn

∂(Sq̇)2
∂q1

∂(Sq̇)2
∂q2

. . . ∂(Sq̇)2
∂qn

...
...

. . .
...

∂(Sq̇)n
∂q1

∂(Sq̇)n
∂q2

. . . ∂(Sq̇)n
∂qn

 (43)

and then if we write (S(q)q̇)l =
∑
m Slmq̇m we can

write the matrix ∂T(S(q)q̇)
∂q as

∑
m
∂S1m

∂q1
q̇m

∑
m
∂S2m

∂q1
q̇m · · ·

∑
m
∂Snm

∂q1
q̇m∑

m
∂S1m

∂q2
q̇m

∑
m
∂S2m

∂q2
q̇m · · ·

∑
m
∂Snm

∂q2
q̇m

...
...

. . .
...∑

m
∂S1m

∂qn
q̇m

∑
m
∂S2m

∂qn
q̇m · · ·

∑
m
∂Snm

∂qn
q̇m

 .
(44)

We �nd an expression for
∑
k γk,2vk as:∑

k

(γk,2)ijvk = −
∑
l

S−1li

∑
m

∂Sjm
∂ql

q̇m

= −
∑
l,m

S−1li
∂Sjm
∂ql

∑
k

S−1mkvk

= −
∑
k

∑
l,m

S−1li
∂Sjm
∂ql

S−1mk


︸ ︷︷ ︸

(γk,2)ij

vk. (45)

We can now �nd γk = γk,1 + γk,2 as

(γk)ij(q) =
∑
l,m

S−1li

(
∂Sjl
∂qm

− ∂Sjm
∂ql

)
S−1mk. (46)

We can use these new expressions to write the dynam-
ics in terms of local coordinates. Because we can sub-
stitute the variable vector q with local variables (the

local variables are always Euclidean) we can also write
this as

(γk)ij(q) =
∑
l,m

S−1li

(
∂Sjl
∂ϕm

− ∂Sjm
∂ϕl

)
S−1mk (47)

and we can derive the dynamics in terms of the lo-
cal variables ϕ. The following proposition was �rst
presented correctly in From et al. (2012), but here we
present the detailed proof.

Proposition 3.1. Consider a single rigid body with lo-
cal position and velocity coordinates ϕ and ϕ̇ and global
position and velocity coordinates Q and v. Write the
kinetic energy as K(v) = 1

2v
TMv with the inertia ma-

trix M . The dynamics of this system then satis�es

Mv̇ + C(v)v = τ (48)

where M is found in the normal way, with τ the vector
of external and control wrenches (collocated with v),
and the matrix describing the Coriolis and centrifugal
forces given by

Cij(ϕ, v) =
∑
k,l,m,s

S−1li

(
∂Ssl
∂ϕm

− ∂Ssj
∂ϕl

)
S−1mjMsk

∣∣∣∣∣∣
ϕ=0

vk.

(49)

For a single rigid body this becomes

Cij(ϕ, v) =
∑
l,m,s

S−1li

(
∂Ssl
∂ϕm

− ∂Ssj
∂ϕl

)
S−1mj

∣∣∣∣∣∣
ϕ=0

(Mv)s.

(50)

To compute the matrix C(v) for a single rigid body with
con�guration space SE(3) or one of its subgroups, we
can use the structure of the Lie algebra to simplify (50)
slightly to

Cij(ϕ, v) =
∑
k

(
∂Ski
∂ϕj

− ∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k. (51)

Proof. From Equation (38) and (47) we �rst �nd

Cij(ϕ, v) =
∑
s

(∑
k

γkvk

)
is

Msj

∣∣∣∣∣
ϕ=0

(52)

=
∑
s,l,m,k

S−1li

(
∂Ssl
∂ϕm

− ∂Ssm
∂ϕl

)
S−1mk

∣∣∣∣∣∣
ϕ=0

vkMsj .

We know that there are many di�erent ways to write
the Coriolis matrix which all result in the same vec-
tor C(ϕ, v)v. We denote this vector C(ϕ, v)v =
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[
c1 c2 . . . cn

]T
and write

ci(ϕ, v) =
∑
p

Cipvp

=
∑
p

(∑
s

(∑
k

γkvk

)
is

Msp

)
vp

=
∑
p

∑
s

(∑
k

γkvk

)
is

Mspvp

=

(∑
s

∑
k

γkvk

)
is

∑
p

Mspvp

=

(∑
s

∑
k

γkvk

)
is

(Mv)s

=

∑
s

∑
l,m,k

S−1li

(
∂Ssl
∂ϕm

− ∂Ssm
∂ϕl

)
S−1mk

∣∣∣∣∣∣
ϕ=0

vk

 (Mv)s

=
∑
k

∑
l,m,s

S−1li

(
∂Ssl
∂ϕm

− ∂Ssm
∂ϕl

)
S−1mk

∣∣∣∣∣∣
ϕ=0

(Mv)s


︸ ︷︷ ︸

Cik

vk.

(53)

Here we have used the observation that M does not
depend on ϕ so there is no need to evaluateM at ϕ = 0.
Because ci = Cijvj a change in the summation indexes
gives the Coriolis matrix

Cij(v) =
∑
l,m,s

S−1li

(
∂Ssl
∂ϕm

− ∂Ssm
∂ϕl

)
S−1mj

∣∣∣∣∣∣
ϕ=0

(Mv)s.

(54)

Now, recall that the velocity transformation matrix can
be written as

S(ϕ) =

(
I − 1

2
adϕ +

1

6
ad2
ϕ− . . .

)
∈ Rm×m (55)

where adX is the adjoint map for a general Lie algebra
X of dimension m. Because the expression is to be
evaluated at ϕ = 0 this expression is non-zero only for
l = i and m = j, see (55). The �nal expressions then
become

Cij(v) =
∑
l,m,s

S−1li

(
∂Ssl
∂ϕm

− ∂Ssm
∂ϕl

)
S−1mj

∣∣∣∣∣∣
ϕ=0

(Mv)s

=
∑
s

S−1ii

(
∂Ssi
∂ϕj

− ∂Ssj
∂ϕi

)
S−1jj

∣∣∣∣∣
ϕ=0

(Mv)s

=
∑
s

(
∂Ssi
∂ϕj

− ∂Ssj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)s (56)

which after a change in the index name becomes

Cij(v) =
∑
k

(
∂Ski
∂ϕj

− ∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k. (57)

We see that we have found a formulation of the dy-
namic equations in terms of the variables ϕ and v.
However, when we evaluate the expressions av ϕ = 0
the position variables ϕ vanish from the equations and
the position is written in terms of the con�guration
state matrix Q. Admittedly, the formulation is rather
complex, but we will see in the next section that when
we use the expressions for the velocity transformation
matrices S(ϕ) for the di�erent con�guration spaces,
the �nal expressions will take a very simple form.

4 The Most Important

Con�guration Spaces

The kinematics of the system can be naturally de-
scribed in terms of the state variables g0b for posi-
tion/orientation and V B0b for velocity. To allow for more
general systems with other con�guration spaces than
SE(3), we will write the con�guration of a rigid body
as a matrix Lie group Q of arbitrary but constant di-
mension. The velocity variable is written as v ∈ Rm
for a con�guration space of dimension m ≤ 6. Using
this formalism we obtain a global parameterization of
a rigid idealized joint (Duindam, 2006):

De�nition 4.1. A globally parametrized rigid trans-
formation is a kinematic restriction on the allowed rel-
ative twist of two rigid bodies i and j to a linear sub-
space of dimension m, where the relative motion of the
bodies is described by two sets of states, namely

• a matrix Q, parameterizing the relative con�gura-
tion as gij = gij(Q); and

• a vector v ∈ Rm, parameterizing the relative twists
as V Bij = Hv.

For convenience, both for representation and for im-
plementation, we will normally write the con�guration
as a homogeneous transformation matrix and the ve-
locity as a twist. Because all con�guration spaces that
are of interest to us are subgroups of SE(3), we can al-
ways write the state space as an element of the tangent
bundle in this way.
We see that it is important that we adapt a formal-

ism that satis�es the restrictions of the con�guration
space also when the con�guration space has less than
six degrees of freedom. For rigid bodies with a con-
�guration space other than SE(3) and with dimension
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m < 6 we only need m parameters to de�ne the veloc-
ity state. Hence, in the case of m < 6 we can de�ne
a selection matrix in the following way (From et al.,
2010):

De�nition 4.2. A selection matrix H ∈ R6×m repre-
sents a mapping from velocity state in Rm to the twist
in R6 such that the velocity twist is given by

V B0b = Hv. (58)

v ∈ Rm fully determines the velocity state of the rigid
body.

The transposeHT of the selection matrix thus selects
the m entries of V B0b needed to parameterize the m
degrees of freedom motion.
The local Euclidean structure for the state g0b is

given by exponential coordinates. Mathematically, we
can express con�gurations g0b around a �xed state ḡ0b
as

g0b = ḡ0be
ϕ̂ (59)

for a local position variable ϕ. For se(3) we havem = 6
and we can write g0b(t) = g0b(0)eϕ̂. Similarly, when
m < 6 we set ϕi = 0 for all the 6−m entries that are
trivially zero, corresponding to the all-zero rows of the
selection matrix. The position and velocity variables ϕ
and ϕ̇ then become vectors in Rm.
We can now derive an expression for the total kinetic

energy. Let Ib ∈ R6×6 denote the constant positive-
de�nite diagonal inertia matrix of the vehicle. The
kinetic energy Kb then follows as

Kb =
1

2

(
V B0b
)T
IbV

B
0b

=
1

2
(Hv)

T
Ib (Hv)

=
1

2
vTHTIbHv

=
1

2
vTMv. (60)

Here, HT is the transpose of H which works �ne when
dealing with the Lie groups treated here, so we will use
this notation throughout this paper. We see that the
selection matrix H ∈ R6×m guarantees that the inertia
matrix M has the right dimension. Note that neither
K(v) nor M depends on the pose g0b nor the choice of
inertial reference frame F0.
The reason that the inertia matrix is constant is that

we represent the velocities in the body frame. If we
choose to represent the velocities in a di�erent frame,
for example the inertial frame, we get a con�guration
dependent inertia matrix in the form

Kb =
1

2
(V S0b)

TM(g0b)V
S
0b

=
1

2
(V S0b)

T AdT
gb0

Ib Adgb0 V
S
0b (61)

where M(g0b) = AdT
gb0

Ib Adgb0 and V S0b is the spatial
velocity twist.

4.1 Rigid Bodies with Con�guration
Space SO(3)

For a rigid body with con�guration space SO(3) the
selection matrix becomes

H =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 . (62)

There are two ways to arrive at this matrix: either as
a matrix that gives us the twist V B0b from the velocity
vector v = ωB0b, i.e., V

B
0b = Hv, or as the matrix that

transforms the generalized inertia matrix Ib ∈ R6×6

into the inertia matrix M ∈ Rm×m, i.e., M = HTIbH.
For SO(3) the constant inertia matrix then becomes

M = HTIbH =

Ix 0 0
0 Iy 0
0 0 Iz

 (63)

as usual.

Now that we have found the inertia matrix it only
remains to �nd the Coriolis terms. We know from the
Lie theory (Rossmann (2002)) that the matrix relating
the local velocities ϕ̇ and global body velocities ωB0b is
given by

S(ϕ) =

(
I − 1

2
ϕ̂V +

1

6
ϕ̂2
V − . . .

)
∈ R3×3. (64)

We will �rst show that when di�erentiating with re-
spect to ϕ and substituting ϕ = 0 in (57) the matri-

ces
{∑

k
∂Ski

∂ϕj

}
ij

and
{∑

k
∂Skj

∂ϕi

}
ij

can be written in

terms of very simple expressions. All constant terms
will disappear when we di�erentiate with respect to ϕ
and the parts that include higher order terms of ϕ will
disappear when we evaluate the expressions at ϕ = 0.
We therefore disregard the terms that we already know
will equal zero and denote this matrix Sr (the reduced
velocity transformation matrix ) which then becomes

Sr(ϕ) = −1

2
ϕ̂V = −1

2

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 . (65)

We start with
{∑

k
∂Ski

∂ϕj

}
ij
in (57) which after multi-
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plying with (Mv)k becomes:∑
k

(
∂Ski
∂ϕj

)∣∣∣∣∣
ϕ=0

(Mv)k


ij

= −1

2

∑
k


∂ϕ̂k1

∂ϕ1
(Mv)k

∂ϕ̂k1

∂ϕ2
(Mv)k

∂ϕ̂k1

∂ϕ3
(Mv)k

∂ϕ̂k2

∂ϕ1
(Mv)k

∂ϕ̂k2

∂ϕ2
(Mv)k

∂ϕ̂k2

∂ϕ3
(Mv)k

∂ϕ̂k3

∂ϕ1
(Mv)k

∂ϕ̂k3

∂ϕ2
(Mv)k

∂ϕ̂k3

∂ϕ3
(Mv)k


= −1

2

 0 −(Mv)3 (Mv)2
(Mv)3 0 −(Mv)1
−(Mv)2 (Mv)1 0


= −1

2
(̂Mv). (66)

Similarly,
∑
k

(
∂Skj

∂ϕi

)∣∣∣
ϕ=0

(Mv)k becomes∑
k

(
∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k


ij

= −1

2

∑
k


∂ϕ̂k1

∂ϕ1
(Mv)k

∂ϕ̂k2

∂ϕ1
(Mv)k

∂ϕ̂k3

∂ϕ1
(Mv)k

∂ϕ̂k1

∂ϕ2
(Mv)k

∂ϕ̂k2

∂ϕ2
(Mv)k

∂ϕ̂k3

∂ϕ2
(Mv)k

∂ϕ̂k1

∂ϕ3
(Mv)k

∂ϕ̂k2

∂ϕ3
(Mv)k

∂ϕ̂k3

∂ϕ3
(Mv)k


= −1

2

 0 (Mv)3 −(Mv)2
−(Mv)3 0 (Mv)1
(Mv)2 −(Mv)1 0


=

1

2
(̂Mv). (67)

For a rigid body with con�guration space SO(3) the
rather complicated expression for the Coriolis matrix
in (57) becomes

C(v) = −(̂Mv). (68)

The dynamic equations can now be written in matrix
form as

Mv̇ + C(v)v = τ

Mv̇ − (̂Mv)v = τ. (69)

If we use the relation (̂Mv)v = −v̂Mv and denote the
velocity as v = ωB0b we get Euler's equations of motion:

Mω̇B0b + ω̂B0bMωB0b = τ (70)

Mω̇B0b −MωB0b × ωB0b = τ (71)

which are identical to the classical formulation that we
found in (1).

4.2 Rigid Bodies with Con�guration
Space SE(3)

The con�guration space of a rigid body in the special
Euclidean space is described by the matrix Lie group

Q = g0b for position and velocities variables v = V B0b .
The selection matrix is thus the identity matrix H =
I ∈ R6×6.
For a rigid body with con�guration space SE(3) the

matrix relating the local and global velocities is given
by (Rossmann (2002))

S(ϕ) =

(
I − 1

2
adϕ +

1

6
ad2
ϕ− . . .

)
∈ R6×6. (72)

The precise computational details of the partial deriva-
tives follow the same steps as for SO(3) in the previous
section. We note that after di�erentiating and evalu-

ating at ϕ = 0 the matrices
{∑

k
∂Ski

∂ϕj

}
ij
are equal to

1
2 ãdek where ek is a 6-vector with 1 in the kth entry

and zeros elsewhere and ãdp for p ∈ R6 is de�ned as

ãdp =


0 0 0 0 p3 −p2
0 0 0 −p3 0 p1
0 0 0 p2 −p1 0
0 p3 −p2 0 p6 −p5
−p3 0 p1 −p6 0 p4
p2 −p1 0 p5 −p4 0

 . (73)

Similarly,
{∑

k
∂Skj

∂ϕi

}
ij

is equal to − 1
2 ãdek . This is

then multiplied by the kth element of Mv when dif-
ferentiating with respect to ϕk. The C-matrix is thus
given by

C(v) = ãd(Mv) (74)

where ãd(Mv) is given by (73) with the vector (Mv) ∈
R6 in the entries.
The dynamic equations are written in matrix form

as

Mv̇ + C(v)v = τ

Mv̇ + ãd(Mv)v = τ (75)

which in this case is identical to the Newton�Euler
equations of rigid body motion. We see this if we use

that ãd(Mv)v = − adT
V Mv and we obtain the Newton�

Euler equations

MV̇ B0b − adT
V MV B0b = τ (76)

which we found in (11). For the special case when
M is a constant diagonal matrix we can write out the
dynamics of a single rigid body on SE(3) as

mu̇−mrv +mqw = τu

mv̇ +mru−mpw = τv

mẇ −mqu+mpv = τw

Ixṗ− Iyrq + Izqr = τp

Iy q̇ + Ixrp− Izpr = τq

Iz ṙ − Ixqp+ Iyrq = τr
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where V B0b =
[
u v w p q r

]T
. We see that when

the inertia matrix is diagonal the cross terms vanish
from the dynamics. This is a general result.

4.3 Rigid Bodies with Con�guration
Space SE(2)

Planar motion allows translation in the xy-plane and
rotations around the z-axis. The velocity state is given

by V B0b =
[
u v r

]T
and the selection matrix is thus

given by

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

T

. (77)

The adjoint map of a Lie algebra V ∈ se(2) is given
by

adV =

0 −r v
r 0 −u
0 0 0

 , V̂ =

0 −r u
r 0 v
0 0 0

 ∈ se(2).

(78)

We thus write

Sr(ϕ) =
1

2

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

0 0 0

 . (79)

and �nd the partial derivatives as

∑
k

(
∂Ski
∂ϕj

)∣∣∣∣∣
ϕ=0

(Mv)k


ij

= −1

2

∑
k


∂ϕ̂k1

∂ϕ1
(Mv)k

∂ϕ̂k1

∂ϕ2
(Mv)k

∂ϕ̂k1

∂ϕ3
(Mv)k

∂ϕ̂k2

∂ϕ1
(Mv)k

∂ϕ̂k2

∂ϕ2
(Mv)k

∂ϕ̂k2

∂ϕ3
(Mv)k

∂ϕ̂k3

∂ϕ1
(Mv)k

∂ϕ̂k3

∂ϕ2
(Mv)k

∂ϕ̂k3

∂ϕ3
(Mv)k


= −1

2

 0 0 (Mv)2
0 0 −(Mv)1

−(Mv)2 (Mv)1 0


=

1

2
ãd(Mv). (80)

Similarly,
∑
k

(
∂Skj

∂ϕi

)∣∣∣
ϕ=0

(Mv)k becomes∑
k

(
∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k


ij

= −1

2

∑
k


∂ϕ̂k1

∂ϕ1
(Mv)k

∂ϕ̂k2

∂ϕ1
(Mv)k

∂ϕ̂k3

∂ϕ1
(Mv)k

∂ϕ̂k1

∂ϕ2
(Mv)k

∂ϕ̂k2

∂ϕ2
(Mv)k

∂ϕ̂k3

∂ϕ2
(Mv)k

∂ϕ̂k1

∂ϕ3
(Mv)k

∂ϕ̂k2

∂ϕ3
(Mv)k

∂ϕ̂k3

∂ϕ3
(Mv)k


= −1

2

 0 0 −(Mv)2
0 0 (Mv)1

(Mv)2 −(Mv)1 0


= −1

2
ãd(Mv). (81)

For a rigid body with con�guration space SE(2) the
Coriolis matrix in (57) becomes

C(v) = ãd(Mv) (82)

where

ãd(Mv) =

 0 0 −(Mv)2
0 0 (Mv)1

(Mv)2 −(Mv)1 0

 . (83)

The dynamic equations can now be written in matrix
form as

Mv̇ + C(v)v = τ

Mv̇ + ãd(Mv)v = τ. (84)

If we use the relation ãd(Mv)v = − adT
v Mv we get the

dynamics:

Mv̇B0b − adT
v MvB0b = τ. (85)

Choosing the body frame Fb so that it coincides with
the center of gravity we get the inertia matrix M =
diag(m,m, Iz) and we can write the dynamics explicitly
asm 0 0

0 m 0
0 0 Iz

u̇v̇
ṙ

−
 0 r 0
−r 0 0
v −u 0

mumv
Izr

 =

τuτv
τr


(86)

where we have denoted the velocity as v =
[
u v r

]T
.

The dynamics now becomes

mu̇−mrv = τu

mv̇ +mru = τv

Iz ṙ = τr. (87)

We see that for this choice of coordinate frames the
cross terms from the Coriolis matrix c3 = −mvu+muv
disappear from the equations also in the planar case.
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4.4 The Schön�ies Group X
The Shön�ies group is commonly found in pick-and-
place applications in robotics. It allow translational
motion in all directions and rotational motion around
one �xed axis, normally chosen as the z-axis. The ve-

locity state is thus given by V B0b =
[
u v w r

]T
and

the selection matrix is given by

H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


T

. (88)

The adjoint map adV is given by

adV =


0 −r 0 v
r 0 0 −u
0 0 0 0
0 0 0 0

 (89)

so for the Shön�ies group we write the reduced velocity
transformation matrix as

Sr(ϕ) =
1

2


0 −ϕ4 0 ϕ2

ϕ4 0 0 −ϕ1

0 0 0 0
0 0 0 0

 . (90)

The partial derivatives are found as∑
k

(
∂Ski
∂ϕj

)∣∣∣∣∣
ϕ=0

(Mv)k


ij

= −1

2


0 0 0 (Mv)2
0 0 0 −(Mv)1
0 0 0 0

−(Mv)2 (Mv)1 0 0


=

1

2
ãd(Mv). (91)

Similarly,
∑
k

(
∂Skj

∂ϕi

)∣∣∣
ϕ=0

(Mv)k becomes

∑
k

(
∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k


ij

= −1

2


0 0 0 −(Mv)2
0 0 0 (Mv)1
0 0 0 0

(Mv)2 −(Mv)1 0 0


= −1

2
ãd(Mv). (92)

This gives us the Coriolis matrix

C(v) = ãd(Mv). (93)

The dynamic equations can now be written in matrix
form as

Mv̇ + ãd(Mv)v = τ. (94)

Again, we can use that ãd(Mv)v = − adT
v Mv and write

Mv̇ − adT
v Mv = τ (95)

or, for a diagonal M , explicitly as

mu̇−mrv = τu

mv̇ +mru = τv

mẇ = τw

Iz ṙ = τr. (96)

From these equations and the Coriolis matrix in (93) we
can conclude that the Coriolis and centrifugal terms do
not a�ect linear motion in the direction of the z-axis,
which is as expected.

4.5 Translational Motion R3

For pure translational motion we �st note that S = I
because the velocity variables are the time derivative of
the position variables, both in R3. Thus, the derivative
of both the inertia matrix and the velocity transforma-
tion matrix disappear and the Coriolis terms vanish.
The dynamics is therefore in a very simple form

mu̇ = τu

mv̇ = τv

mẇ = τw

which represent the pure translational motion of a rigid
body when the orientation is �xed.

4.6 Lower-dimensional Groups

Also for the low-dimensional groups the Coriolis and
centrifugal terms vanish. This is trivial for all 1- and
2-dimensional groups because the adjoint map is a zero
matrix (see next section).

4.7 Summary

Table 2 shows the mapping from local to global velocity
coordinates and the corresponding C-matrices for dif-
ferent Lie Groups. We note that when the Lie bracket
vanish, which is the case for abelian Lie algebras, the
Coriolis and centrifugal forces are not present in the
dynamics, as expected. The adjoint matrices and ex-
plicit expressions for the Coriolis matrices for all the
Lie groups are shown in Table 1.
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Lie Group V̂ adV ãdp

SE(3)


0 −r q u
r 0 −p v
−q p 0 w
0 0 0 0




0 −r q 0 −w v
r 0 −p w 0 −u
−q p 0 −v u 0
0 0 0 0 −r q
0 0 0 r 0 −p
0 0 0 −q p 0




0 0 0 0 p3 −p2
0 0 0 −p3 0 p1
0 0 0 p2 −p1 0
0 p3 −p2 0 p6 −p5
−p3 0 p1 −p6 0 p4
p2 −p1 0 p5 −p4 0



X (z)


0 −r 0 u
r 0 0 v
0 0 0 w
0 0 0 0




0 −r 0 v
r 0 0 −u
0 0 0 0
0 0 0 0




0 0 0 −p2
0 0 0 p1
0 0 0 0
p2 −p1 0 0



R3


0 −r 0 u
r 0 0 v
0 0 0 w
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



SE(2)

0 −r u
r 0 v
0 0 0

 0 −r v
r 0 −u
0 0 0

  0 0 −p2
0 0 p1
p2 −p1 0



SO(3)

 0 −r q
r 0 −p
−q p 0

  0 −r q
r 0 −p
−q p 0

  0 −p3 p2
p3 0 −p1
−p2 p1 0



R2

0 0 u
0 0 v
0 0 0

 [
0 0
0 0

] [
0 0
0 0

]

R 0 0 0

H 0 0 0

SO(2) 0 0 0

Table 1: The Lie algebras V̂ , adjoint maps adV and the Coriolis matrices C = ãdp. In this paper the entries in

the adjoint maps ãdp are given by p = (Mv).
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Lie Group S C Eq.

SE(3) I − 1
2 adϕ + 1

6 ad2
ϕ− . . . ãd(Mv) (74)

X (z) I − 1
2 adϕ + 1

6 ad2
ϕ− . . . ãd(Mv) (93)

R3 I3×3 0

SE(2) I − 1
2 adϕ + 1

6 ad2
ϕ− . . . ãd(Mv) (82)

SO(3) I − 1
2 ϕ̂+ 1

6 ϕ̂
2 − . . . −(̂Mv) (68)

R2 I2×2 0

R,H,SO(2) I1×1 0

Table 2: The velocity transformation matrices S(ϕ)
and the corresponding Coriolis matrices for
di�erent Lie subgroups of SE(3). The ex-
plicit expressions for the di�erent Lie groups
are found in the equations in the right-most
column.

5 A General Theorem for Rigid

Body Dynamics

In this section we will show that the dynamic equations
that we found in Section 3 are general and valid for all
Lie groups. We will use the structure of the Lie bracket
so the theorem is valid for con�guration spaces with a
Lie group topology only. We will �rst de�ne a matrix
x̄ in the following way:

De�nition 5.1. Given a vector x =[
x1 x2 . . . xn

]T ∈ Rn. Then the matrix x̄ is
de�ned as

x̄ij =

{
eitherxk for some k

or 0
(97)

Thus, a matrix x̄ is a matrix whose entries are either
an element xk of the vector x (of �rst order) or zero.
One example of such a matrix is the adjoint map adx.
We can now write the following lemma

Lemma 5.1. Given two vectors x and y, and their
matrix representations x̄ and ȳ by De�nition 5.1. Then
the vector x̄y can be rewritten as ȳx where

ȳij =

n∑
k=1

∂x̄ik
∂xj

yk. (98)

This lemma simply allows us to swap the multipli-
cation order so that y is written in matrix representa-
tion instead of x. To �nd the element ȳij , (98) simply
searches each row of matrix x̄ for a swap, i.e., a match
so that wherever an element xj = x̄ik is found, the cor-
responding element yk in inserted in the matrix ȳ at
position yij .

Lemma 5.2. Lemma 5.1 is also valid for a�ne com-
binations of the basis elements, i.e., for matrices of the
form

x̄ = a1x̄1 + a2x̄2 + . . . (99)

where āi are de�ned as in Lemma 5.1.

We will also need the following lemma which is valid
when the matrices, in this case the adjoint matrices ad,
satisfy the necessary axioms of the binary operation
called the Lie bracket:

Lemma 5.3. Given a velocity transformation matrix
S(ϕ) in the form

S(ϕ) =

(
I − 1

2
adϕ +

1

6
ad2
ϕ− . . .

)
∈ Rm×m (100)

with the adjoint matrix adϕ as in (8), then we can write

∑
k

(
∂Ski
∂ϕj

− ∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

xk = 2
∑
k

∂Ski
∂ϕj

∣∣∣∣∣
ϕ=0

xk.

(101)

Proof. The adjoint matrix is constructed in the follow-
ing way (with a slight abuse of notation)

adX Y = [X,Y ] = XY − Y X. (102)

In other words, any element (adX)ij = Xk�
represented by the �rst matrix XY in (102)�has an
element equivalent to the second matrix −Y X given
by Yj . We see this if we write the �rst line of adX Y as

(adX Y )1 = −X3Y2︸ ︷︷ ︸
∈XY

+Y3X2︸ ︷︷ ︸
∈Y X

−X6Y3︸ ︷︷ ︸
∈XY

+Y6X5︸ ︷︷ ︸
∈Y X

(103)

where we can identify each term in (103) with one of the
matrices in (102). This follows from the structure of
the adjoint matrix which needs to re�ect the property
of the Lie bracket (102). In (103) the �rst matrix XY
is represented by the elements −X3 and −X6 and the
second matrix Y X is represented by the elements X2

and X5 in the adjoint matrix. We see that when these
are multiplied with the corresponding elements of Y we
obtain the vector representation of the Lie bracket, as
required. Due to this structure the partial derivative
of the element (adϕ)ki with respect to ϕj is equal to
the partial derivative of (adϕ)kj but with respect to ϕi,
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with opposite signs. The fact that we are to evaluate
(101) at ϕ = 0 and we therefore can reduce the velocity
transformation matrix to Sr = − 1

2 adϕ, this completes
the proof.

We have seen that the dynamic equations of a single
rigid body can be written as

Mv̇ + C(v)v = τ (104)

with

Cij(v) =
∑
k

(
∂Ski
∂ϕj

− ∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k. (105)

Through examples we showed that for the most impor-
tant Lie groups, this can be written as

Mv̇ + C(v)v = τ

Mv̇ + ãd(Mv)v = τ. (106)

We will now show that this is in fact a general result:

Proposition 5.1. The dynamic equations of a single
rigid body written in the form

Mv̇ − adT
v Mv = τ. (107)

is equivalent to

Mv̇ + ãd(Mv)v = τ (108)

where ãd(Mv) is the Coriolis matrix written by

Cij(v) =
∑
k

(
∂Ski
∂ϕj

− ∂Skj
∂ϕi

)∣∣∣∣∣
ϕ=0

(Mv)k. (109)

Proof. By Lemmas 5.1 and 5.2 we can write (consider-
ing (Mv) a vector)

adv(Mv) =

n∑
k=1

∂(adv)ik
∂vj

(Mv)k. (110)

Similarly, for the transpose of the adjoint matrix adv
we obtain

adT
v (Mv) =

n∑
k=1

∂(adv)ki
∂vj

(Mv)k. (111)

Now, if we consider only the non-vanishing terms in
S(ϕ), we can write

Sr(ϕ) = −1

2
adϕ (112)

and from Lemma 5.3 we conclude that the two formula-
tions in (107) and (108) are identical and for a velocity
transformation matrix in this form, the expression in
(110) can be rewritten in the form of (109). Thus, the
Coriolis matrix in (108) is in fact equal to the one in
(109).

6 Conclusion

In this paper the singularity free dynamic equations of
single rigid bodies were presented. The dynamics are
written explicitly, i.e., for a speci�c choice of coordi-
nates. The coordinates chosen in the derivation are
the local position and velocity coordinates but we use
the structure of the Lie algebras to rewrite the equa-
tions in global variables. The explicit equations are
then obtained by the derivative of the exponential map
which takes us from the local to the desired global state
variables. We have also shown that the equations are
general and valid for all Lie groups. In addition to the
theoretical framework presented, the equations are pre-
sented in such a way that they can be implemented in
a simulation or control environment and do not require
any pre-requisites in Lie theory or di�erential geome-
try.
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