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Abstract

The Czochralski (CZ) crystallization process is used to produce monocrystalline silicon. Monocrystalline
silicon is used in solar cell wafers and in computers and electronics. The CZ process is a batch process,
where multicrystalline silicon is melted in a crucible and later solidifies on a monocrystalline seed crystal.
The crucible is heated using a heating element where the power is manipulated using a triode for alternat-
ing current (TRIAC). As the electric resistance of the heating element increases by increased temperature,
there are significant dynamics from the TRIAC input signal (control system output) to the actual (mea-
sured) heating element power. The present paper focuses on empirical modeling of these dynamics. The
modeling is based on a dataset logged from a real-life CZ process. Initially the dataset is preprocessed
by detrending and handling outliers. Next, linear ARX, ARMAX, and output error (OE) models are
identified. As the linear models do not fully explain the process’ behavior, nonlinear system identification
is applied. The Hammerstein-Wiener (HW) model structure is chosen. The final model identified is a
Hammerstein model, i.e. a HW model with nonlinearity at the input, but not at the output. This model
has only one more identified parameter than the linear OE model, but still improves the optimization
criterion (mean squared ballistic simulation errors) by a factor of six. As there is no nonlinearity at the
output, the dynamics from the prediction error to the model output are linear, which allows a noise model
to be added. Comparison of a Hammerstein model with noise model and the linear ARMAX model, both
optimized for mean squared one-step-ahead prediction errors, shows that this optimization criterion is
42% lower for the Hammerstein model. Minimizing the number of parameters to be identified has been
an important consideration throughout the modeling work.

Keywords: Czochralski Crystallization Process, Empirical Modeling, Hammerstein-Wiener Model, Heat-
ing Element, Nonlinear System Identification.

1 Introduction

The Czochralski (CZ) crystallization process was in-
vented by the Polish scientist Jan Czochralski in 1916.
The process is used to convert multicrystalline materi-
als into monocrystalline materials, i.e. materials that
have homogeneous crystal structures. Among the most
important applications is production of monocrystalline
silicon. Monocrystalline silicon is used in solar cell
wafers and in computers and electronics. Solar cells

based on monocrystalline wafers have higher efficiency
than those based on multicrystalline wafers. Hence,
the CZ process is an important part of the solar cell
industry.

The CZ process is a batch process. During the pro-
cess multicrystalline silicon is melted in a crucible. The
crucible is heated using a heating element. Tight con-
trol of the crucible temperature is most important for
achieving high crystal quality. The heating element
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power is manipulated using a triode for alternating cur-
rent (TRIAC). As the electric resistance of the heat-
ing element increases with the temperature, there is
a dynamic, nonlinear relationship between the TRIAC
input signal and the heating element power.

System identification is the science of developing dy-
namic models based on observations of the process or
system to be modeled. The identified models explain
the process outputs as mathematical functions of the
process inputs.

The contribution of this paper is to model the dy-
namics from the TRIAC input signal to the heating
element power using system identification. The mod-
eling work is based on a dataset logged at a real-life CZ
process at SINTEF Materials and Chemistry in Trond-
heim, Norway. Initially, linear system identification
is used. The identified linear models reveal that the
process is nonlinear. Next the process is modeled us-
ing nonlinear system identification. Deciding a model
structure that explains the process behavior using few
parameters is emphasized. Also, providing the identifi-
cation algorithm good initial values for the parameters
to be identified is considered.

As the identified model provides a mathematical de-
scription of how the heating element power responds
to the TRIAC input signal, the model serves several
purposes. The most intuitive application is to simu-
late the power for specified sequences of the TRIAC
input signal. The model is also most useful for analyz-
ing the process’ dynamic properties. Process models
may be used to tune PID controllers. As the process is
nonlinear, it may be desirable to use gain scheduling.
The nonlinear process model contains information of
which PID parameters to use for each interval in the
gain scheduling scheme. If more advanced model-based
control strategies are to be applied, such as model pre-
dictive control (MPC), process models are most im-
portant. In case of a power sensor failure, the model
may be used to simulate the power for the purpose of
process monitoring and control.

The literature of system identification is extensive.
Among the most well-known books is Ljung (1999).
This book gives a comprehensive introduction to sys-
tem identification. Both theoretical and practical as-
pects are covered. Ljung (1999) also serves as an overview
of the system identification literature.

Lee et al. (2005) presents an approach for batch-to-
batch optimization of the CZ process, which includes
model-based control. The paper includes two simple
dynamic models empirically developed from step re-
sponses. However, these models cover different parts of
the CZ process than the present paper. Except for Lee
et al. (2005), the authors of the present paper have not
been successful in finding any publications that present

results within empirical modeling of the CZ process.
Several papers with focus towards mechanistic (first
principle) modeling of the CZ process have been found.
However, none of these papers seem to have validated
the mechanistic models against datasets from real-life
processes.

The authors have searched for literature covering
modeling of heating element dynamics in general. Un-
fortunately, no interesting results were found.

2 Notations and Definitions

Table 1 presents the notations used in this paper. A
variable with subscript k refers to the variable’s value
at timestep k. For example Pk refers to the heating
element power at timestep k. Subscript “nom” refers
to the variable’s nominal value. The operating point
(snom, Pnom) is defined to be a steady state operating
point.

Polynomials to be used in linear polynomial models
are defined as

A(q) def= 1 +
na∑
i=1

aiq
−i, (1)

B(q) def=
nb∑
i=1

biq
−i, (2)

C(q) def= 1 +
nc∑
i=1

ciq
−i, (3)

F (q) def= 1 +
nf∑
i=1

fiq
−i. (4)

The parameters ai, bi, ci, and fi are to be identified
using system identification. The constants na, nb, nc,
and nf are to be specified to the system identification
algorithm. There is a time delay of one sample in the
dataset to be used in this paper. For processes with-
out any time delay, the lower summation limit of B(q)
should be 0 instead of 1. The A(q), C(q), and F (q)
polynomials are defined as above in any case.

The linear polynomial models that will be considered
in this paper are based on the ARX model structure

A(q)yk = B(q)uk + ek, (5)

the ARMAX model structure

A(q)yk = B(q)uk + C(q)ek, (6)

and the output error (OE) model structure
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Table 1: Notations used in this paper.

e(θ) One-step-ahead prediction error.
k Index referring to sample number in

the dataset.
N The total number of samples in the

dataset.
P Actual (measured) power to the

heating element [kW].
Pnom Nominal power to heating element

[kW] (see main text for explana-
tion).

∆P Actual (measured) power to the
heating element [kW] as deviation
from the nominal power, i.e. ∆P =
P − Pnom.

q The time-shift operator defined by
xk+1 = qxk and xk−1 = q−1xk.

s TRIAC input signal [%] (output
from control system).

snom Nominal TRIAC input signal [%]
(see main text for explanation).

∆s TRIAC input signal [%] as deviation
from the nominal input signal, i.e.
∆s = s− snom.

t Time [s], relative to beginning of the
CZ batch.

u System input for a general system.
V (θ) Criterion to be optimized when us-

ing the system identification method
PEM. This criterion is based on bal-
listic simulation errors. Please refer
to Section 4 for further explanation.

W (θ) Criterion to be optimized when us-
ing the system identification method
PEM. This criterion is based on one-
step-ahead prediction errors. Please
refer to Section 4 for further expla-
nation.

y System output for a general system.
ε(θ) Ballistic simulation error.
θ A vector containing the parameters

to be identified using PEM. Please
refer to Section 4 for further expla-
nation.

yk =
B(q)
F (q)

uk + εk. (7)

The term noise model refers to the dynamics from
the one-step-ahead prediction error, e, to the system
output, y. Solving (5) and (6) with respect to yk shows
that the noise models of ARX and ARMAX are 1/A(q)
and C(q)/A(q), respectively. The OE model has no
noise model. Model structures having noise models,
such as ARX and ARMAX, are suitable for n-step-
ahead predictions, because the noise models correct the
model states when there are errors between the mea-
sured process outputs and the simulated model out-
puts. Model structures having no noise model, like
OE, are only suitable for ballistic simulations, not n-
step-ahead predictions.

The term input-output model will be used to refer to
the dynamics from the system input, u, to the system
output, y. With respect to the input-output model,
A(q) of the ARX and ARMAX model structures is
equivalent to F (q) of the OE model structure.

Text written in teletype font refers to MATLAB
commands, for example pem.

3 The Czochralski Crystallization
Process

The Czochralski (CZ) crystallization process is used to
convert multicrystalline materials into monocrystalline
materials. The process considered in this paper con-
verts multicrystalline silicon into monocrystalline sili-
con. Monocrystalline silicon is used in solar cell wafers
and in computers and electronics. Monocrystalline sil-
icon wafers give solar cells with higher efficiency than
multicrystalline silicon wafers.

The CZ process is a batch process of which main
steps are illustrated in Figure 1. (i) Initially multicrys-
talline silicon is melted in a crucible. (ii) When the
silicon is molten, the tip of a seed crystal is dipped
into the melt. The seed crystal is monocrystalline and
has the crystal structure that is to be produced. (iii)
When the tip of the seed crystal begins to melt, the
crystal is slowly elevated. As the crystal is lifted, the
molten silicon solidifies on the crystal. (iv) The crys-
tal grows radially and axially. The produced crystal is
referred to as an ingot. The crucible temperature and
the vertical pulling speed are used to control the in-
got diameter. Stable growing conditions are necessary
to produce high crystal quality. (v) As the final ingot
length is reached, the crystal growth is terminated by
slowly decreasing the crystal diameter to zero. During
the entire batch process, the crucible is rotated in one
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Figure 1: The main batch steps of the CZ process. Il-
lustration from Wikipedia (the illustration is
released to public domain by the copyright
holder).

direction, and the seed crystal is rotated in the other
direction.

SINTEF Materials and Chemistry in Trondheim, Nor-
way, owns and operates a real-life CZ process. At this
plant the crucible is heated using a cylinder-shaped
heating element, which encircles the crucible. The
heating element power is manipulated using a TRIAC.
This paper considers empirical modeling of the dynam-
ics from the TRIAC input signal, s, to the heating el-
ement power, P , based on a dataset logged from this
plant.

The dataset that is used for empirical modeling is
shown in Figure 2. The experiment was done with-
out the crucible mounted in the process. The figure
shows that increased s gives instantaneously increased
P . However, as the temperature increases, the elec-
tric resistance of the heating element increases, caus-
ing decreased P . As shown later in this paper, these
dynamics are nonlinear.

The authors have access to only one dataset that is
considered to be suitable for the modeling work. This
dataset will be used for model identification as well as
model validation. The authors have chosen to use the
entire dataset for both identification and validation.
The reason for not splitting the dataset into an identi-
fication section and a validation section is that s tends
to increase by time throughout the dataset. Hence,
splitting the dataset in two halves will leave a small
range of excitations in each half. As concluded in Sec-
tion 6, the process is almost linear close to an operating
point. Therefore, a large range of excitations is desir-
able to provide the identification algorithm sufficient
information about the process’ nonlinearity.

Figure 2 shows that P responds in a similar way
for any step in s. This gives confidence in that the
responses of P are caused by excitations of s, not by
process disturbances nor measurement noise. However,
as the models are not validated on independent data,
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Figure 2: The dataset to be used for system
identification.

it is most important to limit the number of parame-
ters to be identified in order to avoid overfitting. The
sampling time of the dataset is 2 seconds.

4 Prediction Error Method

System identification is the science of developing dy-
namic models based on observations of system inputs
and system outputs. There exist many different system
identification algorithms based on various mathemati-
cal approaches. This paper will be restricted to the pre-
diction error method (PEM). PEM is one of the most
used system identification approaches. When identify-
ing a model using PEM, the identification algorithm is
provided a model structure with one or more unknown
parameters to be identified. The unknown parameters
are stacked in a parameter vector θ. For example when
identifying an ARMAX model with na = 1, nb = 2,
and nc = 1 the parameter vector is

θ =


a1

b1
b2
c1

 . (8)

PEM computes the parameter vector that gives the
least difference between the real process output and
the simulated model output. What exactly is meant by
“least difference” must be specified by a mathematical
optimization criterion. This paper will consider two
different criteria:
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V (θ) def=
1
N

N∑
k=1

εk(θ)2, (9)

W (θ) def=
1
N

N∑
k=1

ek(θ)2. (10)

When optimizing for ballistic simulations, V (θ) is
used. When optimizing for one-step-ahead predictions,
W (θ) is used. In this paper, unless otherwise specified,
models with noise models are optimized with respect to
W (θ), and models without noise models are optimized
with respect to V (θ).

PEM can be used to estimate parameters in both
linear and nonlinear model structures. If the model
structure is developed based on mechanistic (first prin-
ciple) modeling of the process, the model is referred to
as a grey-box model, as it combines the principles of
black-box modeling with process knowledge.

From a mathematical point of view, PEM is an op-
timization problem of which V (θ) or W (θ) is to be
minimized with respect to θ. In most cases this opti-
mization problem must be solved iteratively. A poor
initial value of θ may cause the optimization algorithm
to be trapped in a local minimum. It is therefore desir-
able for the model developer to find good initial values.
ARX models can be identified using the ordinary least
squares (OLS) method and are therefore not at the risk
of being trapped in a local minimum.

Using system identification, models can in principle
be developed without having any knowledge of the pro-
cess at all, except for datasets of logged process inputs
and outputs. However, in practice, basic knowledge
of the process greatly helps the model developer dur-
ing data preprocessing, model identification, and model
validation.

When developing models using system identification,
one should be aware of the limitation that the model
may perform poorly outside the ranges of input and
output values of the calibration and validation datasets.
Even if the model structure has been developed using
mechanistic (first principle) modeling, the model struc-
ture is often based on assumptions or simplifications
that may not hold for larger ranges of input and out-
put values. Also the estimation error of a parameter
(the difference between the “true” parameter value and
the estimated parameter value) may have larger impact
for input and output values outside the calibration and
validation ranges.

5 Data Preprocessing

Datasets logged from real-life processes often need pre-
processing before they can be used for empirical mod-

eling and model validation. The dataset to be used in
this paper has been preprocessed in two ways: (i) data
detrending and (ii) outlier detection.

5.1 Data Detrending

The dataset to be used in this paper has been de-
trended by subtracting a steady state operating point,
(snom, Pnom), from the raw data. The detrended dataset,
∆s = s− snom and ∆P = P −Pnom, then refers to de-
viations from the steady state operating point. In par-
ticular when identifying linear models, subtracting a
steady state operating point is desirable. The resulting
linear model is then equivalent to a linearization (first
order Taylor expansion) around the operating point.

If a steady state operating point is not known to the
model developer, a commonly used approximation is
the sample means, i.e. snom = 1

N

∑N
k=1 sk and Pnom =

1
N

∑N
k=1 Pk. For this particular dataset, Figure 2 shows

that the process is very close to steady state in the
time interval t ∈ [8700, 10300]. As the dataset happens
to reveal a steady state operating point, this operat-
ing point is used for detrending, instead of the sample
means. The steady state values found are snom = 45%
and Pnom = 45kW. Please note that it is a coincidence
that snom and Pnom happen to have the same value in
the steady state operating point. This is not the case
in general.

5.2 Outlier Detection

The term outlier refers to a sample, or a segment of
samples, in the dataset that is not representative for
the process’ behavior. It is therefore desirable to ex-
clude the outliers from the dataset during model iden-
tification and model validation.

It is not trivial to decide which samples that are out-
liers. It may be intuitive to look for extreme values, i.e.
samples of which values are significantly higher or lower
than the other samples in the dataset. However, this
approach is not reliable. A sample of extreme value
may be real, while a non-extreme value may be an out-
lier. The latter case is shown for real-life industrial
data in Komperød et al. (2008).

Deciding whether a sample is an outlier or not is to
a large degree a subjective choice which requires prac-
tical knowledge of the process to be modeled. How-
ever, mathematical algorithms may be used to iden-
tify samples that are candidates for being outliers. An
approach for outlier detection presented in Komperød
et al. (2008) was used at the dataset shown in Figure 2:
A high order ARX model with na = 10 and nb = 10
was identified. Figure 3 shows the residual plot (one-
step-ahead prediction errors), e, of this model. In gen-
eral, samples having large residuals (absolute values)
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Figure 3: Residual plot of an ARX model with na = 10
and nb = 10.

and their neighbor samples are candidates for being
outliers. There are several large residuals in Figure 3.
Plotting the residuals in the same plot as the heating
element power, P , reveals that most of the large resid-
uals correspond to steps in the heating element power
(this plot is not shown). Hence, these residuals are
most likely caused by model imperfection, rather than
outliers. Only two large residuals do not correspond
to power steps. These residuals are marked by blue
arrows in Figure 3.

Figure 4 and Figure 5 show the residuals, e, and the
measured power, ∆P , zoomed in close to the residuals
marked by the left-most arrow and the right-most ar-
row in Figure 3, respectively. In Figure 4 there is one
sample in ∆P (lower subplot), which value is signifi-
cantly lower than the neighbor samples. This sample
value can not be explained by the TRIAC input signal,
s. The reason for this sample value is not known for
sure. A reasonable explanation is voltage variations
on the power grid. A voltage drop of short duration
can occur for example when starting an electric mo-
tor. Please note from the lower subplot in Figure 4
that the power does not completely restore after the
power drop. This observation strengthens the assump-
tion that a larger load on the power grid was activated.
The outlier is handled by replacing the extreme value
sample by a linear interpolation between the two neigh-
boring samples.

The residual in the upper subplot of Figure 5 is of a
different nature than the one in Figure 4. In Figure 5
there are positive residuals for two to three samples,
but no negative residual. The lower subplot shows that
the power is lifted to a higher level and does not go back
to the initial level. A reasonable explanation is that a
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Figure 4: Residuals, e, (upper) and measured power,
∆P , (lower) zoomed in at the left-most arrow
in Figure 3.
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row in Figure 3.
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Figure 6: Residual plot after handling outliers.

large load at the power grid was shut down, increasing
the grid voltage. This outlier is handled by subtracting
0.15kW from ∆P (t) ∀ t ≥ 20714s.

After the outliers were handled, a new ARX model of
the same polynomial orders was identified. The resid-
ual plot of this model is shown in Figure 6. The figure
shows that the residuals marked by blue arrows in Fig-
ure 3 are no longer present.

Figure 7 shows the dataset after being preprocessed.
This dataset will be used for linear and nonlinear sys-
tem identification in Section 6 and Section 7, respec-
tively.

6 Linear System Identification

For many processes it is not trivial to decide whether
or not the process can be approximated by a lineariza-
tion within the operating range of interest. It there-
fore makes sense to try linear models at first, as these
models are simpler than nonlinear models. Even if the
process is somewhat nonlinear, a linear model may be
useful for understanding the process’ basic dynamics,
such as model order and dominant time constant. Un-
derstanding these basic dynamics may be helpful if de-
veloping more complex, nonlinear models later.

In this section linear ARX, ARMAX, and OE models
are identified. These three model structures have iden-
tical input-output model structures, but different noise
models. The dataset to be used for system identifica-
tion is the dataset shown in Figure 7. Before identifi-
cation, the dataset has been preprocessed as explained
in Section 5.
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Figure 7: The dataset after being preprocessed. It is
now ready to be used for linear and nonlinear
system identification.

6.1 Deciding Polynomial Orders

A most important choice is how to select the polyno-
mial orders na, nb, nc, and nf in ARX, ARMAX, and
OE models. In particular when there is no indepen-
dent dataset available for model validation, the model
developer should limit the number of parameters to
identify in order to avoid overfitting. The polynomial
orders to be used in this paper will now be derived
based on the plot in Figure 7. For each positive step
in the TRIAC input signal, ∆s, the heating element
power, ∆P , does an instantaneous positive step and
then slowly decreases. The decrement will be approx-
imated as a first order response with negative gain.
There is a time delay of one sample from ∆s to ∆P .
The dynamics from ∆s to ∆P are then given on the
form

∆Pk =

b̃2q−1︸ ︷︷ ︸
step

+
−b̃1q−1

1 + a1q−1︸ ︷︷ ︸
decrease

∆sk, (11)

where b̃1 and b̃2 are temporary parameters. On the
right hand side of (11), the first term represents the
instantaneous step and the second term represents the
subsequent decrease. Equation (11) can be rewritten
as

∆Pk =
b̃2q

−1 + b̃2a1q
−2 − b̃1q−1

1 + a1q−1
∆sk. (12)

Introducing b1 = b̃2 − b̃1 and b2 = b̃2a1 gives
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∆Pk =
b1q

−1 + b2q
−2

1 + a1q−1
∆sk. (13)

This is the standard form for input-output models of
polynomial models. Hence, the chosen polynomial or-
ders for the ARX and ARMAX models are na = 1
and nb = 2. As nc of the ARMAX model is not
given, this is chosen equal to na, i.e. nc = na = 1.
Equivalent, for the OE model the polynomial orders
are nb = 2 and nf = 1. An ARX model, an ARMAX,
and an OE model were identified using these polyno-
mial orders. The identifications were performed using
the commands arx, armax, and oe of the MATLAB
System Identification Toolbox. A time-delay of one
sample was specified to the identification algorithms,
otherwise the default settings were used.

6.2 Model Validation and Discussions

Figure 8 shows ballistic simulations of the identified
ARX, ARMAX, and OE models. In general, the mod-
els give small simulation errors close to the operating
point (snom, Pnom), but give a somewhat poorer fit oth-
erwise. Notice in particular the last step at t = 22170s:
Right before the step all the model simulations are sig-
nificantly below the measured value. Right after the
step all the simulations are significantly above the mea-
sured value. However, these simple linear models catch
the basic dynamics of the process. The models may
be usable for some applications, such as model-based
PID controller tuning provided that the gain and phase
margins are chosen sufficient large.

To examine whether the input-output model struc-
ture of (13) has sufficient polynomial degrees, na, nb,
nc, and nf were all increased by one to examine whether
this improved the models’ performance. Table 2 shows
the values of the optimization criterion V (θ) of (9) for
the models used in Figure 8 and for models with higher
polynomial orders. The table reveals two interesting
results: (i) According to V (θ), the OE models perform
much better than the ARX and ARMAX models. This
is to be expected as OE is optimized for V (θ) (ballistic
simulation), while ARX and ARMAX are optimized
for W (θ) (one-step-ahead prediction). (ii) Increasing
the polynomial orders does not significantly improve
the optimization criterion. Hence, it is concluded that
the polynomial orders of (13) are sufficient. For the
ARX and ARMAX models, increasing the polynomial
orders actually gives slightly poorer performance. In
the succeeding text, only the models of lower polyno-
mial orders, i.e. rows 1, 3, and 5 of Table 2, will be
considered.

Figure 9 shows the ballistic simulation errors, ε(θ), of
the ARX, ARMAX, and OE models, i.e. the difference
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Figure 8: Ballistic simulations using the ARX model
(na = 1, nb = 2), ARMAX model (na =
1, nb = 2, nc = 1), and OE model (nb =
2, nf = 1).

Table 2: Optimization criterion for various model
structures and polynomial orders.

Model na nb nc nf V (θ)

ARX 1 2 - - 0.106
ARX 2 3 - - 0.109
ARMAX 1 2 1 - 0.108
ARMAX 2 3 2 - 0.110
OE - 2 - 1 0.043
OE - 3 - 2 0.042
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Figure 9: Ballistic simulations error using the ARX,
ARMAX, and OE models.

between the measured data and the simulated data of
Figure 8. A horizontal curve in Figure 9 indicates that
the simulated data increase or decrease at the same
rate as the measured data. An increasing curve shows
that the simulated data increase too slowly or decrease
too fast.

For all three models there are significant steps in Fig-
ure 9 at the steps in ∆s. The most interesting result of
Figure 9 is that the simulation error of the OE model
is in general closer to zero than the other models, i.e.
has better fit according to the criterion V (θ), but at the
same time has a steeper curve in large parts of Figure 9.
In particular in the time intervals t ∈ [7116, 8076] and
t ∈ [17098, 22170] the OE model has a very steep curve
compared to the other models. Hence, it seems that
the ARX and ARMAX models explain the dynamics
of the process more accurately than the OE model,
but still give a poorer performance at ballistic simula-
tion. During one-step-ahead predictions, which ARX
and ARMAX are optimized for, the noise models han-
dle the offsets that are caused by inaccurate explana-
tion of the steps. However, as the noise models are to
no avail during ballistic simulations, the good expla-
nations of the dynamics do not fully compensate for
the poorer explanations of the steps. The OE model
on the other hand is optimized to balance these two
considerations during ballistic simulations.

For the purpose of model-based tuning of a controller
that should have a constant setpoint, i.e. constant op-
erating point, it seems reasonable to recommend the
ARX and ARMAX models over the OE model, as the
ARX and ARMAX models seem to explain the dy-
namic more accurately.

w = f(u) y = h(x)Linear
OE model

Model
input
u

Model
output
yw x

Figure 10: The Hammerstein-Wiener model structure
as defined in the MATLAB System Identi-
fication Toolbox. The model structure has
no noise model.

7 Nonlinear System Identification

Linear process models of the dynamics from ∆s to ∆P
were developed in Section 6. These models seem to
explain the process dynamics well close to an operating
point, but handle steps in ∆s somewhat poorly.

This section will focus on nonlinear system identifi-
cation of the dynamics from ∆s to ∆P . The motiva-
tion for using nonlinear system identification is that the
simulation errors of the linear models indicate that the
process is nonlinear. The dataset to be used is shown
in Figure 7. The dataset has been preprocessed as de-
scribed in Section 5. As there is no independent dataset
available for validation, an important consideration is
to limit the number of parameters to be identified in
order to avoid overfitting.

7.1 The Hammerstein-Wiener Model
Structure

There are several modeling approaches and model struc-
tures that can be used for nonlinear system identifica-
tion. In this paper a model structure referred to as
Hammerstein-Wiener (HW) will be used. The motiva-
tions for choosing the HW model structure are: (i) The
model structure is very simple and easy to understand.
(ii) Linear system theory can be applied to analyze the
models’ stability properties.

The HW model structure is something between lin-
ear and nonlinear models. The core of the HW model is
a linear model. As HW models are defined in the MAT-
LAB System Identification Toolbox, the linear model is
an OE model. The input to the OE model is processed
by a static, nonlinear function f(u). The output from
the OE model is processed by another static, nonlinear
function h(x). The HW model structure is illustrated
in Figure 10. A model having nonlinear processing of
the input only, not the output, is referred to as a Ham-
merstein model. A model having nonlinear processing
of the output only, not the input, is referred to as a
Wiener model (Ljung, 1999, 2009).

Going from linear to nonlinear system identification
gives new opportunities, but also introduces new chal-
lenges. General nonlinear model structures, such as
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the HW structure, are more flexible than linear model
structures. The flexibility comes with the price of sev-
eral parameters to be identified and several choices
where the model developer can go wrong.

For a linear OE model, the model developer’s choices
are the polynomial orders, i.e. nb and nf . When ex-
panding the linear OE model to a HW model, the
model developer must also choose which nonlinear func-
tions f(u) and h(x) to use. Typically, f(u) and h(x)
have parameters to be identified, for example satura-
tion limits or polynomial coefficients. These parame-
ters are added to the parameter vector θ, which was
introduced in Section 4. When f(u), h(x), nb, and nf

are chosen, θ is identified using PEM.

7.2 Default Settings Fail

In the MATLAB System Identification Toolbox, HW
models can be identified either from the command line
or by using the graphical user interface (GUI) of the
toolbox. Using the command line, the model developer
is forced to make explicit choices for f(u), h(x), nb,
and nf . Using the GUI, default settings are provided.
Deciding f(u), h(x), nb, and nf are most important,
but difficult, choices. It therefore may be tempting for
an inexperienced model developer to keep the default
settings of the GUI.

Figure 11 shows ballistic simulation of a HW model,
which was identified using the default settings for f(u),
h(x), nb, and nf in the toolbox GUI. Also with re-
spect to the optimization algorithm the default settings
were used. Figure 11 speaks clearly for itself: The de-
fault settings give a very poor model. Even though
this model structure has a large number of parameters
to be identified and was validated at the same dataset
that was used for identification, the model fit is very
disappointing.

The example presented in Figure 11 illustrates what
was explained above: The increased flexibility of the
general nonlinear model structures also has significant
disadvantages. In case of HW models, the model de-
veloper has to make clever choices for f(u), h(x), nb,
and nf for the modeling work to be successful. Also,
as the number of parameters to be identified increases,
the risk of the optimization algorithm to be trapped
in a local minimum increases significantly. Hence, the
model developer may also spend some effort to provide
the algorithm good initial values for the parameters to
be identified.

7.3 Deciding Input and Output
Nonlinearities

This subsection shows how examination of the dataset,
together with the linear models developed in Section 6,
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Figure 11: Ballistic simulation using the Hammerstein-
Wiener model, which was identified using
the default f(u), h(x), nb, and nf of the
GUI in the MATLAB System Identification
Toolbox.

can be used to make good choices for f(u), h(x), nb,
and nf when developing a HW model for the dynamics
from ∆s to ∆P .

The preprocessed dataset used for system identifica-
tion is shown in Figure 7. After t = 1.0 × 104 s, four
steps of ∆s occur. For each step, ∆s is increased by
5%. At first sight it seems that ∆P responds simi-
larly to each step. However, more accurate examina-
tion of the dataset reveals that the magnitudes of the
∆P steps are different for each ∆s step, even though
all ∆s steps are of the same magnitude.

To simplify notation, r [kW/%] is defined as the
magnitude of a ∆P step divided by the magnitude of
the corresponding ∆s step. Hence, r can be consid-
ered the gain of which a step in ∆s is amplified to the
corresponding step in ∆P . Please note that the instan-
taneous responses in ∆P are considered, not the steady
state values. Table 3 summarizes r for each step in ∆s
after t = 1.0 × 104 s. The table shows that the higher
values ∆s and ∆P have prior to the step, the smaller
is r.

In Section 6 it was concluded that the input-output
models of the ARX and ARMAX models explain the
dynamics of the process well, even though they handle
the steps in ∆s somewhat poorly. It is therefore rea-
sonable to base the linear OE block of the HW model
on the input-output model of the ARX model or the
ARMAX model. Hence, the polynomial orders of the
linear OE block is chosen nb = 2 and nf = 1. For the
same reason, it is also reasonable to assume that the
polynomial coefficients of A(q) and B(q) in the ARX
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Table 3: Gain, r, for each step in ∆s after t = 1.0 ×
104 s.

Step ∆s [%] Step ∆P [kW] Gain, r, [kW/%]

0.00→ 5.00 0.04→ 6.78 1.35
5.00→10.00 6.09→ 12.64 1.31

10.00→15.00 11.72→ 17.87 1.23
15.00→20.00 16.99→ 22.68 1.14

and ARMAX models are suitable as initial values for
identification of F (q) and B(q) in the linear OE block.
The ARX model is chosen for initial values, because
the ARX model has the simplest model structure and
can be identified using the ordinary least squares (OLS)
method.

The linear OE block of the HW model can not han-
dle the variable gain shown in Table 3. The variable
gain has to be handled by the input nonlinearity f(u)
and/or the output nonlinearity h(x). A reasonable ap-
proach is to consider the gain, r, as a function of ∆s
and/or ∆P . It is here chosen to consider r as a func-
tion of ∆s, i.e. r = r(∆s). This choice will lead to a
Hammerstein model (the reason for this choice is ex-
plained in Subsection 7.6). That is, f(u) will be used
to handle the nonlinearities, and h(x) will simply be
h(x) = x, or equivalent, the h(x) block in Figure 10
will be absent.

A polynomial is a reasonable choice for explaining
r as a function of ∆s. As there are four (∆s, r) pairs
in Table 3, a third order polynomial will give no resid-
ual. However, as it is important to keep the number
of parameters low, a first order polynomial is chosen.
Hence, r is written as

r(∆s) = d2∆s+ d1, (14)

where d1 and d2 are the polynomial coefficients. The
process’ behavior at each step, ignoring the general
process dynamics, can then be approximated as

∆Pk = ∆Pk−1 + r(∆sk−2)× (∆sk−1 −∆sk−2) (15)
= ∆Pk−1 + (d2∆sk−2 + d1)× (∆sk−1 −∆sk−2)

for a step that occurs in ∆s at timestep k − 1. The
response in ∆P is delayed by one sample. The last
term in (15) can be rewritten as

(d2∆sk−2 + d1)× (∆sk−1 −∆sk−2) (16)

= d2∆sk−1∆sk−2 + d1∆sk−1 − d2∆sk−2
2 − d1∆sk−2.

This equation gives a hint of how f(u) could be cho-
sen: The term ∆sk−1∆sk−2 can not be included in
f(u), because f(u), according to the definition of the
HW model structure, should be a static function of u.
Hence, one of these approximations must be chosen:
∆sk−1∆sk−2 ≈ ∆sk−2

2 or ∆sk−1∆sk−2 ≈ ∆sk−1
2.

Using the first approximation, the term d2∆sk−2
2 will

cancel in (15). Hence, r(∆sk−2) will be equal to the
constant d1, which is in conflict with the intention of
choosing r(∆s) as a function of ∆s. Using the other
approximation, ∆sk−1∆sk−2 ≈ ∆sk−1

2, makes sense.
Define f(∆s) as

f(∆s) def= d2∆s2 + d1∆s. (17)

Using this definition and this approximation, (15) can
be rewritten as

∆Pk = ∆Pk−1 + f(∆sk−1)− f(∆sk−2). (18)

Although this derivation is based on some rough ap-
proximations, it will be shown shortly that f(∆s) as
defined in (17) is a good choice for the Hammerstein
model to be identified.

For the chosen polynomial orders of the linear OE
block, i.e. nb = 2 and nf = 1, the model structure to
be used in this block is on the form

∆Pk + f1∆Pk−1 = b1wk−1 + b2wk−2, (19)

where w is the output from the input nonlinearity block
as illustrated in Figure 10. In order to handle the pro-
cess’ nonlinearity, the OE model of (19) is extended to
a Hammerstein model by replacing wk−1 and wk−2 by
f(∆sk−1) and f(∆sk−2), respectively. The Hammer-
stein model is then written as

∆Pk + f1∆Pk−1 = b1f(∆sk−1) + b2f(∆sk−2) (20)

= b1(d2∆sk−1
2 + d1∆sk−1)

+ b2(d2∆sk−2
2 + d1∆sk−2).

Now the desired model structure for the Hammer-
stein model has been developed. Subsections 7.4 and
7.5 consider how to identify the model parameters.

7.4 Computing Initial Values

For most model structures the PEM method uses an
iterative optimization algorithm to compute the pa-
rameter vector θ. Such algorithms are generally at the
risk of being trapped in a local minimum. The model
developer may try to find good initial values for the
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parameters to be identified, or he can try the iterative
algorithm directly, hoping it will not be trapped in a
local minimum. This subsection presents a suggestion
for how to estimate good initial values for the param-
eters of the model (20).

The first issue is to estimate d1 and d2. Equation
(20) can be written on vector form as

∆Pk + f1∆Pk−1 (21)

=
[
b1∆sk−1

2 + b2∆sk−2
2

b1∆sk−1 + b2∆sk−2

]T [
d2

d1

]
,

where b1, b2, and f1 are the parameters identified in
the linear ARX model in Section 6 (a1 of the ARX
model corresponds to f1 in (21)).

For each row in Table 3, a row in (21) is defined. This
gives a linear, over-determined set of four equations
with two unknown. Equation (21) is then solved for
[d2d1]T using the ordinary least squares (OLS) method.
Figure 12 shows ballistic simulation of the Hammer-
stein model of (21) compared to the ARX model iden-
tified in Section 6. The Hammerstein model performs
significantly better than the ARX model in terms of
the optimization criterion V (θ). The Hammerstein
model has V (θ) = 0.045, while the ARX model has
V (θ) = 0.106. As the polynomial coefficients b1, b2,
and f1 (a1 for the ARX model) are identical for the
ARX model and the Hammerstein model, the improve-
ment of the Hammerstein model can only be explained
by the replacement of ∆s in favor of f(∆s) and the es-
timation of d1 and d2. The Hammerstein model gives
confidence in that the chosen model structure is well
suited for explaining the process’ behavior.

As good estimates of d1 and d2 are available, the
parameters b1, b2, and f1 will now be re-identified.
That is, d1 and d2 in (20) are considered fixed, and
b1, b2, and f1 are identified using linear system iden-
tification. During this identification step, the system
input is f(∆s) = d2∆s2 +d1∆s and the system output
is ∆P . Please note that even if linear system identifi-
cation is used, the identified model is a Hammerstein
model, because the input to the linear model is f(∆s),
not ∆s. Figure 13 shows Hammerstein models opti-
mized this way using ARX and OE, respectively. These
optimizations give significant improvements compared
to the Hammerstein model of Figure 12. The optimiza-
tion criterion is V (θ) = 0.024 for the ARX-optimized
model and V (θ) = 0.008 for the OE-optimized model.

Although the OE-optimized model gives by far the
best V (θ), the ARX-optimized model has a significant
advantage: As ARX models can be identified using the
ordinary least squares (OLS) method, all steps in iden-
tification of the ARX-optimized model can be solved
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Figure 12: Ballistic simulation of the Hammerstein
model of (21) after estimating d1 and d2.
The parameters b1, b2, and f1 are identical
to the ARX model identified in Section 6.
The model is compared to measured process
data and the ARX model.
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Figure 13: Ballistic simulations of Hammerstein mod-
els that are optimized with ARX and OE,
respectively.
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using OLS, involving no iterative optimization algo-
rithms that are at the risk of being trapped in a local
minimum. This also means that the ARX-optimized
Hammerstein model can be identified by model devel-
opers not having the MATLAB System Identification
Toolbox or other optimization software.

Figure 13 and the optimization criterion V (θ) show
that the OE-optimized Hammerstein model fits the
measured data very well. Hence, finding good initial
values to be used in an iterative optimization algorithm
has been successful.

7.5 Final Estimation

The final step of the nonlinear system identification
work is to estimate all the parameters simultaneously
using an iterative optimization algorithm. In Subsec-
tion 7.4, good initial values for the optimization algo-
rithm were estimated.

A reasonable approach for identifying the final Ham-
merstein model is to use the function nlhw in the MAT-
LAB System Identification Toolbox. Using this func-
tion, it can be specified that f(∆s) should be a second
order polynomial, and that there should be no output
nonlinearity. Also nb and nf can be specified. How-
ever, to the authors’ knowledge, there is no way to
force the constant term of the second order polynomial
in f(∆s) to be zero. In order words: f(∆s) will be
on the form f(∆s) = d2∆s2 + d1∆s + d0, where d0 is
a constant. Hence, an additional parameter, d0, has
been introduced. This is unfortunate with respect to
avoid overfitting.

A tailor-made workaround, which avoids the undesir-
able parameter d0, will be presented shortly. However,
the first consideration is whether the model structure
of (20) has the smallest possible number of parameters
to be identified. The following parameters are defined

b̃2
def=

b2
b1
, (22)

d̃1
def= b1d1, (23)

d̃2
def= b1d2. (24)

Using these definitions, (20) can be rewritten as

∆Pk + f1∆Pk−1 = d̃2∆sk−1
2 + d̃1∆sk−1 (25)

+ b̃2(d̃2∆sk−2
2 + d̃1∆sk−2).

Hence, (20) can be rewritten with one less parameter.
The parameters that are to be identified are b̃2, d̃1, d̃2,
and f1.

The simplest solution the authors have found to iden-
tify the parameters in exactly the form of (25) is to

w = f(u) Linear OE
model

Model
input, u

Model
output, yw

Figure 14: Block diagram of the final Hammerstein
model.

use the functions idgrey and pem in the MATLAB
System Identification Toolbox. These functions allow
identification of arbitrary parameters in a linear state
space model. Please refer to Ljung (2009) for a detailed
explanation of these functions. Equation (25) can be
rewritten to a discrete time state space model as

[
x1

k+1

x2
k+1

]
=

[
−f1 b̃2
0 0

] [
x1

k

x2
k

]
(26)

+
[
d̃2 d̃1

d̃2 d̃1

] [
∆sk

2

∆sk

]
,

∆Pk =
[

1 0
] [ x1

k

x2
k

]
+ εk.

In (26) the ballistic simulation error, ε, is added to
emphasize that the model has no noise model. When
the parameters b̃2, d̃1, d̃2, and f1 have been identified,
the model can be rewritten to a Hammerstein model
with an OE model as its linear block

∆Pk + f1∆Pk−1 = f(∆sk−1) + b̃2f(∆sk−2) (27)
+ εk,

where

f(∆s) = d̃2∆s2 + d̃1∆s. (28)

Figure 14 shows a block diagram of this final Hammer-
stein model.

The ballistic simulation of the final model is shown in
Figure 15, and the ballistic simulation error is shown
in Figure 16. The optimization criterion is V (θ) =
0.007. This is only a slight improvement over the OE-
optimized model of Figure 13. The optimization al-
gorithm used only three iterations to reach the final
model. Hence the parameters of the OE-optimized
model must have been very good initial values.

It was also tested whether poorer initial values led
to the same parameters. When all initial values were
set to zero, the optimization algorithm finds the same
parameters as for the good initial values. Hence, in
this case the work of estimating good initial values did
not improve the final model. However, it is interesting
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Figure 15: Ballistic simulation of the final Hammer-
stein model.
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Figure 16: Ballistic simulation error of the final Ham-
merstein model.

to notice that the optimization algorithm used three
iterations when having good initial values, and 17 iter-
ations when having zeros as initial values.

Comparing the final Hammerstein model with the
linear OE model identified in Section 6 shows that V (θ)
was reduced by a factor of six when extending the linear
OE model to a Hammerstein model. This extension
includes only one additional parameter (the number of
parameters to be identified is increased from three to
four).

7.6 Noise Model

The HW model structure as defined in the MATLAB
System Identification Toolbox has no noise model. This
is reasonable as the output nonlinearity would signifi-
cantly complicate the noise model, because there would
be nonlinear dynamics from the one-step-ahead predic-
tion error, e, to the model output, y.

The lack of noise model makes the HW model struc-
ture less suitable for some applications, such as (i)
state estimation, (ii) measurement noise filtering us-
ing Kalman filter, and (iii) model predictive control
(MPC).

In Subsection 7.3 the authors made the explicit choice
of explaining the process nonlinearity using the input
nonlinearity f(u), instead of the output nonlinearity
h(x). This choice kept the door open to later replace
the linear OE block of Figure 14 with a linear model
structure having a noise model. By not applying a
nonlinearity at the model output, the dynamics from
the prediction error, e, to the model output, y, will be
linear.

The state space model of (26) can easily be extended
with a noise model

[
x1

k+1

x2
k+1

]
=

[
−a1 b̃2
0 0

] [
x1

k

x2
k

]
(29)

+
[
d̃2 d̃1

d̃2 d̃1

] [
∆sk

2

∆sk

]
+
[
k1

0

]
ek,

∆Pk =
[

1 0
] [ x1

k

x2
k

]
+ ek,

where k1 is the Kalman filter gain. The parameters a1,
b̃2, d̃1, d̃2, and k1 of (29) were identified using idgrey
and pem. The parameter f1 of (26) has been replaced
by a1, because (29) can be rewritten to a Hammerstein
model with an ARMAX model as it linear block

∆Pk + a1∆Pk−1 = f(∆sk−1) + b̃2f(∆sk−2) (30)
+ ek + c1ek−1,
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w = f(u)

Linear ARMAX
modelModel

input, u

Model
output, y

w

Prediction 
error, e

Figure 17: Block diagram of the final Hammerstein
model extended with a noise model.

where

f(∆s) = d̃2∆s2 + d̃1∆s (31)

and

c1 = a1 + k1. (32)

Figure 17 shows a block diagram of the Hammerstein
model of (30). This Hammerstein model has V (θ) =
0.032, which is significantly poorer than the model of
(27). This is because the model of (30) is optimized for
W (θ) (one-step-ahead prediction), while the model of
(27) is optimized for V (θ) (ballistic simulation). This
result is similar to the result of Table 2, where the
ARX and ARMAX models perform poorer than the
linear OE model at ballistic simulation.

Figure 18 shows the one-step-ahead prediction error,
e, for the linear ARMAX model identified in Section 6
with na = 1, nb = 2, and nc = 1 (upper subplot) and
for the Hammerstein model of (30) (lower subplot).
The figure shows that the largest peaks are consider-
ably smaller for the Hammerstein model. The one-
step-ahead prediction optimization criterion is W (θ) =
3.1 × 10−4 for the ARMAX model and W (θ) = 1.8 ×
10−4 for the Hammerstein model, i.e. 42% lower for the
Hammerstein model.

8 Model Weaknesses

The Hammerstein model of (27) gives very good model
fit to the identification dataset, even with a small num-
ber of identified parameters. This strongly indicates
that the identified model explains the process’ true
input-output behavior. If the measured power, P , was
significantly influenced by random process disturbances
and measurement noise, it is very unlikely that a model
with few parameters would give a good fit, even to the
identification dataset.

Even though the model explains the process input-
output behavior well for the dataset used in this pa-
per, it is not known whether the model will perform
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Figure 18: One-step-ahead prediction error, e, of the
linear ARMAX model identified in Section 6
(upper) and the Hammerstein model of (30)
(lower).

this good on datasets with a significantly different fre-
quency content in the input signal. Further, it is not
known whether the model will perform well on datasets
of which ∆s is significantly higher or lower than in the
dataset used in this paper.

9 Further Research

The Hammerstein model identified in this paper is a
black-box model in the sense that it explains how the
measured power responds to the TRIAC input signal,
but not why this happen. An interesting continuation
of this work is to develop a grey-box model of the dy-
namics from the TRIAC input signal to the power. A
grey-box model is a mechanistic model of which un-
known parameters are estimated using PEM or other
approaches for black-box modeling.

The modeling work presented in this paper is part
of a larger modeling work, which aims to model the
dynamics of the most important input / output pairs
of the CZ process using black-box and grey-box mod-
eling. Next these models are to be used for improving
monitoring and control of the CZ process.

10 Conclusions

This paper considered empirical modeling of the dy-
namics from the TRIAC input signal to the actual
(measured) heating element power at the Czochralski
(CZ) crystallization process. The modeling was based
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on a dataset logged from a real-life CZ process. Before
modeling, the dataset was preprocessed by detrending
the data and handling outliers. As no independent
dataset was available for model validation, it was con-
sidered most important to limit the number of param-
eters to be identified.

Initially three linear polynomial models were identi-
fied; an ARX model, an ARMAX model, and an output
error (OE) model. These models explain the process
dynamics well close to the operating point, but perform
somewhat poorer otherwise.

Because the linear models do not explain the pro-
cess behavior very well over a larger range of the in-
put signal, nonlinear system identification was used for
modeling the process. The Hammerstein-Wiener (HW)
model structure was chosen. At first, a model was iden-
tified using the default setting for HW models in the
MATLAB System Identification Toolbox GUI. How-
ever, this model has a very poor performance, and was
therefore rejected.

As the default settings of the toolbox failed, the
model structure was developed by examination of the
process’ behavior at steps in the input signal. Also
the results from linear system identification were used.
The chosen model structure is a Hammerstein model,
which has a second order polynomial as input nonlin-
earity and no nonlinearity at the output. The latter
choice was done to allow a noise model to be added to
the model.

The Hammerstein model has four parameters to be
identified, which is only one more than the linear OE
model. Still the Hammerstein model has improved the
optimization criterion (mean squared ballistic simula-
tion errors) by a factor of six compared to the linear OE
model. As the Hammerstein model has good model fit
despite few identified parameters, it is concluded that
the modeling work has been successful.

This paper also extended the Hammerstein model
with a noise model. For one-step-ahead predictions,
the optimization criterion (mean squared one-step-ahead
prediction errors) is reduced by 42% for the extended
Hammerstein model compared to the linear ARMAX
model. The extended Hammerstein model has five pa-
rameters to be identified, compared to four parameters
in the ARMAX model.
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