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Abstract

Cross direction (CD) control in sheet-forming process forms a challenging problem with high dimensions.
Accounting the interactions between different properties and actuators, the dimensionality increases fur-
ther and also computational issues arise. We present a multiple property controller feasible to be used
especially with imaging measurements that provide high sampling frequency and therefore enable short
control interval. The simulation results state the benefits of multiple property CD control over single
property control and single property control using full feedforward compensation. The controller pre-
sented may also be tuned in automated manner and the results demonstrate the effect of tuning on input

saturation.
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1 Introduction

Continuous film and sheet-forming processes, such as
paper manufacturing, set a challenging problem for
process control. The properties to be controlled vary
temporally along the production line (i.e. machine
direction, MD) and spatially across the machine (i.e.
cross direction, CD), where the overall control objec-
tive is to produce an as flat surface as possible. Typi-
cally, the control problem is separated into MD con-
trol and CD control, where the former can be con-
sidered as a single-input-single-output (SISO) control
loop for setpoint following and disturbance rejection.
However, the CD process consists of hundreds of mea-
surement locations and a very large number of actu-
ators distributed across the machine, hence forming a
high dimension, non-square multi-input-multi-output
(MIMO) system to be used for disturbance rejection
in CD. Another problem comes from the actuator con-
straints, which need to be considered in control design.
Figure 1 shows the schematic picture of a paper ma-
chine with different actuator positions and the mea-
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surement position. The sources of disturbances come
from the processes before the headbox as well as dif-
ferent processing stages indicated in Figure 1.
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Figure 1: Paper manufacturing process.

There are significant interactions between different
properties and actuators in the paper machine (Back-
strom and He, 2004). Hence actuations performed to
one property may have unfavorable effects to another
property. For instance, the slice lip actuators primar-
ily used for controlling the basis weight variations will
also affect on moisture and caliper, which are controlled
with downstream actuators. Further, there might also
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be several actuators for single property, e.g. steam box
and rewet shower profilers for moisture.

Interactions are recognized and taken into account
in MD control, where usually multivariable model pre-
dictive controller (MPC) is a straightforward solu-
tion (Lang et al., 2001; Kuusisto et al., 2002; Nyuan,
2007). Novel methods to account for interactions also
in CD control have been reported in 1990s (Hall, 1991;
Heaven et al., 1994), but only recently the interac-
tions have been properly handled with multiple prop-
erty controllers (Backstrom and He, 2004; Backstrom
et al., 2001; Haznedat and Arkun, 2002; Duncan and
Heath, 2008; Fan, 2003; Shakespeare et al., 2003; Fu
et al., 2006; Lahouaoula and Gheoghe, 2010; Duncan
and Heath, 2010). The early papers use feedforward
type compensation (Hall, 1991) or frequency separa-
tion (Heaven et al., 1994) to prevent competing con-
trol actions. Backstrom et al. (2001) implemented the
CD-MPC to a linerboard machine with two proper-
ties and four actuator sets. Only one actuator set
was treated as manipulated variable(s) in MPC while
three other actuator sets were maintained under con-
ventional control and treated as measurable distur-
bances to MPC. This approach used downsampled pro-
files with dimensions equal to highest actuator reso-
lution. In a later paper (Backstrom and He, 2004)
the measurements were mapped to a common resolu-
tion greater than three times the highest actuator res-
olution. The controller was extended to account for
MD profile control, too. Both these implementations
use an efficient QP solver to meet the online require-
ments, where the scan time sets the upper limit for
computational time. Haznedat and Arkun (2002) in-
troduced a CD-MPC where computational issues were
solved by using a reduced order subspace in control cal-
culations. The reduction of the dimensionality of the
problem was done with Karhunen-Loeve transforma-
tion. Another paper (Fan, 2003) using model reduc-
tion techniques applied the CD-MPC in wavelet do-
main. As a result, the computational time was nearly
halved from 32.55 seconds to 17.18 seconds when using
a full model and reduced model for the system with
three properties and four actuator sets. The perfor-
mance degradation due to reduced model was quite
modest, only few percents. Shakespeare et al. (2003)
presented a high resolution robust optimal controller
to maintain full control capability. Robustness against
mapping errors was achieved with a set of penalty
functions applied to steady-state optimal controller for
multiple profiles and multiple actuator sets. The re-
sults presented were, however, from a paper mill with
two actuator sets for single profile control. Duncan
& Heath extended a robust constrained IMC CD con-
troller to multi-array processes. The interactions were
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first (Duncan and Heath, 2008) accounted only in spa-
tial domain, but later (Duncan and Heath, 2010) also
the different dynamics of actuator sets were considered.
Again, the example was for two actuator sets and single
profile control. In (Fu et al., 2006), both high resolu-
tion profiles and dynamics were accounted for. The
computational issues were attacked with sparse matrix
structure and gradient type optimization. The example
given was from a paper mill with three properties and
three actuator sets. A very recent paper (Lahouaoula
and Gheoghe, 2010) reports improvements of o-values
of 10%, 60%, 32%, 33% and 22% for dry weight, mois-
ture, caliper, top coat weight and bottom coat weight,
respectively, when changing the traditional CD con-
trol to multivariable multiple CD-MPC controllers us-
ing a combined feedback-feedforward control strategy.
These numbers clearly show the potential and impor-
tance of multiple property control.

Another important aspect of CD control is its poor
dynamic performance, which is limited by the long
dead-time between the actuating and sensing locations
and even more profound by the sensing and estima-
tion with the scanning sensor. The dynamic band-
width of the control system could be increased with
full web-width measurement arrays. The effect of dif-
ferent measurement scenarios and scanner path ar-
rangements to estimation error are given in (Tyler and
Morari, 1995; Chang et al., 2001). Efforts on find-
ing a feasible and cost-effective solution for full web
width measurement systems have been made (Fran-
cis, 1991; Williams et al., 1996; Ferguson, 1997; Rau-
nio et al., 2010; Soderberg et al., 2010). One early
method (Francis, 1991) combines the light transmit-
tance information from a stationary array of sensors
and from a scanning optical sensor at the wet end of the
paper machine with the correct information from the
dry end scanning sensor. Another system (Williams
et al., 1996; Ferguson, 1997) uses CCD cameras to
capture the two-dimensional variations within a sam-
pling interval of few seconds. Other attempts of uti-
lizing imaging measurements in paper and board ma-
chine estimation and control are presented in Raunio
et al. (2010) and Soderberg et al. (2010). This emerging
technology is expected to collect the CD profile data
with substantially higher frequency than with the tra-
ditional scanning sensor. Hence more information on
the dynamic variations of cross direction profiles would
be available, the CD control interval could be decreased
significantly and more of the two dimensional variation
could be attenuated. However, the computational de-
mand increases and MPC may fail to find a solution
within the sampling time less than one scan.

The outline of this paper is following. First the prin-
ciples of a cross direction process are given and ex-
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tended to handle multiple properties, followed by the
derivation of the controller, both to spatial and tem-
poral part. Also a novel tuning method is introduced.
Simulation results are presented in a separate section
and discussion based on the results is given. Finally,
conclusions are drawn in the last section.

2 Modelling and control

Here, an option to multiple property CD-MPC is pre-
sented. The controller follows the idea of Chen (1997,
1999), where the spatial and temporal effects were con-
trolled in sequence, but now the idea is lifted to han-
dle multiple property control. Optimal control per-
formance is maintained using a high-resolution profile
data. An additional feature of the controller is the
actuator constraint handling, where hard constraints
are expected to be satisfied by re-tuning the spatial
quadratic controller in an automated manner. The
simulated examples given in Section 3 describe a pro-
cess with three actuator sets and two properties.

2.1 Process model

The starting point for the multiple property model is
the mathematical presentation for a single property
(e.g. the basis weight in the paper machine). We use
the general assumptions of the input-output relation-
ships in the sheet forming process: the temporal part
of the model can be separated from the spatial part of
the model, the responses of each actuator are identical
in the time domain, and the spatial response between
N outputs and M manipulated variables is described
with a diagonal interaction matrix G of dimensions
NxM. For a single property, the process is described
with a discrete-time model eq.(1).

y(k) = g(¢~")Gu(k — 1) + d(k) (1)

Here, y(k) is the vector of the property values in CD-
direction and u(k) the corresponding vector of the ma-
nipulated variable. In the equation above, the tempo-
ral part of the model ¢ (q’l) is usually described with
the first order and delay transfer function eq.(2).

The interaction matrix G consists of row vectors, each
of them describing the effect of a single actuator to the
width of the sheet. In practice, the responses of the
actuators near the edges are different from those near
the center, but here similar response shapes throughout
the sheet are assumed and the responses near the edges
are truncated. Most of the entries in interaction matrix
are zero and there are 2p-1 non-zero elements in each
row. Hence the matrix can be written as eq.(3).

g - g 0 ... .. 0
G = 0 gp - 0 g O (3)
0O ... .. 0 gp . 5

The vector d(k) describes the process disturbances,
whose effect on the control actions are expected to
be compensated for. For the multiple property pro-
cess with I properties and J actuator sets, the models
from different properties are simply stacked together
and interaction matrices from different inputs to vari-
ous outputs are expressed with one block-diagonal ma-
trix. Hence, for I properties the model becomes eq.(4).

In eq.(4) G; describes the relationship between
property i and actuator set j. Notice that the matrix
G;; might have only zero entries.

2.2 Control approach

Due to the non-square MIMO characteristics, i.e. the
number of inputs being (much) less than the number
of outputs, it is impossible to produce a flat surface
and for one property the objective is to minimize the
variance of the profile across the web eq.(5).

J = min |y (k+ 1)[3 (5)

The optimal solution to the quadratic problem can be
achieved with the following conventional control law

eq.(6).
Au(k) = —Ky(k) (6)

In eq.(6), the optimal controller K is an inversion of

g(q_l) _ l-a g (2) the process model g(qil) G. However, an inversion
1—ag™! does not exist, since the delay in the dynamic part

yi(k) 91(¢7")Gna 9s(@ 1G] [w(k—1) di (k)
=] : N @

y1(k) 91(¢7")Gn 95 "Grs] |us(k—1) dr(k)

Y=GxgxU+D
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of the model cannot be inverted and the system is
not square. The simplest solution to the problem is
to assume steady-state process (i.e. g(q_l) =1 and
d(k+1) = d(k) ) and use a pseudo-inverse of the matrix
-1

G (ie. K= (GTG) GT ). In sheet forming pro-
cesses, it is usually of interest to weight the profile de-
viations across the sheet and restrict the movement of
actuators. Hence, the controller objective is extended
to penalize the control actions and profile deviations in
quadratic manner as eq.(7).

J=min{y(k+ DTQy(k+1) + Au(k;)TRAu(k)}
(7
In eq.(7), weighting matrices Q and R are diagonal or
band-diagonal matrices with proper dimensions. With
the steady-state assumption above, the optimal solu-
tion can be calculated from eq.(8).

Au(k)= - (R+G"QG) ' GTQy(k)  (8)

The derivation of the controller is similar for multi-
ple property process once the inputs u; and outputs
y; are collected to vectors U and Y and the interac-
tion matrices G;; are expressed as one block-diagonal
matrix. The dimension expansion is also necessary for
the weighting matrices Q and R. The controller now
gives the optimal steady-state control moves with inter-
actions between different properties and actuator sets
incorporated. However, the steady-state assumption
requires a long enough sampling interval that the time
delay and actuator dynamics will die out and will not
cause instability. This interval will most likely become
too long to achieve the best possible control perfor-
mance.

The assumption on the separable temporal and spa-
tial parts of the model allows us to continue the con-
trol synthesis by designing a temporal controller to be
used in sequence with the spatial, or steady-state, con-
troller. An efficient option is internal model controller
(IMC), which can be set to each actuator zone mainly
to compensate for the dead time and modeling errors.
With this arrangement, the sampling interval can be
set to any value yet ensuring stable control perfor-
mance. This controller structure separating the spatial
and temporal parts was selected over any non-square
dynamic MIMO controller structure (MPC or IMC)
due to its computational performance. In general, IMC
can handle any system by factorizing the process model

eq.(9).
9)

In eq.(9), g, (¢7") contains the non-minimum phase
characteristics. The best possible controller is then at-
tained by using the realizable inverse g~'(¢~') as a

9 ") =g9-(¢ g+
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controller. The controller will be designed more robust
by introducing an exponential filter F'(g~!), which also
smoothens the overall control actions. For more com-
prehensive description of IMC, the reader is referred
to Garcia and Morari (1985). The design applies also
for systems with different dynamics and dead times,
but here we consider a case where the filtering time
constant f; is the same within every actuator set j.
Since the actuator dynamics were also assumed simi-
lar within every actuator set j, all controllers have the
same form of eq.(10) and the control action can be cal-
culated from eq.(11).

Cilg™") =Fi(g Ng=L(¢7") =

(k) = Cj(q™") (9l uy(k — 1) + Auy(k)) (1)

Now, the IMC for each actuator set can be coded effi-
ciently as time series objects. The controller derived is
almost similar to one proposed in Chen (1997, 1999).
The spatial controller finds the instantaneous changes
to the optimal controller profile ensuring optimal un-
constrained steady-state performance with respect to
multiple properties. The temporal controller dynam-
ically filters those control actions to ensure stability.
Current control structure does not, however, account
the dynamical interactions. Additionally, as recognized
e.g. in Backstrom et al. (2001), the spatial controller
sets penalties only to incremental control actions and
hence the risk of actuator saturation is still evident.
The temporal controller also restricts only the incre-
mental control actions by filtering. Therefore, an anti
wind-up solution is needed in the temporal controller
to take into account the hard constraint, i.e. actuator
saturation limits.

2.3 Input saturation and automated tuning

As demonstrated by (Garcia and Morari, 1985), the
IMC remains stable while the information of input sat-
uration is also fed to the internal model. However, in
our system, clipping the inputs may produce a sub-
optimal performance and CD control actions will be
aliased to MD variation. There exist some tailored
anti wind-up solutions also to cross direction problems
with linear controllers (Rojas et al., 2002), as well as
tuning procedures ensuring the robustness under in-
put constraints (Duncan and Heath, 2008, 2010; Heath
and Wills, 2004), but we propose a different procedure.
Our novel solution is to automatically tune the spa-
tial controller by decreasing the aggressiveness of con-
trol actions i.e. we are avoiding excessive control sig-
nals and severe input clippings. The automated tun-
ing may incorporate a pre-defined weighting matrix for
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control actions. In addition, the weighting matrix R is
re-evaluated at each sampling time, where additional
weight is given depending on the current distance to the
saturation limits. Figure 2 shows the relation between
the actuator saturation limits and the input weighting.
In Figure 2, the relation comes from a second-order
equation eq.(12).

Figure 2: Second-order curve showing the relation be-
tween the distance to the actuator saturation
limit and the output penalty.

Tim = T0m + Tmaz (1 — (12)
In eq.(12), 7, is the input weighting, ro is the pre-
defined weighting factor, or the lower limit for the
weighting, 7,4, is the upper limit for the additional
penalty, g, is the maximum (minimum) allowable
control input i.e. saturation limit and uqg = Umaezr — ©
is the current distance to the saturation limit. In ad-
dition, one tuning parameter comes from the time-
constant of the filter in IMC. In Heath and Wills
(2004), a rule for tuning the filter time constant was
given as a relation between the allowable rate of control
movement and the range of control inputs eq.(13).

Aumaz

1-f< (13)

Umaz — Umin

The final control structure is presented in Figure 3.
Notice that it is assumed in Figure 3 that the control
target (reference) is zero for all outputs.

3 Simulation results

The controller developed was coded with Matlab®
and implemented to the paper machine simulator pre-
sented elsewhere (Ylisaari et al., 2009; Ohenoja et al.,
2010). It is assumed in our simulations that the profile

| tuning I‘

d(z)

IMC for each actuator set

Y=[y,(@)...yi(@)]

Figure 3: Controller structure.

data is updated every second based on imaging mea-
surements. Information about simulating the imag-
ing measurements and estimation can also be found
from Ohenoja et al. (2010). The control interval is
also set to one second. For the simulated system with
dimensions 800x164, it takes 0.002 seconds to perform
the calculations for one control move with a dual core
desktop computer with CPU speed of 2.2 GHz and a
memory of 4 GB.

The performance of the control system can be eval-
uated in numerous ways. One feasible performance
indicator for multiple property control was given in
Haznedat and Arkun (2002), see eq.(14). In eq.(14),
¥, is the controlled profile and d,, is the disturbance,
or open-loop profile for property p. The first term de-
scribes the performance for single property and the sec-
ond term ensures the balance between different prop-
erties. If no control actions are applied, the standard
deviations std(y,) and std(d,) will be equal, the sec-
ond term will be zero and hence the maximum value of
K is the number of properties evaluated. Additionally,
we will evaluate the control performance also in terms
of actuating energy.

We simulate two properties and three actuator sets.
Both properties have 400 measurement positions and
there are 67, 40 and 57 actuators in different actuator
sets. The spatial and dynamic responses of each type
of actuators are presented in Figure 4. Table 1 ex-
plains the effect between different actuators and prop-
erties. These responses may be considered to describe
the effect of dilution headbox, steam box and rewet
shower profilers to basis weight and moisture. Other
simulation settings are presented in Table 2. With the
presented system, the input-output model can now be
written as eq.(15) and the weighting matrices Q and

2
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R as eq.(16) and eq.(17), respectively.

diaga00x400(Q1) 0
_ _ 16
Q 0 diaga00x400(Q2) (16)
diagerxe7(R1) 0 0
R = 0 diagaoxao(R2) 0
0 0 diags7xs7(R3)
th

Table 1: Simulated interactions between the different
actuator sets and properties.

Property 1 Property 2
Actuator 1 -1 +0.7
Actuator 2 0 -1
Actuator 3 0 +1

3.1 Steady-state performance

The steady-state disturbance profiles for Property 1
and Property 2 are presented in Figure 5. We illustrate
the performance of the multiple property control (MP)
presented in Section 2 by comparing the results with
a set of solutions from single property control (SP).
The latter one uses a feedforward compensation be-
tween Actuator 2 and Actuator 3 to avoid unnecessary
competing control actions for Property 2. Single prop-
erty control is also tested using a full feedforward com-
pensation (SPFF) i.e. compensation from Actuator 1
to Property 2 as well. The weights and input satura-
tion limits used in single property control are similar
to those for multiple property control. Finally, we also
present optimal constrained solution with respect to
k, found using an optimization function ’fmincon’ in
Matlab®. The results of the steady-state performance
are listed in Table 3.

3.2 Performance under input saturation

Next figures show simulation results with saturating
actuators. The pure CD variations are similar as in
previous example, but during the simulation period, a
dynamical profile variation is added which will cause
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Table 2: Simulation settings.

Measurement positions in CD 400
Output penalty @, for Property 1 10
Output penalty Q2 for Property 2 10
Actuator 1  Actuator 2  Actuator 3
Number of actuators 67 40 57
Input penalty, R; 0 20 10
Max. input penalty, R; mqx 0 50 40
Filtering time constant, f; 0.0217 0.0238 0.0114
Actuator resolution (%) 0.1 0.1 0.2
Input saturation limits + 1.15 + 1.05 + 2.2

Table 3: Steady-state performance of the controllers.
control, SPFF is single property control with

MP is multiple property control, SP is single property
full feedforward compensation.

K J(-10%) Variance Saturating Act. energy
Propertyl Property2 actuators Act.l Act.2 Act.3
MP 0.5992 1.4724 0.1361 0.1751 0 25.99 15.02 20.60
SP 0.7455  2.1699 0.1042 0.3671 10 50.21 39.96 15.16
SPFF 0.5977  1.9153 0.1042 0.2641 13 50.21 45.84 20.30
Optimal(k) 0.4491  4.6972 0.0953 0.1575 37 40.67 55.79 66.18

input saturation. The dynamical variation also repre-
sents a disturbance that can be assumed to be detected
with imaging measurements, but may not reliably be
detected with scanner based methods due to sparseness
of the measurements and heavy filtering usually ap-
plied. The maximum disturbance profiles are presented
in Figure 6. Figure 7 presents the dynamical and ran-
dom variation part of the simulated disturbances for
Property 1. The dynamical variation for Property 2
comes from the relation of 0.7-Property 1. The simu-
lation results with and without the automated tuning
are presented in Figures 8 and 9.

4 Discussion

The results of the steady-state performance, listed in
Table 3, show how multiple property control outper-
forms the single property control (SP) as expected.
Multiple property control allows more variance in
Property 1 to achieve better overall control result (k)
with minimum actuating energy. Single property con-
trol with full feedforward compensation (SPFF) gives
slightly better result with respect to x, but the balance
between the two properties and actuating energies are
worse than with multiple property control. The opti-
mal constrained solution with respect to x shows sub-
stantial performance increment, but with the cost of
increased actuating energy and the number of actua-

tors lying in their saturation limits. This would mean
very limited actuating possibilities for further profile
changes.

The effect of tuning is demonstrated by simulating
dynamical variations that will cause input saturation.
Figure 8 shows the temporal value of the performance
indicator k throughout the simulation period. It can be
observed that we encounter slight performance degra-
dation when using automated tuning. From Figure 9
we observe the actuating energies and saturation viola-
tions, respectively. The solution with automated tun-
ing clearly uses the actuators in a different way com-
pared to the case without automated tuning. We ob-
serve that there are no saturation violations for Actu-
ator 3 when using automated tuning, whereas without
the tuning, some inputs of Actuator set 3 lie on their
saturation limits constantly. There are total 5025 sat-
uration violations for the case without the automated
tuning, 3947 of them lying in dynamical region (MD
positions 201...800). For the case with automated tun-
ing, there are 2860 saturation violations, all of them
lying in dynamical region. The results show that this
kind of novel tuning method could be applicable. How-
ever, the tuning should also include output weighting
to avoid unnecessary sluggishness of control. Also the
second-order function applied for additional penalty
(Figure 2) is quite aggressive as it penalizes all control
actions. For example, an ”S-shaped function” would
give no or only moderate penalty addition when actu-
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ator is operating far from the saturation limit.

5 Conclusions

The results presented above show the benefits of mul-
tiple property CD control; we can expect more uni-
formity when observing all properties of interest and
with less actuating energy. The controller presented is
a computationally efficient option for the problem de-
scribed and is expected to be a feasible control method
to be used with higher sampling frequency provided by
imaging measurements. The automated tuning proce-
dure presented offers a way to avoid severe input sat-
uration, but further development and analysis of the
method is required.
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