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Abstract

This article describes a Matlab toolbox for parametric identification of fluid-memory models associated
with the radiation forces ships and offshore structures. Radiation forces are a key component of force-
to-motion models used in simulators, motion control designs, and also for initial performance evaluation
of wave-energy converters. The software described provides tools for preparing non-parmatric data and
for identification with automatic model-order detection. The identification problem is considered in the
frequency domain.
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1 Introduction

One approach to develop linear time-domain models of
marine structures consists of using computed hydro-
dynamic data for system identification and obtain a
parametric approximation of the Cummins equation.
If either physical-model or full-scale experiments are
available, then the mathematical model based on the
Cummins equation can be corrected for viscous effects.
These corrections can also be obtained from computa-
tional fluid dynamics. This procedure is illustrated in
Figure 1.

A great deal of work has been reported in the liter-
ature on the use of different identification methods to
approximate the fluid-memory models in the Cummins
equation. Taghipour et al. (2008) and Perez and Fossen
(2008b) provide an up-to-date review of the different

methods. In particular, the latter reference discusses
the advantages of using frequency-domain methods for
the identification of fluid-memory models. The data
provided by hydrodynamic codes is in the frequency
domain; therefore, frequency-domain identification is
the natural approach to follow. This identification ap-
proach avoids transforming the data to the time do-
main, which, if not handled properly, can result in er-
rors due to the finite amount of data. More impor-
tantly, frequency-domain identification allows enforc-
ing model structure and parameter constraints. There-
fore, the class of models over which the search is done
is reduced, and the models obtained satisfy properties
that are in agreement with the hydrodynamic mod-
elling hypothesis. See Perez and Fossen (2008b) for
further details.

In this article, we present a set of Matlab functions
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Figure 1: Hydrodynamic modelling procedure.

to perform parametric identification of fluid-memory
models associated with the radiation forces of ships
and offshore structures.

We address two cases. In the first case, the
infinite-frequency added mass is considered available,
and the fluid-memory model is estimated based on
the frequency-dependent added mass (including the
infinite-frequency value) and the frequency-dependent
potential damping. In the second case, the infinite-
frequency added mass is considered unavailable, and
it is estimated together with the fluid-memory model.
That is, the complete radiation-force model is esti-
mated. For the second case, we follow the approach
proposed by Perez and Fossen (2008a). The second
case is relevant for data of hydrodynamic codes based
on 2D-potential theory since these codes do not nor-
mally solve the boundary-value problem associated
with the infinite frequency.

2 Dynamics of Ships and Offshore
Strucutres

The linearised equation of motion of marine structures
can be formulated as

MRB ξ̈ = τ . (1)

The matrix MRB is the rigid-body generalised
mass. The generalised-displacement vector ξ ,
[x, y, z, φ, θ, ψ]T gives the position of the vessel with re-
spect to an equilibrium frame (x-surge, y-sway, and z-
heave) and the orientation in terms of Euler angles (φ-
roll, θ-pitch, and ψ-yaw). The generalised force vector

τ , [X,Y, Z,K,M,N ]T gives the respective forces in a
body-fixed frame (X-surge, Y -sway, and Z-heave) and
the moments about the axis of the body-fixed frame
(K-roll, M -pitch, and N -yaw). This generalised-force
vector can be separated into four components:

τ = τ rad + τ visc + τ res + τ exc. (2)

The first component corresponds to the radiation forces
arising from the change in momentum of the fluid due
to the motion of the structure and the waves gener-
ated as the result of this motion. The second compo-
nent corresponds to forces due to fluid-viscous effects
(skin friction and vortex shedding). The third compo-
nent corresponds to restoring forces due to gravity and
buoyancy. The fourth component represents the exci-
tation pressure forces due to the incoming waves and
other forces used to control the motion of the vessel.

Cummins (1962) used potential theory (ideal fluid,
no viscous effects) to study the radiation hydrodynamic
problem in the time-domain, and found the following
representation:

τ rad = −A∞ ξ̈ −
∫ t

0

K(t− t′)ξ̇(t′) dt′. (3)

The first term in (3) represents pressure forces due the
accelerations of the structure, and A∞ is a constant
positive-definite matrix called infinite-frequency added
mass. The second term represents fluid-memory effects
that capture the energy transfer from the motion of the
structure to the radiated waves. The convolution term
is known as a fluid-memory model. The kernel of the
convolution term, K(t), is the matrix of retardation or
memory functions (impulse responses).
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By combining terms and adding the linearised restor-
ing forces τ res = −Gξ, the Cummins Equation (Cum-
mins, 1962) is obtained:

(MRB +A∞)ξ̈+
∫ t

0

K(t−t′)ξ̇(t′) dt′+Gξ = τ exc, (4)

Equation (4) describes the motion of ships and offshore
structures in an ideal fluid provided the linearity as-
sumption is satisfied. This model can then be embel-
lished with non-linear components taking into account,
for example, viscous effects and mooring lines–see Fig-
ure 1.

3 Frequency-domain Models

When the radiation forces (3) are considered in the fre-
quency domain, they can be expressed as follows (New-
man, 1977; Faltinsen, 1990):

τ rad(jω) = −A(ω)ξ̈(jω)−B(ω)ξ̇(jω). (5)

The parameters A(ω) and B(ω) are the frequency-
dependent added mass and potential damping respec-
tively. This representation leads to the following
frequency-domain relationship between the excitation
forces and the displacements:

[−ω2[M+A(ω)]+jωB(ω)+G]ξ(jω) = τ exc(jω). (6)

Ogilvie (1964) showed the relationship between the pa-
rameters of the time-domain model (4) and frequency-
domain model (6) using the Fourier Transform of (4):

A(ω) = A∞ −
1
ω

∫ ∞
0

K(t) sin(ωt) dt, (7)

B(ω) =
∫ ∞

0

K(t) cos(ωt) dt. (8)

From expression (7) and the application of the
Riemann-Lebesgue lemma, it follows that A∞ =
limω→∞A(ω), and hence the name infinite-frequency
added mass.

From the Fourier transform, it also follows the
frequency-domain representation of the retardation
functions:

K(jω) = B(ω) + jω[A(ω)−A∞]. (9)

Expression (9) is key to generate data used in the iden-
tification problems that seek parametric approxima-
tions to the fluid memory term in (4).

Hydrodynamic codes based on potential theory, are
nowadays readily available to compute B(ω) and A(ω)

for a finite set of frequencies of interest—see, for exam-
ple, Beck and Reed (2001) and Bertram (2004). Hy-
drodynamic codes based on 3D-potential theory usu-
ally solve, the boundary-value problem associated with
infinite-frequency that gives A∞, whereas codes based
on 2D-potential theory do not normally solve this prob-
lem.

4 Identification of Radiation-force
Models

To implement simulations models based on the Cum-
mins equation (4), non-parametric fluid-memory mod-
els can be used. This method requires a discrete-time
approximation of the convolution integral and saving
enough past data to evaluate the convolution at each
step of the simulation. This approach can be time con-
suming and may require significant amounts of com-
puter memory as illustrated in Taghipour et al. (2008).
In addition, the non-parametric models are not amica-
ble the analysis and design of vessel motion control
systems.

One way to overcome these difficulties consists of
approximating the fluid-memory models by a linear-
time-invariant parametric model:

µ =
∫ t

0

K(t− t′)ξ̇(t′) dt′ ≈ ẋ = Â x + B̂ ξ̇

µ̂ = Ĉ x,
(10)

where the number of components of the state vector x
corresponds to the order of the approximating system
and the matrices Â, B̂, and Ĉ are constants. Note that
the above state-space approximation does not have a
feed-through term D̂ ξ̇ in the output equation. The
reason for this is that the mapping ξ̇ 7→ µ has relative
degree 1—see Perez and Fossen (2008b) and references
therein.

The approximation problem (10) can be re-casted in
the frequency domain:

K(jω) ≈ K̂(jω) = Ĉ(jωI− Â)−1B̂, (11)

where K̂(s) is matrix of rational transfer functions with
entries

K̂ik(s) =
Pik(s)
Qik(s)

=
prs

r + pr−1s
r−1 + ...+ p0

sn + qn−1sn−1 + ...+ q0
. (12)

One can estimate the transfer functions K̂ik(s) and
then obtain the state-space model (10) via canonical
realisations (Taghipour et al., 2008). The identification
problem then focus on the transfer functions K̂ik(s).

3



Modeling, Identification and Control

4.1 Identification when A∞ is Available

This problem can be formulated in terms of Least-
Squares (LS) fitting:

θ? = arg min
θ

∑
l

wl ε
∗
l εl, (13)

εl = Kik(jωl)− K̂ik(jωl,θ) (14)

where the notation ∗ indicates transpose complex con-
jugate, and wl are weighting coefficients. The non-
paramtetric model Kik(jωl) is computed via (9) using
A∞,ik and Aik(ωl) and Bik(ωl) for a for a given finite
set of frequencies ωl.

The structure of the estimate K̂ik is given by (12),
and the vector of parameters θ can be taken as

θ = [pr, ..., p0, qn−1, ..., q0]T . (15)

From hydrodynamic properties of the model under
study, it follows that the problem (13)-(14) must be
considered subject to the following constraints (Perez
and Fossen, 2008b):

K̂ik(s) has a zero at s = 0, (16)

K̂ik(s) has relative degree 1, (17)

K̂ik(s) is stable, (18)

K̂ik(s) is positive real for i = k. (19)

The optimisation problem (13)-(14) is non-linear. Two
methods can be followed to solve this problem:

1. Linearise (13)-(14), and solve a sequence of linear
LS problems using the solution of the previous it-
eration to compute the weighting coefficients wl.

2. Use the solution of the linear problem to initialise
a Gauss-Newton search algorithm.

The linearisation of (13)-(14) is due to (Levy, 1959)
and the iterative solution via a sequence of linear prob-
lems is due to (Sanathanan and Koerner, 1963):

θ̂p = arg min
θ∑

l

sl,p |Qik(jωl,θ)Kik(jωl)− Pik(jωl,θ)|2 , (20)

where
sl,p =

1

|Qik(jωl, θ̂p−1)|2
.

Note that (20) results in a Linear LS minimiza-
tion. After a few iterations (usually p=10 to 20),
Qik(jωl,θp) ≈ Qik(jωl,θp−1); and therefore, the prob-
lem (13)-(14) is approximately recovered. This allows
solving the nonlinear LS problem via iterations on lin-
ear LS problems.

4.2 Order Selection

With respect to the order selection of the approxima-
tion, it follows from the constraints (16)-(19) that the
minimum order transfer function that can be consid-
ered has the following form:

K̂min
ik (s) =

p1s

s2 + q1s+ q0
. (21)

Therefore, for automatic order determination, one can
start with the lowest-order approximation (21) and in-
crease the order to improve the fitting until a satisfac-
tory approximation is obtained (Unneland and Perez,
2007).

As a metric for determining the quality of the fit,
one can use the coefficient of determination for both
added mass and damping. This coefficient is defined
as

R2 = 1 =
∑

k(Xk − X̂k)2∑
k(Xk −X)2

, 0 ≤ R2 ≤ 1 (22)

where Xk are the data points and X̂k are the estimates.
The coefficient R2 is interpreted as the fraction of the
data that is explained by the regression model.

The steps for automatic-order detection can then be
as follows:

(i) Obtain the parametric model (12).

(ii) Reconstruct the added mass and damping from
the real and imaginary parts of the estimate (12),
that is,

Âik(ω) = Im{ω−1 K̂ik(jω)}+A∞,ik (23)

B̂ik(ω) = Re{K̂ik(jω)}, (24)

(iii) Compute the corresponding coefficients of deter-
mination for added mass and damping. If either
of these coefficients is below 0.99, then the model
order is increased, and the procedure is repeated
from step (i). Otherwise, stop.

4.3 Stability

The resulting model from the LS problem (13)-(14)
may not necessarily be stable because stability is not
enforced as a constraint in the optimisation. This can
be addressed in a sub-optimal manner. Should the ob-
tained model be unstable, one could obtain a stable
one by reflecting the unstable poles about the imagi-
nary axis and re-computing the denominator polyno-
mial. That is,

(i) Compute the roots of λ1, . . . , λn of Qik(s, θ̂ik).
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(ii) If Re{λi} > 0, then set Re{λi} = - Re{λi},

(iii) Reconstruct the polynomial:
Qik(s) = (s− λ1)(s− λ2) · · · (s− λn).

4.4 Passivity

The mapping ξ̇ into a force introduced by the fluid-
memory convolution is passive–see Perez and Fos-
sen (2008b) and references therein. The frequency-
response-LS-fitting problem (13)-(14) does not enforce
passivity. If passivity is required (i.e., Bik(ω) > 0),
a simple way to ensure it is to try different order ap-
proximations and choose the one that is passive. The
approximation is passive if

Re
{
Pik(jωl,θ)
Qik(jωl,θ)

}
> 0. (25)

When this is checked, one should evaluate the transfer
function at low and high frequencies—below and above
the frequencies used for the parameter estimation.

Often, low-order approximations models given by
the solution of (13)-(14) are passive—the term ‘low’
depends on the data of the particular vessel under
consideration. Therefore, one can reduce the order
and trade-off fitting accuracy for passivity.

4.5 Identification when A∞ is Unavailable

If the infinite-frequency added mass matrix A∞ is un-
available, one cannot form K(jω) as indicated in (9).
In this case, the method proposed by Perez and Fos-
sen (2008a) can be followed and estimate jointly the
infinite-frequency added mass and the fluid-memory
transfer function. The method exploits the knowl-
edge and procedures used in the identification of K̂ik(s)
when the infinite-frequency added mass is considered
available. Therefore, it provides an extension of those
results putting the two identification problems into the
same framework.

On the one hand, the radiation forces in the
frequency-domain given in (5) can be expressed

τrad,i(jω) = −
[
Bik(ω)
jω

+Aik(ω)
]
ξ̈k(s), (26)

where the expression in brackets gives the complex co-
efficient

Aik(jω) ,
Bik(ω)
jω

+Aik(ω). (27)

On the other hand, taking the Laplace transform of (3),
and assuming a rational approximation for the convo-
lution term we obtain

τ̂rad,i(s) = −
[
A∞,ik s+ Pik(s)

Qik(s)

]
ξ̇k(s), (28)

= −
[
A∞,ik + P ′

ik(s)
Qik(s)

]
ξ̈k(s) (29)

The transfer function in brackets in (29) can be further
expressed as

Âik(s) =
Rik(s)
Sik(s)

=
A∞,ikQik(s) + P ′ik(s)

Qik(s)
. (30)

Thus, we can use LS optimisation to estimate the
parameters of the approximation (30) given the
frequency-respose data (27):

θ? = arg min
θ

∑
l

wl (ε∗l εl), (31)

with

εl = Aik(jωl)−
Rik(jωl,θ)
Qik(jωl,θ)

, (32)

and the constraint that n = deg Rik(s) = deg Qik(s).
As already mentioned in the previous section, the min-
imum order approximation is n = 2. Therefore, we can
start with this order and increase it to improve the fit if
necessary. Hence, we can use the same algorithms that
we use for the case when the infinite-frequency added
mass is available, subject to different order constraints
and interpretation of the estimates obtained.

If the polynomial Qik(s) is normalised to be monic,
then

Â∞,ik = lim
ω→∞

Rik(s,θ?)
Sik(s,θ?)

. (33)

That is, the infinite-frequency added mass A∞,ik is the
coefficient of the highest order term of Rik(s,θ?). Also,
after obtaining Rik(s,θ?) and Sik(s,θ?), we can re-
cover the polynomials for the fluid-memory model:

Qik(s,θ?) = Sik(s,θ?),

Pik(s,θ?) = Rik(s,θ?)− Â∞,ikSik(s,θ?).
(34)

5 Toolbox Description

The toolbox presented in this paper is an independent
component of the Marine Systems Simulator (MSS,
2009). Figure 2 shows a diagram of the different soft-
ware components of the toolbox and their dependabil-
ity. The main function of the toolbox is FDIRadMod.m,
which processes the input data and returns the esti-
mate of the fluid-memory transfer function and also
the infinite-frequency added mass if required. This
function calls other functions to prepare the data for
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identification and to compute the estimates. The tool-
box also includes two demos which show how to use
the main function. The first demo considers the es-
timation with infinite-frequency added mass available
(WA), and the second demo considers the estimation
when infinite-frequency added mass is not available
(NA).

The functionality of the main components is de-
scribed in the following.

5.1 FDIRadMod.m

Purpose: This function processes the input hydrody-
namic data and estimates the order and the pa-
rameters of a transfer function approximation of
the fluid-memory model. The function processes
only single-input-single-output models. Hence,
for a multiple degree of freedom vessel or marine
structure, this function should be used for each
relevant coupling i, k.

Syntax:
[KrNum,KrDen,Ainf hat]=

FDIRadMod(W,A,Ainf,B,FDIopt,Dof)

Input Data:

• W – Vector of frequencies.
• A – Vector of frequency-dependent added

mass.
• Ainf – Infinite-frequency added mass.
• B – Vector of frequency-dependent potential

damping.
• FDIopt – Structure with computation op-

tions.
• Dof = [i,k] – Coupling of degrees of free-

dom (this is used to label the plots).

The structure FDIopt has the following fields:

• FDIopt.OrdMax – Maximum order to be used
in automatic order detection. Typical value
20.
• FDIopt.AinfFlag – Logic flag. If set to 1, the

value Ainf is used in the calculations. If set
to 0, the infinite- frequency added mass is
estimated, and the value in the argument of
the function is ignored.
• FDIopt.Method – This refers to the methods

used to solve the parameter optimisation
problem. If set to 1, a linearised model is
used and a linear LS problem is solved. If set
to 2, an iterative linear LS problem is solved.
If set to 3, the linear LS solution is used
to initialise a nonlinear LS problem, which
is solved using the Gauss-Newton method.

The option value 2 gives a good trade-off
between computational speed and accuracy.

• FDIopt.Iterations – Maximum number of
iterations to be used in the iterative linear
LS solution.

• FDIopt.PlotFlag – Logic flag. If set to 1, it
plots the identification results correspond-
ing to each iteration of auto order detection
identification process. A typical value is 0.

• FDIopt.LogLin – Logic flag. If set to 1, all
the data is plotted in logarithmic scale and
the magnitude of the transfer functions in
dB. If set to 0, all the data is plotted in
linear scale.

• FDIopt.wsFactor – This is a sampling factor
for plotting the data of the parametric ap-
proximation. The sample frequency used to
plot the data is this factor times the mini-
mum difference of frequencies in the input
vector W. A typical value is 0.1.

• FDIopt.wminFactor – The minimum fre-
quency to be used in the plots is
FDIopt.wminFactor*Wmin, where Wmin is the
minimum frequency of the dataset used for
identification. Typical value 0.1.

• FDIopt.wmaxFactor – The maximum fre-
quency to be used in the plots is
FDIopt.wmaxFactor*Wmax, where Wmax is the
maximum frequency of the dataset used for
identification. Typical value 2 to 5.

Output Data:

• KrNum,KrDen – Vectors with the numera-
tor and demoninator coefficients of the es-
timated single-input-single-output transfer
function.

• Ainf hat – Estimate of the infinite-frequency
added mass coeffieicient. If the op-
tion FDIopt.AinfFlag is set to 1, then
Ainf hat=Ainf, which is part of the input
data. If the option FDIopt.AinfFlag is set
to 0, the input value Ainf is ignored and es-
timated, so the user can enter any value in
the function argument.

Description: The function FDIRadMod.m first calls
EditAB.m to prepare the data for identification.
Then, depending on the option FDIopt.AinfFlag,
the function calls the appropriate computation
routine—see Figure 2.

The function FDIRadMod.m also makes an auto-
matic order estimate by increasing the order of
the approximation and computing the coefficient
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FDIRadMod.m 
ω,A(ω),B(ω),A∞ 

FDIopt 
Krad(s), 
[A∞] 

EditAB.m  Ident_retarda>on_FD.m 

Fit_siso_fresp.m 

Ident_retarda>on_FDna.m 

Demo_FDIRadMod_WA.m 

Demo_FDIRadMod_NA.m 

Figure 2: Frequency-domain Identification of Radiation Models (FDIRadMod): Software organisation and de-
pendability.

of determination related to the fitting of both
added mass and damping. When both these coef-
ficients reach a value greater or equal to 0.99, the
function stops increasing the order, and the re-
constructued added mass and damping are plot-
ted together with the non-parametric data used
for identification. At this point, the function
prompts the user to either adjust the order of the
approximation manually via a keyboard input or
leave the model as it is and exit the function.
The user can make as many changes in order as
required, and every time there is a change in the
order, the model is re-estimted and the data re-
plotted.

5.2 EditAB.m

Purpose: This function allows the user to select the
frequency range to be used for identification and
to eliminate data wild points1.

Description: This is a support function for
FDIRadMod.m, so the user may not need to
call it directly. The function first plots the
added mass and potential damping as a function
of the frequency, and then prompts the user to
select the range of frequencies for identification.
This range selection is done by clicking with the
mouse on the plot of either the added mass or

1Wild points in the data computed using hydrodynamic codes
are due to ill-conditioned numerical problems, which often
arise at high-frequencies if inappropriate panel sizes are used
to discretise the hull–see Faltinsen (1990) for details.

damping. The low-frequency data point should
be selected first, then the high-frequency point,
and finally the user should press the return key.
The data is then re-plotted within the selected
range.

After selecting the frequency range, the function
allows the elimination of data wild points. A mes-
sage on the workspace prompts the user to opt
for wild point elimination. If required, this elim-
ination is done by clicking with the mouse on all
the points that are to be eliminated (either on
the plot of the added mass or damping), and fi-
nally the user should press the return key. The
function allows the user to re-start the process in
case a point is deleted accidentally.

5.3 Ident retardation FD.m

Purpose: This function estimates the parameters of
a specified order approximation for the fluid-
memory transfer function given the frequency re-
sponse K(jωl).

Description: This is a support function for
FDIRadMod.m, so the user may not need to
call it directly. This function performs the
estimation for the problem in which the infinite
frequency added mass is available to compute
K(jωl). This problem is described in Sec-
tion 4.1. The function performs data scaling
and enforces the model structure constraints
(16)–(19). A summary of the algorithm is given
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in the Appendix.

5.4 Ident retardation FDna.m

Purpose: This function performs the joint parameter
estimation of the approximating fluid-memory
transfer function and the infinite-frequency
added mass coefficient.

Description: This is a support function for
FDIRadMod.m, so the user may not need to
call it directly. The function uses as input the
frequency-dependant added mass and damping,
and it requires a desired order. The associated
estimation problem is described in Section 4.5.
The function performs data scaling and enforces
the model structure constraints (16)–(19).

5.5 Fit siso fresp.m

Purpose: This is a general purpose function to esti-
mate a single-input-single-output transfer func-
tion of a specified order and relative degree given
a frequency response.

This function can be used not only to identify
fluid-memory transfer functions, but also force-
to-motion transfer functions (Perez and Lande,
2006). That latter is a functionality that will be
included in future versions of the toolbox.

Description: This is a support func-
tion for Ident retardation FD.m and
Ident retardation FDna.m, so the user may
not need to call it directly. This function
implements 3 methods for parameter estimation,
namely, 1 - uses a linearised model and linear
LS optimisation. 2 - uses iterative linear LS
optimisation, 3- uses the linear LS optimisation
solution to initialise a non-linear LS optimisa-
tion problem solved using the Gauss-Newton
method. The function is built upon the function-
ality invfreqs.m of Matlab’s Signal Processing
Toolbox.

6 Demos

The toolbox provides two demo files that make use of
the main function FDIRadMod.m–see Figure 2. These
demos are based on the data of a FPSO that belongs
to the Hydro add in of the Marine Systems Simulator
(MSS, 2009).

The first demo, Demo FDIRadMod WA.m (WA-with
infinite-frequency Added mass), loads the data struc-
ture vessel, and allows the user to select the desired
coupling (i, k) for identification. The structure vessel

contains data corresponding to 6 degrees of freedom,
that is, i, k = 1,...,6. In this section, we illustrate the
estimation results on the models corresponding to ver-
tical motion modes; that is, couplings 3-3, 3-5, 5-3, and
5-5.

Figure 3 shows the raw added mass and damping for
coupling 5-3, which by symmetry of the hull it is the
same as the 3-5 coupling. These data are obtained from
a hydrodynamic code. Figure 4 shows the edited data
after eliminating some wild points. Figure 5 shows the
corresponding curve fitting results. This figure shows
the fitting of the fluid-memory frequency response on
the left-hand side and the re-construction of added
mass and damping based on the estimated model on
the right-hand side. The order of the approximation
is 5, which is obtained automatically by the function.
Figures 6 and 7 show the corresponding results for the
3-3 and 5-5 couplings. For both these couplings the
automatic order detection selected order 3, but then
we manually increase the order to 4 to improve the fit.

The second demo, Demo FDIRadMod NA.m (NA-No
infinite-frequency Added mass), also loads the data
structure vessel of the FPSO, and allows the user to
select the desired coupling for identification. In this
demo, however, the identification is done without us-
ing the infinite-frequency added mass coefficient. Fig-
ure 8 shows the fitting results for the coupling 5-3.
The left-hand-side plots show the fitting of the com-
plex coefficient Ã(jω) given by (27), whereas the right-
hand-side plots show the re-construction of added mass
and damping based on the estimated model. Figure 9
shows the estimated fluid-memory frequency response
function. These results are in agreement with those
shown in Figure 5; however, there are small differences
due to the fact that the two estimators use different
information.

It is worthwhile highlighting that the removal of wild
points could be very important. For example, Figures
10 and 11 show the results of identification without
using added mass for the coupling 5-3 when the wild
points in the added mass and damping have not been
removed. In this case, the automatic order detection
selected an approximation of order 10. This is because
the algorithm tries to fit lightly-damped complex poles
to the wild points. The function gives the user the op-
tion to manually reduce the order. However, for some
cases this may not solve the problem, and the identifi-
cation process should be started again and remove the
wild points.
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7 Dependence on Other Matlab
Toolboxes

The toolbox presented in this paper is based on stan-
dard Matlab code, except for two specific functions
that belong to the Signal Processing Toolbox, namely,
freqs.m and invfreqs.m.

The function freqs.m computes the frequency re-
sponse of a transfer function model for a specified set of
frequencies. The function invfreqs.m performs the pa-
rameter estimation using either the linear LS method
or the Gauss-Newton method. In order to implement
the iterative linear LS method, this function is called
recursively by fit siso fresp.m.

If the user does not have a licence for the Signal
Processing Toolbox, the two functions used should be
coded by the user. An alternative to the function
freqs.m is very simple to code. The algorithm given
in the Appendix can be used as a guide to implement
an alternative to invfreqs.m.

8 Software Repository

The toolbox presented in this paper is an independent
component of the Marine Systems Simulator (MSS,
2009) maintained by the authors. This is a free tool-
box released under a GNU licence. The software is
available at www.marinecontrol.org

9 Conclusion

This paper describes a toolbox for parametric iden-
tification of fluid-memory models associated with the
radiation forces of marine structures based on a
frequency-domain method. The models identified find
application in the development of ship simulators, con-
trol design, and the evaluation of wave energy convert-
ers.

The software described provides tools for prepar-
ing the non-paramatric data generated hydrodynamic
codes, automatic model order detection, and parame-
ter estimation. The toolbox contains a main function
that performs all these tasks by calling other support
functions. The user may only need to call the main
function.

The identification is done for single-input-single-
output models. This gives the user freedom to se-
lect the couplings of interest each particular applica-
tion and to integrate the functionality of the toolbox
into other data processing codes.
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A Parameter Estimation Algorithm

This section presents the main steps of a parameter
estimation algorithm for the case where the infinite-
frequency added mass coefficients are used in the iden-
tification.

1. Set the appropriate range of frequencies where
the hydrodynamic data is considered accurate,
eliminate wild points, and compute the frequency
response for a set of frequencies ωl:

Kik(jωl) = Bik(ωl)− jω(Aik(ωl)−A∞,ik). (35)

2. Scale the data:

K ′ik(jωl) = αKik(jωl), α ,
1

max |Kik(jωl)|
.

(36)

3. Select the order of the approximation
n=deg(Qik(jω,θik)). The minimum order
approximation is n=2, which can be the starting
point for automatic-order selection.

4. Estimate the parameters

θ?
ik = arg min

θ

∑
l

∣∣∣∣K ′ik(jωl)
(jωl)

− P ′ik(jωl,θ)
Qik(jωl,θ)

∣∣∣∣2 ,
(37)

with deg(P ′ik(jω,θik))=n− 2. This problem can
be linearised and solved iteratively as in (20).

5. Check stability by computing the roots of
Qik(jω,θ?

ik) and change the real part of those
roots with positive real part.

6. Construct the desired transfer function by scaling
and incorporate the s factor in the numerator:

K̂ik(s) =
1
α

sP ′ik(s,θ?
ik)

Qik(s,θ?
ik)

. (38)

7. Estimate the added-mass and damping based on
the identified parametric approximation via

Âik(ω) = Im{ω−1 K̂ik(jω)}+A∞,ik (39)

B̂ik(ω) = Re{K̂ik(jω)}, (40)

and compare with the Aik(ω) and Bik(ω) given
by the hydrodynamic code. If the fitting is not
satisfactory increase the order of the approxima-
tion and go back to step (iii).

8. Check for passivity if required B̂ik(jω) > 0.
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Figure 3: Raw added mass and damping data of a FPSO vessel computed by a hydrodynamic code. Coupling
5-3 (pitch-heave).
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Figure 4: Added mass and damping of a FPSO vessel after eliminating wildpoints. Coupling 5-3 (pitch-heave).
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Figure 5: Identification results for the coupling 5-3 (pitch-heave) using information of the infinite-frequency
added mass. The left-hand-side plots show the fluid-memory frequency response data and the response
of the identified model. The right-hand-side plots show the added mass and potential damping and
their re-construction from the estimated model.
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Figure 6: Identification results for the coupling 3-3 (heave-heave) using information of the infinite-frequency
added mass. The left-hand-side plots show the fluid-memory frequency response data and the response
of the identified model. The right-hand-side plots show the added mass and potential damping and
their re-construction based the estimated model.
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Figure 7: Identification results for the coupling 5-5 (pitch-pitch) using information of the infinite-frequency
added mass. The left-hand-side plots show the fluid-memory frequency response data and the response
of the identified model. The right-hand-side plots show the added mass and potential damping and
their re-construction based on the estimated model.
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Figure 8: Identification results for the coupling 5-3 (pitch-heave) without using information of the infinite-
frequency added mass. The left-hand-side plots show the complex coefficient Ã(jω) data and the
response of the identified model. The right-hand-side plots show the added mass and potential damp-
ing and their re-construction based on the estimated model.
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Figure 9: Frequency response of the identified fluid-memory model for the coupling 5-3 (pitch-heave) without
using information of the infinite-frequency added mass.
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Figure 10: Identification results for the coupling 5-3 (pitch-heave) without using information of the infinite-
frequency added mass and without eliminating wild points. The left-hand-side plots show the complex
coefficient Ã(jω) data and the response of the identified model. The right-hand-side plots show the
added mass and potential damping and their re-construction based on the estimated model.
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Figure 11: Frequency response of the identified fluid-memory model for the coupling 5-3 (pitch-heave) without
using information of the infinite-frequency added mass and without eliminating wild points.
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