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Abstract

In many cases economic optimal operation is the same as maximum plant throughput, which is the
same as maximum flow through the bottleneck(s). This insight may greatly simplify implementation. In
this paper, we consider the case where the bottlenecks may move, with parallel flows that give rise to
multiple bottlenecks and with crossover flows as extra degrees of freedom. With the assumption that
the flow through the network is represented by a set of units with linear flow connections, the maximum
throughput problem is then a linear programming (LP) problem. We propose to implement maximum
throughput by using a coordinator model predictive controller (MPC). Use of MPC to solve the LP has
the benefit of allowing for a coordinated dynamic implementation. The constraints for the coordinator
MPC are the maximum flows through the individual units. These may change with time and a key idea is
that they can be obtained with almost no extra effort using the models in the existing local MPCs. The
coordinator MPC has been tested on a dynamic simulator for parts of the K̊arstø gas plant and performs
well for the simulated challenges.
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1 Introduction

Real-time optimization (RTO) offers a direct method
of maximizing an economic objective function. Most
RTO systems are based on detailed nonlinear steady-
state models of the entire plant, combined with data
reconciliation to update key parameters, such as feed
compositions and efficiency factors in units, see for ex-
ample Marlin and Hrymak (1997). Typically, the RTO
application reoptimizes and updates on an hourly ba-
sis the set points for the lower-layer control system,
which may consists of set points of local MPCs based
on simple linear dynamic models. A steady-state RTO

∗This article was originally published as: E.M.B. Aske, S.
Strand and S. Skogestad, Coordinator MPC for maximizing

plant throughput, Computers & Chemical Engineering, 32,
195-204 (2008). Reprinted with permission from Elsevier.

is not sufficient if there are frequent changes in active
constraints of large economic importance. For exam-
ple, this could be the case if the throughput bottleneck
in a plant moves frequently, which is the case for the
application studied in this paper. At least in theory,
it is then more suitable to use dynamic optimization
with a nonlinear model, which may be realized us-
ing dynamic RTO (DRTO) or nonlinear MPC with an
economic objective (Tosukhowong et al., 2004; Kadam
et al., 2003; Strand, 1991). However, a centralized dy-
namic optimization of the entire plant is undesirable
(Lu, 2003). An alternative is to use local unit-based
MPCs, but the resulting steady-state target calcula-
tion may be far from optimal (Havlena and Lu, 2005).
Coordination of multiple local MPCs have been stud-
ied by several authors. Cheng et al. (2004, 2006, 2007)
have suggested to approach this “coordination” prob-
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lem by identifying appropriate interactions for linking
constraints to find the steady-state targets for the local
MPCs. Rawlings and Stewart (2007) discuss a coopera-
tive distributed MPC framework, where the local MPC
objective functions are modified to achieve systemwide
control objectives. Ying and Joseph (1999) propose a
two-stage MPC complement that track changes in the
optimum caused by disturbances. The approach per-
mits dynamic tracking of the optimum which is not
achievable with a steady-state RTO used in conjunc-
tion with a single-stage MPC.

In this paper, we present a different and simpler solu-
tion that achieves economic optimal operation without
any of these complexities. This solution applies to the
common case where prices and market conditions are
such that economic optimal operation of the plant is
the same as maximizing plant throughput. The main
objective is then to maximize the feed to the plant,
subject to achieving feasible operation (satisfying op-
erational constraints in all units). This insight may be
used to implement optimal operation, without the need
for dynamic optimization based on a detailed model of
the entire plant.

From linear network theory, the max-flow min-cut
theorem (Ford and Fulkerson, 1962) states that the
maximum throughput in a linear network is limited by
the “bottleneck(s)” of the network (Aske et al., 2007).
In order to maximize the throughput, the flow at the
bottlenecks should always be at their maximum. In
particular, if the actual flow at the bottleneck is not at
its maximum at any given time, then this gives a loss
in production that can never be recovered (sometimes
referred to as a ”lost opportunity”).

The throughput manipulators (TPMs) are the de-
grees of freedom available for implementing maximum
throughput. They affect the flow through the entire
plant (or at least in more than one unit), and therefore
can not be used to control an individual unit or objec-
tive. Ideally, in terms of maximizing plant production
and minimizing the back off, the TPM should be lo-
cated at the bottleneck (Aske et al., 2007). However,
the bottleneck may move depending on plant operating
conditions (e.g. feed composition), and it is generally
very difficult to change the TPM, once a decision on its
location has been made. The reason is that the location
of the TPM affects the degrees of freedom available for
local control, and thus strongly affects the structure of
the local control systems and in particular the struc-
ture of the inventory control system (Buckley, 1964;
Price and Georgakis, 1993). The TPM will therefore
generally be located away from the bottleneck, for ex-
ample at the feed. For dynamic reasons it will then
not be possible to achieve maximum flow through the
bottleneck at all times, and a loss in production is in-
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Figure 1: The coordinator uses the throughput manip-
ulators (uc = TPMs) to control the remain-
ing capacity (yc = R) in the units.

evitable.
The use of a coordinator controller that uses the

throughput manipulators (uc=TPMs) to control the
remaining local capacity (yc = R = F l

max − F l) in the
units as illustrated in Figure 1. In the simplest case
with a fixed bottleneck and feed rate as the TPM, the
coordinator may be a single-loop PI-controller with the
feed rate as the manipulated variable (uc) and the bot-
tleneck flow as the controlled variable (yc), Skogestad
(2004). However, more generally the coordinator must
be a multivariable controller. Note from Figure 1 that
the “coordinator” and the “local” controllers for the
individual units are actually on the same level in the
control hierarchy, like in decentralized control. Never-
theless, the term coordinator is used because the TPMs
strongly affect all the units and because in general the
coordinator controller must be designed based on a flow
network model of the entire plant. An alternative to
the decentralized structure is to combine all the local
MPCs into a large combined MPC application that in-
clude the throughput manipulators as degrees of free-
dom.

Optimal operation corresponds to R = 0 in the bot-
tleneck, but if the maximum flow through the bottle-
neck is a hard constraint, then to avoid infeasibility
(R < 0) dynamically, we need to “back off” from the
optimal point

Back off (b) = Rs = F l
max − F l

s (1)

More generally, the back off is the distance to the active
constraint needed to avoid dynamic infeasibility in the
presence of disturbances, model errors, delay and other
sources for imperfect control (Narraway and Perkins,
1993; Govatsmark and Skogestad, 2005). The back off
is a “safety factor” and should be obtained based on
information about the disturbances and the expected
control performance.

In this paper, we consider cases where the bottle-
necks may move and with parallel trains that give rise
to multiple bottlenecks and multiple throughput ma-
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Figure 2: Proposed control structure where the coor-
dinator MPC receives information from the
local MPC about the remaining capacity (R)
in the units.

nipulators. This requires multivariable control and the
proposed coordinator MPC both identifies the bottle-
necks and implements the optimal policy. The con-
straints for the coordinator MPC are non-negative re-
maining capacities (R ≥ b ≥ 0) in all units. The values
of R may change with time and a key idea is that they
can be obtained with almost no extra effort using the
existing local MPCs, as illustrated in Figure 2.

The paper is organized as follows. Economic optimal
operation and the special case of maximum throughput
is discussed in Section 2. Section 3 describes the coor-
dinator MPC in addition to the capacity calculations
in the local MPCs. Section 4 describes a dynamic sim-
ulation case study for a gas plant. A discussion follows
in Section 5 before the paper is concluded in Section 6.

2 Maximum throughput as a

special case of optimal operation

Mathematically, the optimum is found by minimizing
the cost J (i.e., maximize the profit (−J)), subject
to satisfying given specifications and model equations
(f = 0) and operational constraints (g ≤ 0). At steady-
state:

min
u

J(x, u, d) (2)

s. t. f(x, u, d) = 0

g(x, u, d) ≤ 0

Here u are the degrees of freedom (or manipulated
variables, MVs), d the disturbances and x the (depen-
dent) state variables. The degrees of freedom are split
into those used for local control (ul) and the TPMs

used for throughput coordinator (uc),

u =

[

ul

uc

]

(3)

A typical profit function is

(−J) =
∑

j

pPj
· Pj −

∑

i

pFi
· Fi −

∑

k

pQk
· Qk (4)

where Pj are the product flows, Fi the feed flows, Qk

the utility duties (heating, cooling, power), and p de-
note the prices.

In many cases, and especially when the product
prices are high, optimal operation of the plant (maxi-
mize −J) is the same as maximizing throughput. To
understand this, let F denote the overall throughput
in the plant, and assume that all feed flows are set in
proportion to F ,

Fi = kF,iF (5)

Then, under the assumption of constant efficiency in
the units (independent of throughput) and assuming
that all intensive (property) variables are constant, all
extensive variables (flows and heat duties) in the plant
will scale with the throughput F e.g, Skogestad (1991).
In particular, we have that

Pj = kP,jF ; Qk = kQ,kF (6)

where the gains kP,j and kQ,k and are constants. Note
from (6) that the gains may be obtained from nominal
(denoted 0) mass balance data:

kP,j = Pj0/F0; kF,i = Fi0/F0; kQ,k = Qk0/F0 (7)

Substituting (5) and (6) into (4) gives

(−J) =




∑

j

pPj
· kP,j −

∑

i

pFi
· kF,i −

∑

k

pQk
· kQ,k



 F

= pF

(8)

where p is the operational profit per unit of feed F pro-
cessed. From the above derivation, p is a constant for
the case with constant efficiencies. We assume p > 0
such that we have a meaningful case where the prod-
ucts are worth more than the feedstocks and utilities.
Then, from (8) it is clear that maximizing the profit
(−J) is equivalent to maximizing the throughput F .
However, F cannot go to infinity, because the opera-
tional constraints (g ≤ 0) related to achieving feasible
operation (indirectly) impose a maximum value for F .

In practice, the gains kP,j and kQ,k and are not con-
stant, because the efficiency of the plant changes. Usu-
ally, operation becomes less efficient and p decreases
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when F increases. Nevertheless, as long as p remains
positive, d(−J)/dF = p > 0 is nonzero, and we have
a constrained optimum with respect to the throughput
F . From (8) we see that p will remain positive and
optimal operation is the same as maximum through-
put if the feed is available and product prices pP,j are
sufficiently high compared to the prices of feeds and
utilities.

3 Coordinator MPC for maximizing

throughput

The overall feed rate (or more generally the through-
put) affects all units in the plant. For this reason,
the throughput is usually not used as a degree of free-
dom for control of any individual unit, but is instead
left as an “unused” degree of freedom to be set at the
plant-wide level. Most commonly, the throughput ma-
nipulators (uc) are set manually by the operator, but
the objective here is to coordinate them to achieve eco-
nomic optimal operation.

It is assumed that the local controllers (e.g. local
MPCs) are implemented on the individual units. These
adjust the local degrees of freedom ul such that the op-
eration is feasible. However, local feasibility requires
that the feed rate to the unit F l

k is below its max-
imum capacity, F l

k,max, and one of the tasks of the
plant-wide coordinator is to make sure that this is sat-
isfied. F l

k,max may change depending on disturbances
(e.g. feed composition) and needs to be updated con-
tinuously. One method is to use the already existing
models in the local MPCs, as discussed in Section 3.2.

3.1 The coordinator MPC

The steady-state optimization problem (2) can be sim-
plified when the optimal solution corresponds to max-
imizing plant throughput. Consider the steady-state
optimization problem

max
uc

(−J) s. t. (9)

F l = Guc (10)

R = F l
max − F l ≥ b ≥ 0 (11)

uc
min ≤uc ≤ uc

max (12)

Here F l is a vector of local feeds to the units and R is
a vector of remaining capacities in the units. If the ob-
jective is to maximize throughput with a single feed,
then (−J) = F . More generally, with different val-
ues of the feedstocks and products, the profit func-
tion in (4) is used. G is a linear steady-state network
model from the throughput manipulators uc (indepen-
dent feed and crossover flows) to all the local flows F l.

In order to achieve feasible flow through the network,
it is necessary that R ≥ 0 in all units. However, to
guarantee dynamic feasibility, an additional back off
from the capacity constraint may be required, which is
represented by the vector b in (11). The main differ-
ence from the original optimization problem (2) is that
only uc (TPMs) are considered as degrees of freedom
for the optimization in (9)-(12) and that the original
constraints for the units (f = 0, g ≤ 0) are replaced by
a linear flow network and flow constraints (R ≥ b).

It is assumed that the local controllers generate
close-to optimal values for the remaining degrees of
freedom ul, while satisfying the original equality (f =
0) and inequality constraints (g ≤ 0). This implies that
no coordination of the local controllers is required, or
more specifically that constant set points for the local
controllers give close to optimal operation. In other
words, it is assumed that we for the local units can
identify ”self-optimizing” controlled variables Skoges-
tad (2000). If this is not possible then centralized op-
timization (RTO or maybe even DRTO) is required.

With the linear profit function (−J) in (4), the op-
timization problem in (9)-(12) is an LP problem. The
optimal solution to an LP problem is always at con-
straints. This means that the number of active con-
straints in (11) and (12) must be equal to the num-
ber of throughput manipulators, uc. Note that an
active constraint in (11) corresponds to having Rk =
F l

max,k − F l
k = bk, that is, unit k is a bottleneck. This

agrees with the max-flow min-cut theorem of linear net-
work theory. However, to solve the LP problem, we will
not make use of the max-flow min-cut theorem.

The steady-state optimization problem in (9)-(12)
can be extended to the dynamic optimization problem:

min
uc

(J − Js)
2 + ∆ucT Qu∆uc s. t. (13)

F l = Gdynuc (14)

R = F l
max − F l ≥ b ≥ 0 (15)

uc
min ≤ uc ≤ uc

max (16)

∆uc
min ≤ ∆uc ≤ ∆uc

max (17)

Maximum throughput under the presence of distur-
bances is dynamic in nature, and here, Gdyn is a linear
dynamic model from uc (manipulated variables, MVs)
to the remaining capacity in each unit, Rk. Obtaining
the dynamic models may be time consuming. However,
it is possible to use simple mass balances to calculate
the steady-state gains of Gdyn, see (7).

The dynamic cost function (13) includes penalty on
the MV moves to ensure robustness and acceptable dy-
namic performance. The constraints are: back off on
capacity to each unit (15), MV high and low limits (16)
and MV rate of change limits (17). MV rate of change
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is mainly a safeguard for errors and is normally not
used for tuning.

The term ∆ucT Qu∆uc makes the objective function
quadratic, whereas the objective function in the origi-
nal problem (9) is linear. To obtain a quadratic objec-
tive function that fits directly into the MPC software
used here, we have used a common trick of introducing
a quadratic term (J − Js)

2. The profit set point Js

is high and unreachable with a lower priority than the
capacity constraints. An alternative approach would
be to include a linear term in J in (13).

Standard MPC implementations perform at each
time step two calculations (Qin and Badgwell, 2003).
First, the steady-state optimization problem with all
the constraints is solved to obtain a feasible steady-
state solution. Second, the dynamic problem is solved
using the feasible targets obtained from the steady-
state calculation. In our case, the steady-state part
gives a feasible set point for the profit (or total flow)
that replaces Js in the subsequent solution of the dy-
namic problem. The dynamic terms involving ∆uc do
not matter in the steady-state part, so the steady-state
solution is identical to the LP problem in (9)-(12).

It is assumed that the local controllers (including
local MPCs) are closed before obtaining the dynamic
flow model Gdyn. To ensure stability, it is then advis-
able that the coordinator operates with a longer time
horizon than the local MPCs.

3.2 Capacity calculations using local MPCs

An important parameter for the coordinator is the
maximum flow for the individual (local) units, F l

max.
A key idea in the present work is to obtain updated
values using on-line information (feedback) from the
plant. Note that it is not critical that the estimate of
the maximum capacity is correct, except when the unit
is actually approaching its maximum capacity and the
corresponding capacity constraint R = F l

max − F l ≥ b
becomes active. The use of on-line information from
the actual plant will ensure that this is satisfied.

In simple cases, one may update the maximum ca-
pacity using the distance (∆constraint ≥ 0) to a critical
constraint in the unit,

F l
max = F l + c · ∆constraint

where c is a constant and F l is the present flow
through the unit. For example, for a distillation col-
umn ∆constraint = ∆pmax − ∆p could be difference
between the pressure drop corresponding to flooding
and the actual pressure drop.

In more complex cases, there may be more than one
constraint that limits the operation of the unit and thus
its maximum capacity. MPC is often implemented on

the local units to improve dynamic performance and
avoid complex logic. The maximum feed for each unit
k can then be easily estimated using the already exist-
ing models and constraints in the local MPC applica-
tions. The only exception may be that the model must
be updated to include the feed to the unit, F l

k, as an
independent variable. The maximum feed to the unit k
is then obtained by solving the additional steady-state
problem:

F l
k,max = max

ul
k
,F l

k

F l
k (18)

subject to the linear model equations and constraints
of the local MPC, which is a LP problem. Here ul

k is
the vector of manipulated variables in the local MPC,
and the optimization is subject to satisfying the linear
constraints for the unit. To include past MV moves
and disturbances, the end predictions of the variables
should be used instead of the present values.

4 Kårstø gas processing case study

The K̊arstø plant treats gas and condensate from cen-
tral parts of the Norwegian continental shelf. The
products are dry gas, which is exported through
pipelines, and natural gas liquids (NGL) and conden-
sate, which are exported by ships. The K̊arstø plant
plays a key role in the pipeline structure in the Norwe-
gian Sea and therefore is maximum throughput usually
the main objective. Also, from an isolated K̊arstø point
of view, the plant has relative low feed and energy costs
and high product prices that favors high throughputs.
There are no recycles in the plant. Usually, feed is
available and can be manipulated within given limits.

The feed enters the plant from three different
pipelines and the feed composition may change fre-
quently in all three lines. Changes in feed composi-
tions can move the main bottleneck from one unit to
another and affect the plant throughput. The coordi-
nator MPC approach has been tested with good results
using the K̊arstø Whole Plant simulator. This is a dy-
namic simulator built in the software D-SPICE R©.

4.1 The case

To demonstrate the applicability of the coordinator
MPC, we use a detailed simulator model of parts of
the K̊arstø plant. To avoid the need for large com-
puter resources to run the process simulator, only parts
of the whole plant are used in the case study, see Fig-
ure 3. The selected parts include two fractionation
trains, T100 and T300. Both trains have a deetha-
nizer, depropanizer, debutanizer and a butane splitter.
In addition T300 has two stabilizers in parallel. There
are six throughput manipulators (uc) as indicated by
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Figure 3: The simulated parts of the K̊arstø plant

valves in Figure 3: two main train feeds, two liquid
streams to the trains from the dew point control unit
(DPCU), a crossover from train T100 to T300, and a
flow split for the parallel stabilizers in train T300.

The local MPCs and the coordinator are imple-
mented in Statoils SEPTIC1 MPC software (Strand
and Sagli, 2003). Data exchange between the simula-
tor and the MPC applications is done by the built-in
D-SPICE R© OPC server. The detailed dynamic simu-
lator was used to obtain “experimental” step response
models (Gdyn) in the coordinator MPC. This approach
has been found to work well in practice (Strand and
Sagli, 2003).

4.2 Implementation of the local MPCs

The main control objective for each column is to con-
trol the quality in the top and bottom streams, by ma-
nipulating boil-up (V) and reflux flow (L). In addition
the column must be kept under surveillance to avoid
overloading, which is an important issue when maxi-
mizing throughput. Column differential pressure (∆p)
is used as an indicator of flooding (Kister, 1990). The
remaining feed capacity for each column (Rk) is calcu-
lated in the local MPC.

The LV-configuration with a temperature loop is
used for regulatory control of the columns (Skogestad,
2007), and the local MPCs are configured as follows:

• CV (set point + constraint): Impurity of heavy
key component

1Statoil Estimation and Prediction Tool for Identification and
Control

• CV (set point + constraint): Impurity of light key
component

• CV (constraint): Column differential pressure

• MV: Reflux flow rate set point

• MV: Tray temperature set point in lower section

• DV: Column feed flow

These MVs correspond to ul (local degrees of free-
dom), and CVs are the same as yl. The feed rate is
a disturbance variable (DV) for the local MPC, and
is used as a degree of freedom when solving the ex-
tra LP problem to obtain the remaining capacity (R)
to be used by the coordinator. Some of the columns
have additional limitations that are included as CVs
in the local MPC. The product qualities are described
as impurity of the key component and a logarithmic
transformation is used to linearize over the operating
region (Skogestad, 1997). The high limits on the prod-
uct qualities are given by the maximum levels of im-
purity in the sales specifications and the differential
pressure high limit is placed just below the flooding
point.

The control specification priorities for solving the
steady-state feasibility problem for the local MPC are
as follows:

1. High limit differential pressure

2. Impurity limits

3. Impurity set points
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where 1 has the highest priority. The priority list is
used in the steady state part in the MPC solver and
leads to relaxation of the impurity set points (and in
worst case limits) to avoid exceeding the differential
pressure high limit (Strand and Sagli, 2003). By qual-
ity relaxation the column can handle the given feed rate
without flooding the column. The low-priority quality
set points are not used when solving the extra steady-
state LP problem to obtain the remaining capacity R,
because set point deviations are acceptable if the alter-
native is feed reduction. In the dynamic optimization
part the constraints violations are handled by adding
penalty terms to the objective function.

The local MPC applications are built with experi-
mental step response models as described in Aske et al.
(2005). The prediction horizon is 3 to 6 hours, which is
significantly longer than the closed-loop response time.
The sample time in the local MPC is set to 1 minute.
From experience this is sufficiently fast for the distilla-
tion column applications and is the actual sample time
used in the plant today.

4.3 The design and implementation of the

coordinator MPC

The objective function for the coordinator is to max-
imize the total plant feed, −J = F =

∑

Fi, which
is the sum of the train feeds and the flows from
the DPCU (FEEDT300VWA + 21FC5288VWA +
21FC5334VWA + 21FR1005VWA). The CVs and MVs
for the coordinator MPC are:

• CV (high set point): Total feed flow F to the plant
(PLANT FEED).

• CVs (constraints): Remaining feed capacity Rk

in columns, 10 in total (R-ET100, R-PT100, R-
BT100, R-BS100, R-STAB1, R-STAB2, R-ET300,
R-PT300, R-BT300, R-BS300)

• CV (constraint): T100 deethanizer sump level
controller output (LC OUTLET)

• MV: Feed train 100 (21FR1005VWA)

• MV: Feed train 300 (FEEDT300VWA)

• MV: Feed from DPCU to train 100
(21FC5334VWA)

• MV: Feed from DPCU to train 300
(21FC5288VWA)

• MV: Crossover flow from T100 to T300
(24FC5074VWA)

• MV: Stabilizers feed split (27FC3208VWA)

These MVs correspond to uc (coordinator degrees of
freedom). The deethanizer sump level controller out-
put CV (gives the feed to PT100) is used to avoid emp-
tying or overfilling up the sump level in ET100 when
manipulating the crossover. The total plant feed has
a high unreachable set point with low priority. The
remaining feed capacity low limits, and high and low
limits of the level controller output have high priority.

Note that each train has two feeds; one train feed
and one from the dew point control unit (DPCU). The
two feeds have different compositions, and this makes
it possible for the coordinator to adjust the feed com-
position, and thus adjust the load to specific units. The
two stabilizers are identical in the simulator, so the sta-
bilizer split (27FC3208VWA) will ensure equal load to
the stabilizers. The coordinator uses experimental step
response models, obtained in the same way as for the
local MPCs. The models were obtained at 80-95% of
the maximum throughput, which is typical for the cur-
rent plant operation. The coordinator execution rate
is slower than in the local MPCs to ensure robustness
and is here chosen to be 3 minutes. The prediction
horizon is set to 20 hours.

The coordinator attempts to maximize the total feed
rate while satisfying the capacity constraints for the
units. Since the capacity constraints are “hard”, it is
necessary to introduce at steady-state a back off b to
ensure R ≥ 0 also dynamically. Tuning of the coordi-
nator MPC is a trade-off between robustness and MV
(feed) variation on the one side and keeping the flows
through the bottlenecks close their maximum on the
other side. The required back off b needs to be ob-
tained after observing over some time the performance
of coordinator MPC. In the case study, the value of b
is about 1-2% of the feed to the unit.

4.4 Results from the simulator case study

The coordinator MPC performance is illustrated with
three different cases:

1. Take the plant from unconstrained operation (with
given feed rate) to maximum throughput (at t = 0
min)

2. Change in feed composition (at t = 360 min)

3. Change in a CV limit in a local MPC (at t = 600
min)

All three cases are common events at the K̊arstø
plant. Feed composition changes are the most frequent
ones. The coordinator should also be able to handle
operator changes in the local MPCs as illustrated by
changing a local CV limit.
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The most important CVs in the coordinator MPC
are displayed in Figure 4 and the corresponding co-
ordinator MVs are shown in Figure 5. CVs far from
their constraints are omitted. The vertical lines in the
Figures indicate the time where disturbances are intro-
duced (Cases 2 and 3). The back off from the capacity
constraints is indicated by dashed horizontal lines in
Figure 4. Figure 6 shows the response of a local MPC
application (BS100).

4.4.1 Case 1: Take the plant to maximum

throughput

Initially, the plant is not operating at maximum
throughput, and Figure 5 shows that all four feed rates
are ramped up over the first hour. The crossover
(24FC5074VWA in Figure 5) is reduced to unload
train 300 where BS300 is close to its capacity limit
even initially (the plant is not steady state at t = 0
min). From Figure 4, ET100 and the T300 stabilizers
(Stab1 and Stab2) impose a bottleneck upstream of the
crossover, whereas BS300 is a bottleneck downstream
the crossover, at least for some period. The remaining
capacity in BS300 violates its lower limit of b = 1.6 t/h,
and is actually just below zero for some time. Hence
the back off b is not sufficiently large to keep the re-
maining capacity just above zero in this case. From
Figure 6, we see that the local MPC application for
BS100 relaxes the quality set points because the col-
umn reaches the differential pressure high limit.

4.4.2 Case 2: Change in feed composition

A feed composition step change is introduced to
the train 100 feed (sum of 21FR1005VWA and
21FC5335VWA). The composition change is given in
Table 1 and occurs at time t = 360 minutes, at the
first vertical line in Figures 4, 5 and 6. The reduction
in ethane content leads to an increase in the remaining
feed capacity in ET100, which is a bottleneck at that
time, and the coordinator can increase the train feed.
However, the increase in iso-butane content reduces the
remaining feed capacity in the further downstream bu-
tane splitter (BS100), which becomes a new bottleneck.
The coordinator increases the crossover to make use of
some remaining capacity in train 300.

4.4.3 Case 3: Change in a CV limit in a local MPC

The bottom quality high limit in BS100 is reduced at a
time where BS100 is already operating at its capacity
limit, as can be seen at t = 600 minutes in Figure 6.
This leads to a reduction in the remaining feed capac-
ity in BS100 of about 2 t/h. The coordinator MPC
responds by increasing the crossover flow from T100

Table 1: The feed composition change in the T100 feed
at t = 360 minutes

Component Nominal [mol%] Points change [%]
Ethane 37.3 -1.1
Propane 35.4 0.71

Iso-butane 5.64 5.6
N-butane 11.3 -0.34

Iso-pentane 1.79 0.09
N-pentane 1.79 0.10

to T300 in addition to T100 feed reduction. The two
butane splitters (BS100 and BS300) are now the bot-
tlenecks together with the stabilizers. As expected, the
overall effect of the stricter quality limit is reduction in
the total plant feed. The reduction takes a long time,
however, because the bottleneck in the butane splitters
is quite far from the plant feeds.

5 Discussion

The main assumption behind the proposed coordinator
MPC (see (13)-(17)), is that optimal operation corre-
sponds to maximum throughput. This will always be
the case if the flow network (Gdyn) is linear because
we then have a LP problem. However, as discussed
in Section 2, even a nonlinear network will have maxi-
mum throughput as the optimal solution provided the
product prices are sufficiently high. Thus, the use of
a linear flow network model (Gdyn) in the coordina-
tor MPC is not a critical assumption. The coordinator
identifies the maximum throughput solution based on
feedback about the remaining capacity in the individ-
ual units, and the main assumption for the network
model is that the gains (from feed rates to remaining
capacities) have the right sign. Nevertheless, a good
network model, both static and dynamic, is desired
because it improves the dynamic performance of the
coordinator MPC.

In this application, the remaining capacity is ob-
tained for individual units. However, in some cases,
for example, reactor-recycle systems, it may be better
to consider system bottlenecks caused by the combina-
tion of several units (Aske et al., 2007).

By using a decoupled strategy based on the remain-
ing feed capacity in each unit, the coordinator MPC
exploits the already existing models in the local MPCs.
This leads to a much smaller modelling effort com-
pared to alternative approaches, like RTO based on
a detailed nonlinear model of the entire plant. The
computation time in the coordinator MPC is small,
and facilitates fast corrections of disturbances, model
errors and transient dynamics. The coordinator MPC
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effectively solves the DRTO problem with acceptable
accuracy and execution frequency.

An alternative coordinator MPC strategy would be
to combine all the local MPCs into one large combined
MPC application including the throughput manipula-
tors. However, for a complete plant the application
will be over-complex leading to challenging modelling
and maintenance. The improvement by using a com-
bined approach compared to our simple coordinator
MPC is expected to be minor since the set points to
the MPC are not coordinated. Set point coordination
would require a nonlinear model for the entire plant,
for example, RTO.

A back off from the maximum throughput in the
units is necessary due to unmeasured disturbances and
long process response times. The back off should be
selected according to the control performance and ac-
ceptable constraint violations. In general, the back
off can be reduced by improving the dynamic network
model and including more plant information to allow
for feed-forward control. For example, feed composi-
tion changes could be included in the coordinator MPC
to improve performance. Due to the lack of fast and ex-
plicit feed composition measurements in the plant, feed
composition changes are treated as unmeasured distur-
bances in the simulations in the current concept. How-
ever, the concept can be extended by using intermedi-
ate flow measurements as indicator for feed composi-
tion changes. Therefore, the use of alternative model
structures that will simplify and propagate model cor-
rections from intermediate flow measurements should
be evaluated.

The most effective way of reducing the back off is
to introduce throughput manipulators that are located
closer to the bottlenecks. This reduces the dynamic
response time and gives tighter control of the flow
through the bottleneck. In the case study, the crossover
flow introduces a throughput manipulator in the mid-
dle of the plant, which improves the throughput control
of the units downstream the crossover. It is also possi-
ble to include additional dynamic throughput manip-
ulators that make use of the dynamic buffer capacity
in the various units and intermediate tanks in the net-
work.

The coordinator requires that the local MPC are well
tuned and work well. If the local MPC is not well
tuned, a larger back off is needed to avoid constraint
violation in the coordinator MPC. In the case study,
the BS300 MPC should be retuned to give less oscilla-
tions at high throughputs.

The term ”coordinator” is used by some authors
(Venkat, Rawlings, and Wright and Cheng, Forbes, and
Yip) to describe coordination of multiple MPCs where
the coordinator is at the level above and generates set

points to the local MPCs. In this work the term ”co-
ordinator” is used in the meaning of coordinating the
flow through the plant, and the coordinator at the same
level in the control hierarchy as the local MPCs (see
Figure 1). However, the tuning is assumed to be done
sequentially, with the local MPCs being closed before
obtaining the flow network model and tuning the coor-
dinator MPC.

6 Conclusion

In many cases, optimal operation is the same as max-
imum throughput. In terms of realizing maximum
throughput there are two issues, first identifying bot-
tleneck(s) and second, implementing maximum flow at
the bottleneck(s). The first issue is solved by using the
models and constraints from the local unit MPC ap-
plications to obtain an estimate of the remaining feed
capacity of each unit. The second issue is solved using
a standard MPC framework with a simple linear flow
network model. The overall solution is a coordinator
MPC that manipulates on plant feeds and crossovers to
maximize throughput. The coordinator MPC has been
tested on a dynamic simulator for parts of the K̊arstø
gas plant, and it performs well for the simulated chal-
lenges.
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