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Abstract

Explicit MPC of constrained linear systems is known to result in a piecewise affine controller and therefore
also piecewise affine closed loop dynamics. The complexity of such analytic formulations of the control law
can grow exponentially with the prediction horizon. The suboptimal solutions offer a trade-off in terms
of complexity and several approaches can be found in the literature for the construction of approximate
MPC laws. In the present paper a piecewise quadratic (PWQ) Lyapunov function is used for the stability
verification of an of approximate explicit Model Predictive Control (MPC). A novel relaxation method is
proposed for the LMI criteria on the Lyapunov function design. This relaxation is applicable to the design
of PWQ Lyapunov functions for discrete-time piecewise affine systems in general.
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1 Introduction

Model Predictive Control (MPC) has been a great suc-
cess in the process industries (Qin and Badgwell, 2003).
However, due to heavy computational requirements, it
has mainly been applied to relatively slow processes.
Explicit MPC removes the requirement for the online
solution of the MPC optimization problem (Bempo-
rad et al., 2002), and can therefore make MPC useful
for applications where fast sampling is required (Jo-
hansen and Grancharova, 2003). Explicit MPC uses
multiparametric programming to partition the state
space, and finds controllers that are affine in the state
for each partition. These structural properties trans-
form the closed loop dynamics into a piecewise affine
system and makes the link with the class of hybrid
systems. Readers wanting a more thorough introduc-
tion to multi-parametric programming and control may
consult the books (Bank et al., 1983; Kvasnica, 2009).

However, as pointed out in Bemporad et al. (2002), the
optimal partition of the state space may become very
complex for large problems (problems with many states
and/or a long prediction horizon). Approaches to sim-
plifying the required partitioning of the state space
have therefore been proposed (Bemporad and Filippi,
2003; Johansen and Grancharova, 2003; Jones et al.,
2007). These approaches allow for some degree of sub-
optimality, and guarantee stability by ensuring that
the approximate cost function is within a pre-derived
bound of the exact cost function, which is designed to
be a Lyapunov function.

An alternative method for verifying the stability of the
approximate MPC is presented in Hovd et al. (2009),
who avoid the need for the approximate cost function
to be ’close’ to the exact cost function, by verifying
that the approximate cost function is itself a Lyapunov
function. Unfortunately, the approach in Hovd et al.
(2009) requires the solution of a number of optimiza-
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tion problems, many of which may be non-convex. Al-
though it is not in general necessary to find the optimal
solution to these optimization problems, the approach
may become excessively demanding for large systems.

In this paper we do not use the exact nor the approxi-
mate cost function as a Lyapunov function for verifying
stability of the approximate MPC. However, we do take
advantage of the fact that the formulation of the (ex-
act) MPC problem does guarantee stability, and thus
a Lyapunov function should exist as the approximate
solution is refined to approximate the exact solution
more closely.

In this work, stability is verified using Piecewise
Quadratic (PWQ) Lyapunov functions. The computa-
tion of PWQ Lyapunov functions for Piecewise Affine
(PWA) continuous time systems using LMI techniques
was introduced in a comprehensive study by Johans-
son and Rantzer (1998); Rantzer and Johansson (2000).
These results have since been extended to discrete-time
systems (Feng, 2002; Ferrari-Trecate et al., 2002).

A similar approach is used in the present work for ver-
ifying the stability of approximate explicit MPC, with
the contribution of a modified LMI relaxation that has
to be introduced in order to successfully apply this ap-
proach to larger problems. This novel LMI relaxation
provides a useful tool for stability analysis of PWA sys-
tems in general.

It may need pointing out that explicit MPC is not a
likely alternative to conventional MPC for the type of
problems where conventional MPC has been success-
ful, i.e., large problems with relatively long sampling
intervals, where computer hardware costs are a minor
concern, and where backup systems (possibly opera-
tors) can take over control should the MPC fail. This
explains why conventional MPC is rarely critical for
maintaining closed loop stability - stability instead be-
ing ensured by lower-level control loops. The focus for
conventional MPC applications is instead on improv-
ing performance (in a broad sense), in particular by
keeping the plant close to the optimal operating point
while adhering to constraints. The complex software
required for implementing conventional MPC makes it
practically impossible to guarantee that the implemen-
tation will work as intended in all circumstances.

As mentioned above, the complexity of the solution for
explicit MPC increases rapidly with problem size. The
size of problems that can be handled will depend on
what is considered an acceptable computational load at
the design stage, and the available computer memory
for implementation. However, even taking the current
research on approximate explicit MPC into account, it
is hard to foresee applications in the near future where
the number of states (or, more generally, the number of
’parameters’, in parametric programming parlance) go

into the double-digit range. Thus, explicit MPC should
be seen as a candidate for relatively small problems, of-
ten requiring high sampling rates (sampling intervals in
the milli- to microsecond range), and where computer
hardware costs should be kept to a minimum or system
integrity is a major concern. For problems fitting this
description, there is no need for lower-level stabilizing
control loops when explicit MPC is applied.

The paper is organized as follows: Section 2 introduces
the MPC formulation. In Section 3 we investigate the
approximate MPC characterizations, leading to the de-
scription of the resulting closed loop dynamics in Sec-
tion 4. Section 5 applies the PWQ Lyapunov func-
tion to stability analysis of closed loop PWA systems.
In Section 6 several numerical examples are presented,
while Section 7 introduces the novel LMI relaxation
technique and shows how this can be applied to refin-
ing the approximate MPC solution and prove stability
of the resulting closed loop system.

2 MPC formulation

We consider a linear dynamical discrete-time system

xk+1 = Axk +Buk (1)

where the state vector is of length nx, and a ’standard’
quadratic QP formulation of MPC

min
u=[u0,...,uN−1]

J(u, xk) = ‖xk+N‖2P (2)

+

N−1∑
i=0

(
‖xk+i‖2Q + ‖uk+i‖2R

)
subject to constraints

xk = measured

uk+i ∈ U (3)

xk+i ∈ X (4)

The constraints on the inputs and states are assumed
to define polytopic regions in the input and state spaces
respectively, each with the origin in their interior. The
constraints on the inputs are enforced from the present
timestep (i ≥ 0), whereas the constraints on the states
are enforced from the next timestep (i ≥ 1). The pre-
diction model equation (1) is naturally assumed to hold
within the prediction horizon, it is assumed that (A,B)
is controllable and (

√
Q,A) observable, and the matri-

ces Q � 0 and R � 0 are tuning matrices. The matrix
P � 0 is then the corresponding solution to the dis-
crete algebraic Riccati equation. This solution to the
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discrete algebraic Riccati equation also provides a sta-
bilizing linear state feedback controller K. If no con-
straints are active, the MPC is equivalent to this linear
state feedback controller.
Defining

x =


xk
xk+1

...
xk+N


Q̂ = diag{Q, · · · , Q, P}
R̂ = diag{R, · · · , R}

Â =


I
A
A2

...
AN



B̂ =



0 0 · · · 0 0
B 0 · · · 0 0

AB B 0
. . . 0

...
...

. . .
...

...
AN−1B AN−2B · · · AB B


(5)

the optimization criterion may be reformulated as

J(u, xk) = xT Q̂x + uT R̂u (6)

with xk given. Using the identity

x = Âxk + B̂u (7)

we get

J(u, xk) = ‖u‖2H + 2xTk Fu + ‖xk‖2Y (8)

subject to constraints

xk = given

Gu ≤ W − Exk (9)

where H = B̂T Q̂B̂ + R̂, F = ÂT Q̂B̂ and Y = ÂT Q̂Â.
Note that H � 0 follows from R � 0.
The region XF of the state space for which there ex-
ists an input sequence u fulfilling (9), i.e., the feasible
region, can be found by projecting the constraints (9)
onto the states x. Similarly, using the theory in Gilbert
and Tan (1991), it is possible to describe a region in
the neighborhood of the origin (the socalled ’maxi-
mal output admissible set (MOAS)’, M0), for which
the linear state feedback controller K fulfills all con-
straints and which is positive invariant for the system

(1) when the controller K is applied. We therefore in-
clude in (9) not only the constraints resulting directly
from (3) and (4), but add the constraints xk+N ∈ M0

(see (Scibilia et al., 2009) for further details of the MPC
formulation). It is noted above that the MPC con-
troller and the state feedback controller K are equiv-
alent when no constraints are active. Adding the con-
straints xk+N ∈ M0 therefore ensures that the system
with the MPC controller is closed loop stable provided
the initial state is feasible.

3 Approximate MPC

Bemporad and Filippi (2006) proposed an algorithm
for approximate multiparametric convex programming
which partitions the feasible region XF (or whatever
subset thereof they are exploring) into simplices. Let
vi be the nx + 1 vertices of a simplex, and u(vi) be
the optimal solution to the MPC problem ((8)-(9)) at
vertex i.
Given a state x0 inside a simplex, define the matrix

M =

[
v1 · · · vnx+1

1 · · · 1

]
The state x0 can be expressed as a linear interpolation
between the vertices of the simplex as

x0 = v1λ1 + · · ·+ vnx+1λnx+1

where the interpolation parameters λi are found from λ1
...

λnx+1

 = M−1

[
x0
1

]
(10)

Note that the matrixM is by construction non-singular
and hence invertible, provided the points v1, · · · , vnx+1

define a full-dimensional simplex. Equation (10) and
the definition of M ensure that the λi’s sum to one,
and they will also be non-negative provided x0 is inside
the simplex. From (10) observe that the interpolation
parameters can be split into a state-dependent part and
a state-independent part. That is

λ = λxx0 + λ0 (11)

where λx consists of the nx leading columns of M−1

and λ0 is the last column. Define the matrix

U =
[
u(v1) · · · u(vnx+1)

]
and let ua be the approximately-optimal input se-
quence obtained by linear interpolation between the
solutions at the vertices of the simplex. This gives

ua = Uλ = Kax0 + ka (12)
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where Ka and ka are constant within a given simplex.
Interpolating between the solutions at the vertices of
the simplex we therefore obtain an affine state feed-
back controller that is valid for the whole simplex. In
Bemporad and Filippi (2006) it is shown that this in-
put is a feasible (but obviously not in general optimal)
solution to the MPC problem at the state x0.

It clearly makes sense to use the controller K inside
M0, where it is known to be optimal. Instead of cal-
culating the Delaunay tessellation (or triangulation in
the 2-dimensional case) of XF , we instead calculate the
tessellation for XF \M0. Here, the ‘\’ denotes the set
difference. That is, the set XF \M0 is the part of the
set XF that is not in the set M0. However, since M0 is
in the interior of XF , the set difference is clearly non-
convex. This non-convex set is therefore partitioned
into convex parts using the procedure in (Scibilia et al.,
2009), and each convex part is subsequently tesselated.

We note also that by using arbitrary many points in
the tessellation (not only on the extreme points of the
MOAS and the feasible region, but also at points in
XF \M0 in between), we can make both the approx-
imate MPC and the approximate cost function arbi-
trarily close to the optimal control and optimal cost
function.

In the following, we will assume that the feasible re-
gion XF (or whatever subset thereof for which we are
interested in designing an MPC controller) is known,
together with an initial partition thereof into non-
overlapping, convex regions Xi. The index value i = 0
is used for the region M0, whereas i > 0 identifies a
region different from M0.

4 Piecewise Linear Closed Loop
Dynamics

Although the MPC solution provides the predicted in-
put sequence for the entire horizon of the MPC con-
troller, only the first block of this sequence is actually
applied at each timestep. For online implementation of
explicit MPC, only the first block of Ka and ka for each
region of the tessellation therefore need to be saved.
Thus, for region i we have

Ki = Ka,i(1 : nu, 1 : nx) (13)

ki = ka,i(1 : nu)

In the unconstrained region M0, the MPC controller is
equivalent to the LQR controller K, and we thus get

KM0
= K

kM0
= 0

Combining the linear model in (1) and the PWA con-
troller in (13) we obtain the PWA closed loop dynamics

xk+1 = (A+BKi)xk + ki (14)

Taking into account that the general formulation of the
closed loop dynamics is affine, following (Rantzer and
Johansson, 2000) we introduce a lifting transformation
to a homogenous space of dimension nx + 1. Thus, we
introduce

x̄ =

[
x
1

]
; x /∈M0 (15)

The region M0 is positively invariant, and we therefore
define

x̄ =

[
x
0

]
; x ∈M0 (16)

This leads to the following closed loop dynamics

x̄k+1 = Āix̄k (17)

Āi =

[
(A+BKi) ki

0 1

]
; i > 0 (18)

Āi =

[
(A+BK) 0

0 0

]
; i = 0 (19)

We also have the case when xk /∈M0 while xk+1 ∈M0.
Such regions are easily identifiable. Strictly speaking,
we should for such regions use

Āi0 =

[
(A+BKi) ki

0 0

]
; xk /∈M0, xk+1 ∈M0

(20)
However, ignoring this and using Āi as defined in (18
- 19) merely means that the last element of x̄ is set to
zero one timestep delayed. In most cases, the conser-
vatism thus introduced is negligible.

5 Stability Analysis using
PWQ Lyapunov Functions

Following the development in Feng (2002), we consider
PWQ Lyapunov functions. Thus, for each region i of
the state space, the Lyapunov function V (x) takes the
value of Vi(x), defined as follows:

Vi(x) = x̄T P̄ix̄; x ∈ Xi (21)

The closed loop system is then stable provided

P̄i = P̄T
i (22)

Vi(x) > 0 ∀x ∈ Xi (23)

V (xk) > V (xk+1) (24)

where (24) should hold for all xk and xk+1 that may
occur according to the closed loop dynamics in (17 -
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19). Let the index i identify the region in which the
state is at time k, and the index j identify the region in
which the state is at time k+1. All possible transitions
between regions may then be identified with a set S,
where each element of S consists of a pair (i, j) that is
consistent with the partition of the state space and the
closed loop dynamics (17 - 19).

5.1 Expressing the stability conditions as
an LMI

In this work, the Matlab toolbox YALMIP (Löfberg,
2004) is used. Using YALMIP, (22) is fulfilled sim-
ply by defining P̄i to be a symmetric (matrix valued)
variable.
The conditions (23) and (24) will be fulfilled if the fol-
lowing LMIs are fulfilled:

P̄i � 0; ∀i (25)

ĀT
i P̄jĀi − P̄i ≺ 0; ∀(i, j) ∈ S (26)

However, the condition (23) only has to hold for x ∈
Xi, whereas fulfilling (25) means that it is fulfilled for
the entire extended state space (i.e., for all x̄). Sim-
ilarly, condition (24) only has to hold for xk ∈ Xij ,
where Xij ∈ Xi is the subregion of region Xi for which
the state moves to Xj in the next timestep. Clearly,
Xij is a polytope, since both Xi and Xk are polytopes
and the closed loop dynamics is piecewise affine. In
contrast, (26) has to hold for the entire extended state
space.

5.2 Relaxing the LMI conditions

Clearly, some way of relaxing the LMI conditions is de-
sireable, to reduce the conservatism resulting from tak-
ing conditions on the Lyapunov function that must be
fulfilled only in specific regions of the state space, and
converting these conditions into LMIs that by default
imply that the conditions are fulfilled for the entire
state space.
To this end, let us introduce the quadratic functions

fi(x) = x̄TFix̄; fi(x) > 0,∀x ∈ Xi (27)

Note that fi(x) < 0 is allowed for x /∈ Xi. It is then
easy to see that (23) is fulfilled, provided

P̄i − Fi � 0 (28)

Similarly, we introduce functions

gij(x) = x̄TGij x̄; gij(x) > 0,∀x ∈ Xij (29)

Then, (24) is fulfilled provided

ĀT
i P̄jĀi − P̄i +Gij ≺ 0 (30)

Let the region Xi be defined by

Eix ≥ ei ⇔ Ēix̄ ≥ 0 (31)

where Ēi =
[
Ei −ei

]
. Similarly, the region Xij

is defined by Ēij x̄ ≥ 0. The relaxations proposed in
(Rantzer and Johansson, 2000) for continuous-time dy-
namics are then given by

Fi = ĒT
i UiĒi (32)

Gij = ĒT
ijWijĒij (33)

where Ui and Wij are symmetric, non-negative matri-
ces. It appears that the same type of relaxations have
been used for distrete-time dynamics by other authors,
e.g. (Feng, 2002; Ferrari-Trecate et al., 2002).

6 Examples of PWQ Lyapunov
functions using relaxed LMI
conditions

The approach described above will next be illustrated
on a few examples.

6.1 Example 1

Consider first the simple one-state example in Hovd
et al. (2009). The system is open loop unstable

xk+1 = 1.1xk + uk (34)

and the input is constrained −2 ≤ uk ≤ 2. We con-
sider a prediction horizon of 5, and the weights Q = 10,
R = 0.1 The LQR controller is u = −1.089x. The
corresponding unconstrained region M0 is given by
−1.836 < x < 1.836, while the feasible region XF is
given by −8.722 < x < 8.722 (for the present choice
of prediction horizon). The initial partition for the
approximate solution has three regions, and the local
closed loop dynamics for each of these regions are:

Ā0 =

[
0.011 0

0 0

]
for R0 = {−1.836 ≤ xk ≤ 1.836}

Ā1 =

[
1.1 −2
0 1

]
for R1 = {1.836 ≤ xk}

Ā2 =

[
1.1 2
0 1

]
for R2 = {xk ≤ −1.836}

Using the LMI approach to find a PWQ Lyapunov
function, we find that the system is stable in closed
loop, although both region 1 and region 2 have unsta-
ble local dynamics. In fact, it is easy with the LMI
approach to show stability for a larger region than the
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feasible region for the original MPC problem. Simple
inspection will show that the closed loop is stable for
−20 < x < 20. The LMI approach can prove stability
for nearly the same region of the state space - numeri-
cal problems occur when including states very close to
±20.
The importance of relaxing the LMI stability criteria
can be illustrated by Fig. 1. The figure shows the re-
laxed and unrelaxed solutions to the Lyapunov func-
tion stability criterion for states originating in region
1 and staying in region 1 at the next timestep. This
corresponds to states x > 3.487. It can be observed
that although the unrelaxed solution fulfills the crite-
rion (24) for the relevant part of the state space, the
LMI condition (26) fails to hold globally. In contrast,
the relaxed solution fulfills (30) over the entire state
space. The relaxation makes the criterion (30) harder
to fulfill (reduces the decrease of the Lyapunov func-
tion) inside the region in question (here, the region
3.487 < x < 20) while it makes the criterion easier to
fulfill outside the region. We are using quadratic Lya-
punov functions. Hence, since the unrelaxed solution
fulfills (24) locally, but fails to hold globally, it is nec-
essarily convex. In contrast, the relaxed solution has
to be concave in order to hold globally.

−20 −15 −10 −5 0 5 10 15 20
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Relaxed solution
Unrelaxed solution

Figure 1: Relaxed and unrelaxed Lyapunov function
stability criteria for Example 1, for states
originating in region 1 and staying in re-
gion 1. The unrelaxed Lyapunov function
is given by x̄T

(
ĀT

1 P̄1Ā1 − P̄1

)
x̄ (the LHS

of (26)), while the relaxed Lyapunov func-
tion is x̄T

(
ĀT

1 P̄1Ā1 − P̄1 +G11

)
x̄ (the LHS

of (30)). The criteria are here evaluated for
x̄ = [x 1]T . The unrelaxed solution holds
for the required region x > 3.487, while the
relaxed solution holds globally.

It should be mentioned that the exact explicit MPC

solution for this problem (with a prediction horizon of
5) has 11 regions for the feasible region −8.722 ≤ x ≤
8.722. Extending the exact solution to give a larger
feasible region will require significantly increasing the
prediction horizon and correspondingly increasing the
number of regions for the size of the feasible region to
approach the maximal stabilizable region. Subsequent
postprocessing of the exact solution allows reducing the
number of regions to 3.

6.2 Example 2

We consider the same system as the one studied in
(Scibilia et al., 2009; Hovd et al., 2009).

A =

[
1 1
0 1

]
B =

[
1

0.3

]
with constraints

− 2 ≤ uk ≤ 2[
−5
−5

]
≤ xk ≤

[
5
5

]
The weight matrices used are Q = I and R = 1,
whereas the prediction horizon n = 15 is used. In
(Scibilia et al., 2009) it is found that the exact solution
requires 101 regions. Proceeding with the approximate
MPC, we obtain an initial partition of the state space
with 33 regions (including M0). Merging regions where
the controllers are identical, we can reduce the number
of regions to 17. Using the LMI approach, closed loop
stability is proven.

In order to compare this direct result with previous
approaches, we mention that starting from the initial
tessellation with 33 regions, and using the approximate
cost function as a Lyapunov function, it was found in
Hovd et al. (2009) that the tessellation had to be fur-
ther refined, ending up with 53 regions in order to prove
stability. Postprocessing the resulting solution allowed
reducing the number of regions to 17, resulting in the
same solution that was proven stable in a more direct
way using the LMI approach. Finally, it should be
mentioned that for the exact explicit MPC, we were
only able to reduce the number of regions to 53 by
post-processing the solution.

6.3 Example 3

This example is a slight modification of an example in
(Hovd and Braatz, 2001). The system is described by

xk+1 = Axk +Buk

yk = Cxk
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with

A =

 2 −1.45 0.35
1 0 0
0 1 0


B =

 1
0
0


C =

[
−1 0 2

]
The input constraints are given by −2 ≤ uk ≤ 2,
whereas the output constraints are −1 ≤ yk ≤ 1.
The MPC prediction horizon is 10, and the weights
are Q = CT ∗ C and R = 2. Note that the plant
has transmission zeros at z = ±1.4142, and these also
enter the MPC problem (despite assuming state feed-
back) through the particular choice of state weight and
through the output constraint.
The initial tessellation of the state space results in 199
regions. Through merging, the number of regions can
be reduced to 147. After merging, there are 1478 tran-
sitions between regions (including ’transitions’ where
i = j). Using the LMI approach described above fails
for this case. The LMI constraint (28) fails for 86 re-
gions and the constraint (30) fails for 1353 transitions
between regions. Further refining the partitioning of
the state space seems futile, given that the LMI condi-
tions fail for such a high number of regions and tran-
sitions between regions. This result shows the limi-
tations of the stability analysis applied. However, if
an improved relaxation of the LMI conditions can be
found, the LMI approach may nevertheless be of use
for the present example. The next section describes
the construction of such an improved relaxation in a
general PWA framework.

7 A novel LMI relaxation

7.1 Construction of an improved LMI
relaxation

From (28) and (30) it is clear that we only need the
relaxations (fi(x) and gij(x)) to be positive within spe-
cific polytopes. Outside those polytopes the functions
may be negative, and may thereby make it easier to
find a valid solution to the LMIs. The relaxations (32)
and (33) do fulfill these requirements, and have proven
effective for problems of modest size. However, the
resulting relaxation functions are somewhat arbitrary,
and there is a possibility that more careful specifica-
tion of the functional form of the relaxations can be
beneficial.
A reasonable choice for a relaxation would seam to
be a concave quadratic function centered in a point

contained in the interior of the polytope considered.
Clearly, the quadratic function should be positive over
the polytope. Thus, a reasonable relaxation function
would appear to be

h(x) = (x− x0)TH(x− x0) + c (35)

where H is a symmetric negative definite matrix and c
is a scalar that is sufficiently large to make h positive
for the entire polytope. Clearly, the relaxation function
reaches its maximum at (is ’centered on’) x = x0.
The function h(x) in (35) may equivalently be ex-
pressed as

h(x) = x̄T
[

H −Hx0
−xT0H xT0Hx0 + c

]
x̄ = x̄T

[
H̄i + C̄

]
x̄

(36)
with

H̄ =

[
H −Hx0
−xT0H xT0Hx0

]
C̄ =

[
0 0
0 c

]
Thus, H̄ can be chosen as any symmetric negative defi-
nite matrix, provided we add the additional constraints
that h(x) ≥ 0 at all the vertices of the polytope in ques-
tion.
Remark: From the explanation above, it follows that
it is actually only H that should be negative definite.
The Scur complement of H̄ is

xT0Hx0 − xT0H(H)−1Hx0 = 0

and thus H̄ should be negative semi-definite. However,
a simple reformulation of (36) gives

h(x) = x̄T
[
H̄ + C̄

]
x̄ = x̄T

[(
H̄ + C̄a

)
+ C̄b

]
x̄ (37)

Thus, we can ’move part of the constant c into H̄’, to
make H̄+C̄i,a semi-definite. The non-negativity at the
vertices and the concavity of the relaxation function
then ensures that the relaxation is of the correct form.

7.2 Example 3 revisited

Next, we consider again example 3, with the alterna-
tive relaxation formulation. Of the 147 regions and
1478 transitions between regions, the relaxed solution
now fails to fulfill the criteria only for 4 transitions
between regions. Closer inspection shows that these
’transitions’ actually represent the state staying in the
same region, i.e., ’transitions’ where i = j. Inspecting
the four regions in question, it turns out that each of
them has a fixed point inside the region. This hap-
pens even though the input in within each region cor-
responds to linear interpolation between the inputs at
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the vertices of the (simplicial) region, and the input at
each vertex being the optimal input for an MPC for-
mulation with guaranteed closed loop stability. With
the new relaxations attention is thus effectively focused
on the regions where the control was inadequate.
It is next observed that the fixed points occur pairwise
in adjacent regions. For each pair of adjacent regions
with fixed points, an additional point for tessellation
was added on the interface between the regions, on the
line connecting the fixed points. This resulted in a total
of 155 regions and 1768 transitions between regions.
With this refined tessellation, the closed loop system
is found to be stable.
For comparison, the (exact) optimal solution contains
472 regions. Merging regions with identical controllers,
the number of regions could be reduced to 274. In
Fig. 2 the closed loop behavior of the optimal and ap-
proximate controllers are shown, both starting from

the point x0 =
[

0.98 0.98 0.98
]T

. It can be seen
that both controllers respect the constraint y ≤ 1, and
the difference in performance is minor.
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Figure 2: Comparison of the response with the optimal
and approximate controller for Example 3.

8 Conclusions

In this paper, a PWQ Lyapunov function is used to
prove the stability of approximate explicit MPC. The
PWQ Lyapunov functions are calculated using LMIs.
It is illustrated how the approximate solution can be
refined for regions where the LMI conditions are not
fulfilled. A novel LMI relaxation is proposed, and is
shown to be effective for a large and complex case that
could not be handled with the conventional relaxation.
This new relaxation is applicable to LMI-based stabil-
ity analysis of PWA systems in general.
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