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Abstract

This paper focuses on the design and evaluation of a robust explicit moving horizon controller and a robust explicit
moving horizon estimator for a batch polymerization process. It is of particular interest since there are currently no
reported case studies or implementations of the explicit parametric controller/estimator for batch and polymerization
processes. In this paper we aim at achieving tight offset-free tracking of a desired reactor temperature profile,
making accurate states estimation despite of the possible perturbations, and demonstrating the practical applicability
to a case with industrially relevant complexity.
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1 Introduction

Polymer manufacture is one of the most important indus-
tries worldwide, and is constantly growing in sales vol-
ume. Estimations showed that polymer consumption in de-
veloped and developing countries increases in proportion
to their gross national products. However, higher energy
consumption, increase of the worldwide competition, more
stringent environmental regulations and demand for lower
prices have required more efficiency from production pro-
cesses, and therefore a strong need to improve plant design,
process operability and controllability has appeared Bran-
drup et al. (2003).

Control of batch polymerization reactors is a challeng-
ing task due to the non-linear and complex dynamics (heat
transfer and fluid dynamics) and the varying operating con-
ditions of these processes. Usually, the control objective
in this type of systems is to ensure the tight tracking of a
desired reactor temperature profile despite of the possible
perturbations. The problem has already been treated with
the use of classical PID control or via dynamic optimization

methods (see Bonvin et al. (2005) and references therein).
However, the research on process systems is steadily focus-
ing on the exploitation of advanced control methods such
as Model Predictive Control (MPC) that can guarantee op-
timal performance, constraint satisfaction and robustness
(Morari and Lee (1999)). Meanwhile, current research on
MPC raises at least two problems.

The first one is the heavy on-line computational load as-
sociated with the repeated optimization idea. To address
this implementation problem, Bemporad et al. (2002b,a)
proposes a new approach, which is known as explicit MPC.
The basic idea behind explicit MPC is to take the compu-
tationally expensive optimization problem, and solve it off-
line (at the design stage). This is based on the fact that the
solution to the optimization problems can be decomposed
into polyhedral regions of the state space and within each
such region the optimal input is an affine function of the
state.. The on-line computational task therefore reduces to
identifying which of the polyhedral regions the current state
belongs to, and to apply the affine feedback (simple multi-
plication and addition) that is valid for that region. At the
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same time, all other benefits of MPC are preserved. Later
on, the idea is extended to hybrid systems (mixed logical
dynamical systems and piecewise-affine systems) which al-
low more precise description of a nonlinear model and more
realistic implementations. The resulting optimization prob-
lem is formulated as a mixed-integer problem, which is
heavily used in practice for solving problems in transporta-
tion and manufacturing: airline crew scheduling, vehicle
routing, production planning, etc. There are quite many
papers addressing the mixed-integer programming (MIP)
problem, i.e., Bemporad and Morari (1999); Grieder et al.
(2005); Baotić et al. (2006).

The second problem is on offset-free tracking, distur-
bances rejection and state estimation. Ever since the dis-
covery of explicit formulations of MPC a few years ago,
most publications in the area have considered a rather ide-
alized regulation problem. This means that the states are
all measured, the references are always zero, and persis-
tent disturbances (with a non-zero steady state component)
have not been considered. With such idealized regulation
problems, the regulation task is to bring the system states
from some given initial values to zero. However in most
of the industrial applications, e.g., the batch polymerization
case study, such idealized regulation is not applicable. In
Pannocchia and Bemporad (2006), a disturbance model and
estimator are used to achieve offset-free tracking and dis-
turbances rejection. In state estimation, one uses measure-
ments of plant outputs and knowledge of plant inputs to es-
timate the plant states, in the face of (possibly unmeasured)
disturbances and measurement noise. The classical state es-
timation strategies are the Kalman filter (when starting from
a stochastic problem description) and the Luenberger ob-
server (starting from a deterministic problem description).
Neither of these approaches are directly applicable when
there are constraints in the possible values of the states. Mo-
tivated by the enormous success of MPC, Moving Horizon
Estimation (MHE) was developed as the tool of choice for
constrained state estimation. To address the uncertain sys-
tems, robust MHE is formulated and solved in a min-max
optimization manner Sayed et al. (2002); Alessandri et al.
(2005).

The aim of this work is to design a robust explicit model
predictive controller and a robust moving horizon estima-
tor for a batch polymerization process and demonstrate the
potential benefits of these methods in such process control
problem. This is of particular interest since there are cur-
rently no reported case studies or implementations of the
explicit MPC and MHE for batch polymerization processes.

The paper is organized as follows. In Section 2, the non-
linear batch polymerization process is reviewed and two
linearized model are derived. In Section 3, the offset-free
tracking problem is constructed. A robust explicit MPC
and a robust explicit MHE are designed in Section 4 and
the combined simulation results are given in Section 5 fol-

lowed by conclusion in Section 6.

Notation. R is the set of real numbers. For a matrix A,
AT denotes its transpose, and A−1 its inverse (if exists) and
A† pseudo-inverse. The matrix inequality A > B (A > B)
means that A and B are square and symmetric and A−B
is positive (positive semi-) definite. I denotes the identity
matrix. x(k) denotes the state measured at real time k; and
x(k+ i|k) (i > 1) the state at prediction time k+ i predicted
at real time k. For positive definite matrix Q and compatible
column vector x, ‖x‖Q , xT Qx.

2 Batch polymerization process

2.1 Nonlinear model

The system under consideration is a styrene batch poly-
merization reactor, in which styrene(monomer) and toluene
(solvent) are charged with proportion 70-30 in volume, re-
spectively. The kinetic mechanism is consisted of the fol-
lowing reactions:

i) initiator decomposition,

ii) chain initiation,

iii) propagation,

iv) termination.

The kinetic parameters for the styrene polymerization are
taken from Russo and Bequette (1997); Asteasuain et al.
(2006).

I
kd

GGGGGGA 2R (initiator decomposition)

M+R
ki

GGGGGA P1 (chain initiation)

Pn +M
kp

GGGGGGA Pn+1 (propagation)

Pn +Pm

ktd
GGGGGGA Tn +Tm (termination)

Pn +Pm
ktc

GGGGGGA Tn+m (termination)

where I is the initiator, R is the radical produced by initiator
decomposition, M is the monomer species, P is the growing
polymer chain, and T is the terminated polymer chain.

The differential algebraic model obtained from the mass
energy balances is presented, Asteasuain et al. (2006).
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dI
dt

=−kdII (1a)

dM
dt

=−kpMλ0−3kdMM3 (1b)

dT
dt

=
−∆Hr

ρCp
− kpMλ0−

UA
ρcpV

(T −Tj) (1c)

dTj

dt
=

Q j

Vj
(Tj, f −Tj)+

UA
ρ jcp jVj

(T −Tj) (1d)

dM0

dt
=

1
2

ktcλ
2
0 (1e)

dM1

dt
= ktcλ

2
0 + kpMλ0 (1f)

dM2

dt
= 2ktcλ

2
0 +5kpMλ0 +3

k2
p

ktc
(1g)

λ0 =

√
2effic · kdII +2kdMM3

ktc
(1h)

Pr = kpMλ0 (1i)

x =
M1

M1 +M
(1j)

Mn = MwM

M1

M0
(1k)

Mw = MwM

M2

M1
(1l)

Pd =
Mw

Mn
(1m)

(UA) = (UA0)
A
A0

(1n)

From equations (1a)-(1h) we can calculate the mass and
energy balances of the process, while from equations (1i)-
(1n) can estimate the polymerization rate, conversion, poly-
mer number and weight, and heat transfer coefficient. The
nomenclature of the model parameters are listed in Table 1.

Table 1: Nomenclature of the model parameters

I Initiator concentration.
kdI Kinetic constant for initiator decomposi-

tion.
M Monomer concentration.
kp Kinetic constant for propagation reaction.
λ0 Global radical contration.
kdM Kinetic constant for monomer thermal de-

composition.
∆Hr Reaction enthalpy.
ρ Density.

cp Heat capacity.
T Temperature.
UA Heat transfer parameter.
V Volume of the reactor.
(UA)0 Nominal value of the parameter UA.
Tj Jacket temperature.
Q j Coolant flowrate.
Vj Jacket volume.
ρ j Jacket density.
Cp j Coolant heat capacity.
ktc Kinetic constant for termination reaction.
M0 Zeroth order moment of the polymer chain

length distribution.
M1 First order moment of the polymer chain

length distribution.
M2 Second order moment of the polymer chain

length distribution.
effic Initiator decomposition efficiency.
Pr Polymerization rate.
x Monomer conversion.
Mn Number of average molecular weight.
MwM Monomer molecular weight.
Mw Weight average molecular weight.

The nonlinear polymerization reactor model is con-
structed with gPROMS and has been made available by Pro-
cess Systems Enterprise (PSE).

Please note that in the following chapters some notations
used here may have other meanings, i.e., I and x etc. It
should not be confusing if read with context.

2.2 Linearized model

Using Euler’s method and a sampling period T s = 10 sec,
one can linearize the nonlinear gPROMS model at differ-
ent operating conditions. In this case study two operating
conditions are selected at different reaction stages, i.e., fast
heating and slow heating stages. The linearized models con-
sist of 17 states, 2 inputs and 7 outputs. However such high
order systems are too complex for explicit MPC or MHE
design. By using the Hankel SV based model reduction
routines (functioned within MATLAB), the simplified lin-
ear systems are obtained and given as below.

rclx(k+1) = A jx(k)+B ju(k), j = 0,1,
y(k) =C jx(k)+D ju(k), j = 0,1.

(2)
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The suffix j is used to differentiate the models obtained
from different operating conditions. Without loss of gener-
ality we define j = 0 corresponding to the model obtained
in the fast heating stage while j = 1 refers to the model ob-
tained in the slow heating stage. The two linearized models
are characterized with the state vector x ∈ R5, the control
input vector u ∈ R2 and the output vector y ∈ R7 (please
note only the first three outputs are measurable). For ease
of reading, the input and output vectors are produced as be-
low.

y =



Temperature
Volume
Pressure
Weight average molecular weight
Number average molecular weight
Polydispersity
Mass fraction


,

u =

[
flowrate of cold water
flowrate of hot water

]
.

The system matrices are

A0 =


1.0000 0.0000 0.0000 0.0008 0.0005
−0.0000 1.0000 0.0000 −0.0016 −0.0010

0.0019 −0.0035 0.9209 −0.0220 −0.0140
−0.0002 −0.0000 −0.0000 0.9952 −0.0030
−0.0001 −0.0000 −0.0000 −0.0030 0.9981

 ,

B0 =


0.7362 −1.8543
4.6571 −11.7302

13.6520 −34.3863
15.9037 −40.0576
10.0533 −25.3219

 ,

C0 =



−0.0012 0.0011 0.0257 −0.0129 −0.0082
0.0000 −0.0000 0.0000 −0.0000 −0.0000
−0.0062 0.0365 6.2101 −3.0651 −1.9443

1.3268 0.2950 0.0231 4.6558 −7.6294
0.8461 0.3714 0.0147 4.9739 −8.1217
−0.0012 −0.0019 −0.0000 −0.0220 0.0358
−0.0000 0.0000 −0.0000 −0.0000 −0.0000


,

D0 = 02×7.

A1 = A0,

B1 = B0

[
0.5 0
0 1

]
,

C1 =C0,

D1 = D0.

2.3 Constraints

So far we consider three types of constraints as listed in
Table 2.

Table 2: Constraints

Input constraints
0 6 u(1)6 4 kg/sec

0 6 u(2)6 4 kg/sec

Output constraints
373.15 6 y(1)6 443.15 K

50,000 6 y(3)6 200,000 Pa

Terminal constraints

80 6 y(5)6 100

0 6 y(6)6 3

0.6 6 y(7)6 1

Please note that

• the input constraints are hard constraints which can not
be violated at any time during the whole batch process;

• the output constraints ensures safety, which should be
satisfied during the whole batch process. However in
some particular circumstances, such constraints may
be relaxed Sui et al. (2009);

• the terminal constraints are used to guarantee profit.
Normally such constraints can not be satisfied before
the reaction starts or in early stages of the reaction.
This depends on how ‘optimal’ the temperature refer-
ence is and also how long the prediction horizon N is.
In this case study such terminal constraints are acti-
vated in the cost function from 12000 sec.

3 O�set-free tracking

To guarantee offset-free control of the outputs in the pres-
ence of unmeasured disturbances and/or model-plant mis-
match, the process model (2) is augmented with fictitious
integrating disturbances that are estimated, at each sampling
time, from the difference between the actual measured out-
puts and those predicted by the augmented model (Pannoc-
chia and Brambilla (2005)).

The augmented model is given as below, with D j = 02×7,
j = 0,1.

[
x(k+1)
d(k+1)

]
=

[
A j Bd
0 I

][
x(k)
d(k)

]
+

[
B j
0

]
u(k),

z(k) =
[

HC j Cd
] [ x(k)

d(k)

]
.

(3)
Provided that the augmented system is detectable, i.e.,

rank
[

I−A j −Bd
HC j Cd

]
= nx +nd , (4)
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where nx and nd are the state and disturbance dimensions,
the state and the unmeasured disturbance can be estimated
from the plant measurement by means of a steady state
Kalman filter

x̂(k|k) = x̂(k|k−1)+Lxe(k),

d̂(k|k) = d̂(k|k−1)+Lde(k),
(5)

where Lx and Ld are constant matrices that can be computed
from a discrete algebraic Riccati equation and e(k) = z(k)−
C j x̂(k|k−1)−Cd d̂(k|k−1) is the prediction error.

By combining the augmented system (3) and steady state
Kalman estimator (5), the so called “innovation form" is
obtained

[
x̂(k+1)
d̂(k+1)

]
=

[
A j Bd
0 I

][
x̂(k|k−1)
d̂(k|k−1)

]
+

[
B j
0

]
u(k)

+

[
A jLx +BdLd

Ld

]
e(k)

(6)

in which it is clear that the disturbances d̂ integrates the
prediction error.

4 Robust explicit MPC and

robust explicit MHE

4.1 Robust explicit MPC

4.1.1 Tracking problem formulation

In this section we set up the MPC tracking problem. The
augmented system is given as below. For j = 0,1

x(k+1)
d(k+1)
s(k+1)

=

A j Bd 0
0 I 0
0 0 I

x(k)
d(k)
s(k)

+
B j

0
0

u(k),

z(k) =
[

HC j Cd −I
] x(k)

d(k)
s(k)

 ,
(7)

where s is the reference signal.

It’s clear that if (7) can be stabilized the integral of d
will go to zero (removing unmeasured disturbances and/or
model-plant mismatch), and z go to zero (tracking).

4.1.2 Hybrid system description

To robustly stabilize system (7) for j = 0,1, we introduce
the following hybrid system description in this case study.x(k+1)

d(k+1)
s(k+1)

=

A0 Bd 0
0 I 0
0 0 I

x(k)
d(k)
s(k)

+
B0

0
0

u(k),

z(k) =
[

HC0 Cd −I
] x(k)

d(k)
s(k)

 ,
α(k) =

{
0.5 if y(1)6 86,

1 if y(1)> 86.

(8)

The hybrid system (8) switches between two operating
modes, according to different value of α . Mode transitions
can be triggered by variables crossing specific thresholds
(state events), by the elapse of certain time periods (time
events), or by external inputs (input events). In this case
it is triggered by the measured temperature. For imple-
mentation one can use HYbrid System DEscription Lan-
guage (HYSDEL) to efficiently construct the hybrid model.
HYSDEL is a modeling language to describe discrete hy-
brid automata (DHA) models. The HYSDEL description
is an abstract modeling step. The associated HYSDEL
compiler then translates the description into several com-
putational models, in particular into mixed logical dynam-
ical systems (MLD) and piecewise-affine systems (PWA)
form. For more details please refer to Torrisi and Bempo-
rad (2004).

4.1.3 Mixed-integer programming

The robust model predictive control problem to be solved at
each time instant is given as follows

min
u

N

∑
i=1
‖z(k+ i|k)‖2

Qz +
Nc

∑
i=1
‖u(k+ i|k)‖2

R (9)

subject to (8) and constraints listed in Table 2, where N and
Nc are prediction horizon and control horizon, respectively.

Because of the parameter α(k) in (8), problem (9) is
regarded as a mixed-integer problem. One of the most
widely used methods for solving such problem is branch
and bound. Subproblems are created by restricting the
range of the integer variables. For binary variables, there
are only two possible restrictions: setting the variable to 0,
or setting the variable to 1. More generally, a variable with
lower bound lb and upper bound ub will be divided into two
problems with ranges lb to q and q+ 1 to ub respectively.
Lower bounds are provided by the linear-programming re-
laxation to the problem: keep the objective function and all
constraints, but relax the integrality restrictions to derive a
linear program. If the optimal solution to a relaxed problem
is (coincidentally) integral, it is an optimal solution to the
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subproblem, and the value can be used to terminate searches
of subproblems whose lower bound is higher.

Another popular method is branch and cut, the lower
bound is again provided by the linear-programming (LP)
relaxation of the integer program. The optimal solution to
this linear program is at a corner of the polytope which rep-
resents the feasible region (the set of all variable settings
which satisfy the constraints). If the optimal solution to the
LP is not integral, this algorithm searches for a constraint
which is violated by this solution, but is not violated by any
optimal integer solutions. This constraint is called a cut-
ting plane. When this constraint is added to the LP, the old
optimal solution is no longer valid, and so the new opti-
mal will be different, potentially providing a better lower
bound. Cutting planes are iteratively until either an integral
solution is found or it becomes impossible or too expensive
to find another cutting plane. In the latter case, a traditional
branch operation is performed and the search for cutting
planes continues on the subproblems.

Commercial code for solving MIP problem includes IB-
Mąŕs Optimization Subroutine Library OSL, CPLEX, and
XPRESS-MP by Dash. The University of Karlsruhe has a
list of 23 commercial solvers, with some comparison infor-
mation. Compass Modeling Solutions, provides an AMPL
(AT&T Mathematical Programming Language) interface to
some commercial solvers. Such interface is included in
MPT toolbox (by ETH) and Hybrid toolbox (by A. Bem-
porad) as well.

In this case study we have successfully applied the de-
scribed robust MPC on a polymerization reactor. Two lin-
earized models are obtained at different operating condi-
tions. A logical switching law is applied to interact with
these two models and together formulate a hybrid system to
approximate the nonlinear gPROMS model. Taking into ac-
count different types of constraints, the resulting MPC con-
troller receives states estimates from MHE and governs the
gPROMS model to follow an optimal temperature profile.
The simulation results are promising and are elaborated in
Section 5.

4.2 Robust explicit MHE

For linear systems with Gaussian noise, the famous
Kalman filter provides a recursive solution to the real-time
minimum-variance state estimation problem, given prior
knowledge of the distributions on the disturbances and mea-
surement noise. The Kalman filter has also been applied to
nonlinear systems in the form of the extended Kalman fil-
ter, which is based on linearization of the nonlinear model
around the current mean and covariance estimations. How-
ever, the extended Kalman filter may exhibit poor conver-
gence properties. One reason for the popularity of the
Kalman filter is that it possesses many important theoret-
ical properties such as stability.

One of the most important drawbacks of the Kalman
filter is it’s inability to account for inequality constraints.
In the presence of inequality constraints, a recursive solu-
tion to the estimation problem (such as the Kalman filter)
is unavailable. One strategy for determining an optimal
state estimate is to reformulate the estimation problem as
a quadratic program. The idea of moving horizon estima-
tion (MHE) dates back to the early 1990s, see Michalska
and Mayne (1992). MHE bypasses the problem of a contin-
uously growing observation window by considering only a
fixed amount of data. The estimations of the states are ob-
tained by solving a least square problem, which penalizes
the deviation between measurements and predicted outputs.
The basic strategy is to estimate the state using a moving
and fixed-size window of data. When a new measurement
becomes available, the oldest measurement is removed from
this window and the newest measurement is added. The
complexity of the estimation problem is bounded, there-
fore, by looking at only a subset of the available informa-
tion. MHE is popular because of its capability to incorpo-
rate nonlinearities and various constraints. Moreover, from
a computational point of view, MHE algorithms are suit-
able for practical implementation because they amount to
optimization problems of finite dimension (Ferrari-Trecate
et al. (2002)).

Another important issue is robust moving horizon esti-
mation, which handles uncertain systems (i.e., multi-model
description of a nonlinear model with each system obtained
at a different operating condition). In this section we will
discuss the robust MHE design problem. As MPC, the abil-
ity to handle inequality constraints explicitly is what makes
moving horizon estimation attractive. One reason is that in
the control area additional information on the process can
often be formulated in the form of inequality constraints.

For example, many process variables (e.g., concentra-
tion) are positive. And, in many practical situations we
are able to provide hard bounds on disturbances and state
variables based on prior information, operating experience,
and physical laws. In probabilistic terms, constraints may
be used to model random variables with truncated or state-
correlated probability densities. Constraints also allow the
use of simplified or approximate models, where the inequal-
ity constraints complete the conservation laws of interest.

Consider the following linear, time-invariant, discrete-
time uncertain system

x(k+1) = (A+δA(k))x(k)+(B+δB(k))u(k)+w(k),

y(k) = (C+δC(k))x(k)+ v(k),
(10)

where w(k) and v(k) are random variables (normally as-
sumed independent and Gaussian), representing distur-
bances on the state and measured output respectively.

The matrices δA(k), δB(k) and δC(k) are time-varying
uncertainties and are supposed to belong to the known com-
pact sets A , B and C , respectively. More specifically, the
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unknown but bounded uncertainties as follows are consid-
ered.

[δA(k) δB(k)] = D∆(k)[E F ], k = 0,1, . . . ,
δC(k) = G∆̄(k)H, k = 0,1, . . . ,

(11)

where D, E, F , G, H are known matrices, and ∆(k) and ∆̄(k)
are arbitrary contraction matrices, i.e.,

‖∆(k)‖6 1,
‖∆̄(k)‖6 1.

(12)

Next we give the robust MHE problem structure at time t,
including what we need to have, what we want to optimize
and what we expect to know during optimization.

Table 3: RMHE problem structure

Time line
| | | |

k−N−1 · · · k−1 k

Estimation x̂(k|k)

Optimizer x̂(k−N +1|k) · · · x̂(k−1|k) x̂(k|k)

Known

y(k−N +1) · · · y(k−1) y(k)

u(k−N +1) · · · u(k−1)

x̄(k−N)

At any time k = N,N + 1, . . ., the objective is to find es-
timates of the state vectors x(k−N), . . . ,x(k) on the basis
of information vector and of some “prediction" x̄(k−N) at
the beginning of the sliding window. As we have assumed
the statistics of the disturbances and of the initial state to be
unknown, a natural criterion to derive the estimator consists
in resorting to a least-squares approach. Towards this end,
the following cost function is employed.

J(k) =
∥∥∥x̂(k−N|k)− x̄(k−N)

∥∥∥2

P
+

k−1

∑
j=k−N

∥∥∥x̂( j+1|k)

− (A+δA( j))x̂( j|k)− (B+δB( j))u( j)
∥∥∥2

Q

+
k

∑
j=k−N

∥∥∥y( j)− (C+δC( j))x̂( j|k)
∥∥∥2

R

(13)

where matrices P, Q and R are assumed to be positive defi-
nite and can be regarded as design parameters.

It is worth noting that the cost (13) is a function not only
of the estimates x̂(k−N|k), . . . , x̂(k|k) but also of the uncer-
tain matrices ∆(k−N), . . . ,∆(k−1) and ∆̄(k−N), . . . , ∆̄(k−

1) Therefore, a min-max problem has to be solved.

min
x̂(k−N|k),...,x̂(k|k)

max
∆(k−N), . . . ,∆(k−1)
∆̄(k−N), . . . , ∆̄(k−1)

J(k) (14)

with ‖∆(i)‖6 1 and ‖∆̄(i)‖6 1 for i = k−N, . . . ,k.
In order to solve this min-max problem we shall refer to

the following technical lemma that summarizes some of the
results presented in Sayed et al. (2002). We will skip the
technical derivations and present two useful propositions in
Alessandri et al. (2005).

Proposition 4.1 The two expressions below are equivalent

max
∆( j)

{∥∥∥x̂( j+1|k)− (A+δA( j))x̂( j|k)

−(B+δB( j))u( j)
∥∥∥2

Q

}
,

min
λ ( j,k)>‖D′QD‖

{∥∥∥x̂( j+1|k)−Ax̂( j|k)−Bu( j)
∥∥∥2

Q(λ ( j,k))

+λ ( j,k)
∥∥∥Ex̂( j|k)+Fu( j)

∥∥∥2
}
,

where Q(λ ( j,k)), Q+QD(λ ( j,k)I−D′QD)†D′Q.

Proposition 4.2 The two expressions below are equivalent

max
∆( j)

{∥∥∥y( j)− (C+δC( j))x̂( j|k)
∥∥∥2

R

}
,

min
µ( j,k)>‖G′RG‖

{∥∥∥y( j)−Cx̂( j|k)
∥∥∥2

R(µ( j,k))

+µ( j,k)
∥∥∥Hx̂( j|k)

∥∥∥2
}
,

where R(µ( j,k)), R+RG(µ( j,k)I−G′RG)†G′R.

In the light of these two propositions, the original min-
max problem (13) can be reformulated as follows

min
x̂(k−N|k),...,x̂(k|k)

min
∆(k−N), . . . ,∆(k−1)
∆̄(k−N), . . . , ∆̄(k−1)

L(k) (15)

where

L(k) =
∥∥∥x̂(k−N|k)− x̄(k−N)

∥∥∥2

P
+

k−1

∑
j=k−N

{∥∥∥x̂( j+1|k)−Ax̂( j|k)−Bu( j)
∥∥∥2

Q(λ ( j,k))

+λ ( j,k)
∥∥∥Ex̂( j|k)+Fu( j)

∥∥∥2
}
+

k

∑
j=k−N

{∥∥∥y( j)−Cx̂( j|k)
∥∥∥2

R(µ( j,k))
+µ( j,k)

∥∥∥Hx̂( j|k)
∥∥∥2
}
.

(16)
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Figure 1: Tracking result of the explicit MPC with explicit MHE

Problem (15) can be reformed as the following equivalent
problem

min
∆(k−N), . . . ,∆(k−1)
∆̄(k−N), . . . , ∆̄(k−1)

min
x̂(k−N|k),...,x̂(k|k)

L(k) (17)

For fixed values of the Lagrange multipliers λ (k −
N), . . . ,λ (k − 1) and µ(k − N), . . . ,µ(k), cost L(k) is a
quadratic function of x̂(k−N|k), . . . , x̂(k|k), hence (17) is
a quadratic problem which can be reformulated into mp-QP
form. Then it can be solved by multi-parametric program-
ming, resulting in an explicit robust moving horizon esti-
mator.

5 Simulation results

Following the approach in Section 4.1, a robust MPC con-
troller is designed. A mixed integer program is formulated

and solved with the following design parameters.

Qy =

 100 0 0
0 0 0
0 0 0

 ; R =

[
0.01 0

0 0.01

]
;

N = 12; Nc = 3.

We also designed a robust moving horizon estimator,
considering both fast heating model and slow heating model
simultaneously. Compared to MPC and standard MHE, ro-
bust MHE has much more parameters to optimize. So N
should be chosen carefully. In this case we are using

Q =

[
100 0

0 100

]
;

R =

 10 0 0
0 1000 0
0 0 0.1

 ;

N = 2.

After running the optimization routine over λ (k −
N), . . . ,λ (k − 1), we set λ (k − N) = . . . = λ (k − 1) =
[21513,21513].
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Figure 2: Tracking error to the optimal temperature profile

Applying the robust MPC and the robust MHE on the
nonlinear polymerization reactor model described in Sec-
tion 2.1, the following simulation results are obtained,
shown in Figure 1 to Figure 3.

Entry (1,1) of Fig. 1 shows the temperature tracking
ability, with red dashed line representing the optimal tem-
perature reference, blue solid line the temperature output
from the gPROMS model, and black dotted line the esti-
mated temperature from MHE. The tracking error is de-
picted in Fig. 2, from which we can see that the maximum
tracking error is about only 1.8K (the large tracking error
around 22000 sec is because of the sudden change of opti-
mal temperature profile, therefore is not considered).

Entry (1,2) and (1,3) of Fig. 1 show the volume and
pressure outputs from the gPROMS model and their esti-
mates from MHE. The estimation error is given in Fig. 3
from which we can see that the estimation is accurate.

Entry (2,1) and (2,2) of Fig. 1 gives weight/number av-
erage molecular weight (Mw and Mn) and polydispersity and
conversion rate.

Entry (2,3) of Fig. 1 gives the inputs, blue solid line for
flow rate of cold water and green dashed line for the flow

rate of hot water.

Comparing these figures with constraints listed in Table
2, it’s clear that all constraints are respected in this case
study and the tracking performance is very good since the
tracking error is quite small. Therefore it’s safe to say that
the practical applicability of explicit MPC and MHE to a
case with industrially relevant complexity has been proved.

6 Conclusion

In this paper we proposed a combined robust model pre-
dictive control and robust moving horizon estimation ap-
proach for a batch polymerization process. Through mul-
tiparameter programming the most of the design work is
accomplished off-line, leaving on-line only the job of eval-
uating the resulting PWA functions. Offset-free tracking
and disturbance rejection ability are achieved. The simu-
lation results demonstrate the effectiveness of the proposed
approach.
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Figure 3: Estimation error of the MHE
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