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Abstract

A set of new iterative solutions to the inverse geometric problem is presented. The approach is general
and does not depend on intersecting axes or calculation of the Jacobian. The solution can be applied
to any manipulator and is well suited for manipulators for which convergence is poor for conventional
Jacobian-based iterative algorithms. For kinematically redundant manipulators, weights can be applied
to each joint to introduce stiffness and for collision avoidance. The algorithm uses the unit quaternion
to represent the position of each joint and calculates analytically the optimal position of the joint when
only the respective joint is considered. This sub-problem is computationally very efficient due to the
analytical solution. Several algorithms based on the solution of this sub-problem are presented. For
difficult problems, for which the initial condition is far from a solution or the geometry of the manipulator
makes the solution hard to reach, it is shown that the algorithm finds a solution fairly close to the solution
in only a few iterations.
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1 Introduction

In general, motion control is performed in operational
space or joint space (Khalil and Dombre, 2002). Oper-
ational space control has the advantage that the end-
effector position and orientation are given in the Carte-
sian space. For operational space control, the trans-
formation from operational to joint space is obtained
by solving the inverse kinematic problem, which finds
the joint velocities from the desired end-effector veloc-
ities. Operational space control has many advantages
and is fast to compute. A drawback is that it strongly
depends on the inverse Jacobian and that the trans-
formation from operational to joint space is performed
inside the feedback loop so that the time-step of the
controller strongly depends of the complexity of this
transformation (Perdereau et al., 2002).

For joint space control, the transformation from op-
erational space to joint space is obtained by solv-
ing the inverse geometric problem, i.e. to find
the joint positions from the desired end-effector po-
sition/orientation. Then some joint space control
scheme, independent of the task, can be designed. The
disadvantage of this approach is that the inverse ge-
ometrics is a time-consuming problem to solve. The
advantage is that the transformation from operational
to joint space is moved outside the control loop. When
kinematic redundancy is present, the inverse geometric
approach also allows for optimising a general secondary
criteria, and does not depend on finding a suitable in-
verse of the Jacobian, such as the Moore-Penrose gen-
eralised inverse, as for the inverse kinematic problem.

Another advantage of the inverse geometric approach
is that each joint can be controlled more directly and
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given the desired characteristics such as joint stiffness,
energy consumption, maximum velocity and obstacle
avoidance. For the inverse Jacobian approach these
characteristics must be added through the choice of
the Jacobian. In some cases, such as the minimisation
of energy through the Moore-Penrose, this is both ef-
ficient and elegant, but for other characteristics such
an inverse Jacobian may be very hard or impossible to
find.

Closed-form solutions to the inverse geometric prob-
lem are only known for certain types of robotic ma-
nipulators, so numerical approaches are widely studied
and in many cases, such as for most redundant manipu-
lators, represent the only solution to the problem. Nu-
merical solutions are in general more time-consuming
than closed-form solutions and are hence more suitable
for off-line path planning. The results presented in this
paper are based on the preliminary results presented in
From and Gravdahl (2007). Here the inverse geomet-
ric problem is treated as a pure optimisation problem.
This allows the programmer to include a secondary ob-
jective which is used to give the manipulator motion
the desired characteristics (Grudic and Lawrence, 1993;
Wang and Chen, 1991; Luenberger, 2003). When re-
dundancy is present, the redundant degrees of freedom
are used to optimise this objective.

The novelty of the method presented is that the min-
imum of the cost function with respect to each joint is
found analytically and this is exploited to develop a set
of computationally efficient algorithms. The solution
is shown for a cost function representing the position
and orientation error of the end effector but can be
expanded to include a general class of cost functions
representing both global and local objectives.

Six algorithms are presented. The first three use co-
ordinate descent which looks at one joint at the time.
It is well known that the convergence of coordinate
descent is slower than steepest descent and Newton’s
method. The advantage is that the analytic solution
presented is a lot faster to solve than search algorithms
in general. The last three methods can be looked upon
as approximations of steepest descent where the gradi-
ent is estimated. It is argued that the step size can be
set as a constant. Hence, an analytic and computation-
ally efficient alternative to both the search direction
and the step size of the steepest descent is presented.

It is shown that the algorithms that approximate the
steepest descent have very good convergence and reli-
ability for difficult problems. However, for easy prob-
lems, when the initial guess is close to the solution, the
convergence is better for conventional Jacobian-based
algorithms than the algorithms presented in this pa-
per. For problems for which the Jacobian-based algo-
rithms have poor convergence or reliability, the algo-

rithms presented are a better choice. A combination
of the algorithms presented may give good and reliable
performance for difficult problems but also reasonably
good convergence close to the solution.

2 Representing Rotations

2.1 The Unit Quaternion

Any positive rotation φ about a fixed unit vector n can
be represented by the quadruple (Kuipers, 2002)

Q =

[
q0
q

]
, (1)

where q0 ∈ R is known as the scalar part and q ∈ R
3 as

the vector part. The unit quaternionQ(φ,n) is written
in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n, (2)

where n is unitary. Note that Q and −Q repre-
sent the same rotation. This is referred to as the
dual covering. The quaternion identity is given by

QI =
[
1 0 0 0

]T
. A multiplication of two quater-

nions is given by a quaternion product and is written
in vector algebra notations as

P ∗Q =

[
p0q0 − p · q

p0q + q0p + p × q

]
. (3)

Let P =
[
p0 p1 p2 p3

]T
and Q =

[
q0 q1 q2 q3

]T
. A multiplication of two quater-

nions can then be written as the quaternion product
as

P ∗Q =





p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 + p2q0 + p3q1 − p1q3
p0q3 + p3q0 + p1q2 − p2q1



 . (4)

A pure quaternion is a quaternion with zero scalar

part. Any vector, v̄ =
[
x y z

]T
can be represented

by a pure quaternion v =
[
0 v̄

T
]T

. The conjugate of
a quaternion is defined as

Q∗ =
[
q0 −q1 −q2 −q3

]T
. (5)

2.2 Quaternions and Rotations

Let a vector, v̄1, be represented by the pure quaternion
v1. This vector can be rotated the angle φ about the
axis n by (Kuipers, 2002)

v2 = Q ∗ v1 ∗Q
∗. (6)
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Every vector v̄ ∈ R
3 can be represented by a pure

quaternion, hence v is not necessarily a unit quater-
nion. The quaternion Q(φ,n) however is unitary. This
represents the angle and the axis that the vector v̄1

is to be rotated about. The resulting vector, v̄2, is
then of the same length as v̄1 if and only if Q is a unit
quaternion. The quaternion representation also leads
to a useful formula for finding the shortest rotation
from one orientation to another. Let P and Q be two
orientations. Then, by taking

E = P ∗ ∗Q, (7)

E will rotate P into Q by the shortest rotation. That
is, E is the quaternion, out of all the quaternions that
take P into Q, with the largest scalar part and thus
the smallest angle.

Note that Equation (7) rotates one frame into an-
other frame. By a frame is meant a coordinate system
in R

3 using Cartesian coordinates. One frame with
respect to another frame represents three degrees of
freedom and is referred to as an orientation. Equation
(6) rotates one vector into another vector and has two
degrees of freedom, in the same way as a point on a
sphere can be defined by two coordinates. A unit vec-
tor with respect to a unit reference vector is referred to
as a direction. Henceforth, when referred to direction,
this is the direction of the z-axis of the body frame
with respect to the z-axis of the reference frame, as
the z-axis of the end effector is our main concern in
this paper.

3 Quaternion Space Metric

The axis of a revolute joint, represented in the coordi-
nate frame of the joint, is always constant. This is used
in the following to simplify the computations. First the
proximity of two frames is discussed, then this is ap-
plied to each joint to find the optimal position of the
joint. By optimal position is meant the position of the
joint that minimises the end effector orientation error,
position error, or both.

There are many ways to represent the proximity or
distance between two orientations (Yuan, 1988; Wen
and Kreutz-Delgado, 1991; Hanson, 2006). One exam-
ple which is proportional to the length of the geodesic
path on the 4-dimensional unit sphere is

Ψr = arccos (e0) (8)

where e0 is taken from E = P ∗ ∗Q. The cost function
in (8) can be identified with a physical property and
is a metric function. The formal proof that (8) is a
metric function is given in the Appendix. The geodesic
path describes the shortest path from one orientation

to another. Choosing that path on the 4-dimensional
unit sphere gives a well-defined and computationally
efficient metric.

A computationally more efficient cost function rep-
resenting the rotational part is given simply by

Ψr = 1 − e0. (9)

This cost function lacks the property that it can be
identified with a physical property directly and it is
not a metric function. Also, its minimum is given by
e0 = ±1, for which the two orientations are identical,
and the maximum is given by zero, for which the ori-
entations point in the opposite directions. However,
due to the light computational complexity, this cost
function turns out to be very efficient.

A cost function on SE(3) will depend on the weigh-
ing of the rotational and translational part. On its
general form, it is given by

Ψ = wtΨt + wrΨr (10)

where wt and wr are the weights, the translational part,
Ψt is chosen as the standard Euclidean norm and the
rotational part is the metric in (8)

Ψ = wt ‖p0 − p1‖ + wr arccos (e0). (11)

or alternatively the cost function in (9)

Ψ = wt ‖p0 − p1‖ + wr(1 − e0). (12)

Definition 3.1 (Quaternion Space Proximity)
Given two orientations represented by the two quater-
nions P and Q. Let the error quaternion be denoted

E = P ∗ ∗Q. (13)

Then the scalar part of E, e0, describes the proximity
of the two frames.

Definition 3.2 (Minimal Rotation) The bigger
(closer to 1)1 the error quaternion scalar part e0, the
closer are the two orientations P and Q.

That this is a perfectly good description of the prox-
imity of two frames even though it does not represent
a physical property directly. The geodesic path can,
however, be found through Equation (8) .

Consider the set of orientations for which the identity
frame is rotated about the z-axis. The problem to find
the orientation Pz from this set that is closest to some
arbitrary orientation Q is considered.

1Note that an equally good description of proximity is given
when e0 approaches −1. As cos(ψ

2
) is positive for ψ in the

chosen interval (−π, π), the positive value of e0 is chosen.

79



Modeling, Identification and Control

Proposition 3.1 (Optimal Rotation) Consider an

orientation Q =
[
q0 q1 q2 q3

]T
. The orientation

described by the quaternion Pz =
[
p0 0 0 p3

]T
that

is closest to Q (by Definitions 3.1 and 3.2) is given by

p0 =
±sq0√
q20 + q23

(14)

p3 =
±sq3√
q20 + q23

(15)

where the two ±s have the same sign.

Proof E = P ∗ ∗Q can be written

[
e0
e3

]
=

[
p0 p3

−p3 p0

] [
q0
q3

]
(16)

[
e1
e2

]
=

[
p0 p3

−p3 p0

] [
q1
q2

]
(17)

By Definitions 3.1 and 3.2, the quaternion Pz that is
closest to Q is found by the error quaternion with e0
closest to 1.

e0 = p0q0 + p3q3 (18)

= q0 cos(
ψ

2
) + q3 sin(

ψ

2
). (19)

de0
dψ0

= −
q0

2
sin(

ψ

2
) +

q3

2
cos(

ψ

2
). (20)

Let de0
dψ0

= 0. Then

tan(
ψ

2
) =

q3

q0
. (21)

Then by using arctan(x) = arcsin
(

x√
1+x2

)
(Bron-

shtein et al., 2003), ψ is written as

ψ = 2 arctan(
q3

q0
) (22)

= 2 arcsin




q3
q0√

1 + ( q3
q0

)2



 (23)

= 2 arcsin

(
q3√
q20 + q23

)
. (24)

From the definition of the quaternion

ψ = 2 arcsin(p3). (25)

By comparing Equations (24) and (25), Equa-
tion (15) is given. Similarly, by arctan(x) =

arccos
(

1√
1+x2

)
sgn(x),

ψ = 2 arctan(
q3

q0
) (26)

= 2 arccos



 1√
1 + ( q3

q0
)2



 sgn(
q3

q0
) (27)

= 2 arccos

(
q0√
q20 + q23

)
sgn(

q3

q0
). (28)

Note that the sign of ψ = 2 arccos(p0)sgn(ψ) is given
by Equation (25). Hence, Equation (14) is found. For
ψ to be in the interval (−π, π), the sign ±s is chosen
so that e0 is positive.

Similar results are found when P rotates about the
x- and y-axis. The largest rotation is given when e0 is
close to zero.

e0 = p0q0 + p3q3 (29)

= q0 cos(
ψ

2
) + q3 sin(

ψ

2
) = 0. (30)

tan(
ψ

2
) = −

q0

q3
. (31)

Similar to the proof of Proposition 3.1, the orientation
Pz furthest away from Q is given by

p0 =
±sq3√
q20 + q23

(32)

p3 =
±tq0√
q20 + q23

(33)

where the ±s and ±t have opposite signs.

4 Optimisation Algorithms

4.1 Descent Methods

This section presents some important approaches to
solve a general optimisation problem by iterative algo-
rithms (Luenberger, 2003).

Definition 4.1 (Descent Algorithm) An algo-
rithm that for every new point generated, decreases
the corresponding value of some function, is called a
descent algorithm.

If an algorithm is not descent, it is not guaranteed
that the cost function decreases at every iteration. This
property is desirable, but not required. Luenberger
(2003) shows that the first order necessary condition
is satisfied (∇f = 0) for descent algorithms. A simi-
lar proof cannot be given for algorithms that are not
descent.
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4.2 Steepest Descent

The most common method for the minimisation of a
function of several variables is the steepest decent, or
the gradient method. The steepest descent is given by
the iterative algorithm

xk+1 = xk − αk∇f(xk)T (34)

where αk is a non-negative scalar minimising f(xk −
αk∇f(xk)). αk is found by a search in the direc-
tion of the negative gradient for a minimum of this
line. Convergence to a point where ∇f(x) = 0 can be
proven (Luenberger, 2003).

4.3 Coordinate Descent Methods

The coordinate descent algorithm optimises a given
cost function f(x), x ∈ R

n, by sequentially minimis-
ing with respect to each of the components, xi, for
i = 1 . . . n. The convergence of coordinate descent is in
general poorer than the steepest descent. Coordinate
descent is, however, easy to implement and, as the gra-
dient is not required, a fast solution to the sub-problem
makes these algorithms relatively fast.

4.4 Position and Orientation Error

This section presents a set of algorithms that solve the
inverse geometric problem as seen from one joint. The
solution of this sub-problem is the basis for all the al-
gorithms presented in the next sections. Assume that
only one joint can be moved, and consider the problem
of finding the joint position which minimises the given
cost function. All the algorithms presented are based
on the analytical solution of a minimisation problem on
SE(3). This analytical solution guarantees that every
sub-problem is computationally very efficient.

In the following, the principal cost function, repre-
senting the position and orientation error is presented.
All cost functions presented are well-defined. If the cost
function is extended to also include some secondary
objective, this will depend on the task, and must be
worked out in each case. The problem is solved for
revolute joints only.

The algorithms in this section are based on two dif-
ferent optimisation problems. One with the position
and orientation treated separately, and one where the
cost function represents the sum of the position and
orientation error. In this case the solution depends on
the choice of units. As angles and lengths cannot sim-
ply be added together, care must be taken.

4.4.1 Position Cost Function

Let the desired position Pd =
[
0 xd yd zd

]T

and current position Pc =
[
0 xc yc zc

]T
of the

end effector be given in the frame of joint i. As-
sume that the current position can be rotated about
the z-axis, and hence represents one degree of free-
dom, given by all quaternions on the form Qz =[
cos (ψ2 ) 0 0 sin (ψ2 )

]T
for −π < ψ < π. Then,

the solution to the problem of finding the quaternion
that takes Pc as close to Pd as possible is given by
minimising

gp(ψ) = (xd − x̂c)
2 + (yd − ŷc)

2 + (zd − ẑc)
2, (35)

where

P̂c = Qz ∗ Pc ∗Q
∗
z. (36)

By noting that

P̂c =





0
x̂c
ŷc
ẑc



 =





0
xc cosψ − yc sinψ
yc cosψ + xc sinψ

zc



 for − π < ψ < π,

(37)

gp(ψ) can be written as

gp(ψ) = Kψ + aψ cos (ψ) + bψ sin (ψ), (38)

where

Kψ = x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2zdzc, (39)

aψ = −2(xdxc + ydyc), (40)

bψ = 2(xdyc − ycxd). (41)

Similarly when the freedom is given about the y-axis,
gp(θ) is given by

gp(θ) = Kθ + aθ cos (θ) + bθ sin (θ), (42)

where

Kθ = x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2ydyc, (43)

aθ = −2(xdxc + zdzc), (44)

bθ = 2(zdxc − xdzd). (45)

The rotation that minimises the position error of the

end effector is given by setting
dgp(ψ)

dψ = 0 and
dgp(θ)

dθ =
0:

ψmin = arctan2

(
bψ

aψ

)
± π, (46)

θmin = arctan2

(
bθ

aθ

)
± π (47)
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for a rotation about the z- and y-axes, respectively. In
order to choose the solution that corresponds to the
minimum and not the maximum value of g, choose the
solution for which

d2gp(θ)

dθ2
> 0. (48)

Which solution to choose can also be determined by
the following lemma.

Lemma 4.1 Given a function g(θ) on the form

g(θ) = K + a cos (θ) + b sin (θ), (49)

evaluated on −π < θ < π. Let θmin minimise g(θ).
Then the following is always true

b > 0 ⇒ θmin < 0, (50)

b < 0 ⇒ θmin > 0. (51)

Proof The lemma is proved by contradiction. Let
θmin minimise g(θ). Assume that b > 0 and θmin >

0. Then on the interval −π < θ < π, we have
that a cos (θmin) = a cos (−θmin) and b sin (θmin) >

b sin (−θmin). Thus we have that g(θmin) > g(−θmin)
which is a contradiction as θmin was assumed to min-
imise g(θ). Similarly for b < 0.

4.4.2 Orientation Cost Function

Similarly, the orientation error can be given by the dif-
ference between the desired orientation D and the cur-
rent orientation C. Let D and C be given in the frame
of joint i and let Ĉ = Qz ∗C represent all the reachable
orientations by rotating about the z-axis.

Ĉ = Qz ∗ C =





c0 cos (ψ2 ) − c3 sin (ψ2 )

c1 cos (ψ2 ) − c2 sin (ψ2 )

c2 cos (ψ2 ) + c1 sin (ψ2 )

c3 cos (ψ2 ) + c0 sin (ψ2 )



 , (52)

for − π < ψ < π

The orientation error is then given by

go(ψ) =(d0 − ĉ0(ψ))2 + (d1 − ĉ1(ψ))2

+ (d2 − ĉ2(ψ))2 + (d3 − ĉ3(ψ))2

=2 − 2(c0d0 + c1d1 + c2d2 + c3d3) cos (
ψ

2
)

+ 2(c3d0 + c2d1 − c1d2 − c0d3) sin (
ψ

2
). (53)

go(ψ) can be written as

go(ψ) = Kψ + cψ cos (
ψ

2
) + dψ sin (

ψ

2
), (54)

where

Kψ = 2, (55)

cψ = −2(c0d0 + c1d1 + c2d2 + c3d3), (56)

dψ = 2(c3d0 + c2d1 − c1d2 − c0d3). (57)

Similarly when the y-axis is the revolute axis.

go(θ) =2 − 2(c0d0 + c1d1 + c2d2 + c3d3) cos (
θ

2
)

+ 2(c2d0 − c3d1 − c0d2 + c1d3) sin (
θ

2
). (58)

go(θ) can then be written as

go(θ) = Kθ + cθ cos (
θ

2
) + dθ sin (

θ

2
), (59)

where

Kθ = 2, (60)

cθ = −2(c0d0 + c1d1 + c2d2 + c3d3), (61)

dθ = 2(c3d0 + c2d1 − c1d2 − c0d3). (62)

The advantage of this approach is that the cost func-
tion can be used as an error measure directly. The
quaternion representation also allows the optimal ro-
tation to be computed somewhat faster, but then the
error function needs to be calculated separately as
in Johnson (1995) and From (2006).

4.5 Orientation and Position Cost

Function

The total position and orientation error can be given
by g(ψ) = gp(ψ) + go(ψ). gp(ψ) and go(ψ) are taken
from Equations (38) and (54), respectively, so that the
minimum of g(ψ) is given by

dg(ψ)

dψ
= 0 (63)

where

dg(ψ)

dψ
= bψ cos (ψ)+dψ cos (

ψ

2
)−aψ sin (ψ)−cψ sin (

ψ

2
).

(64)
This can be turned into an equation of degree four
which can be solved analytically, for example by Fer-
rari’s method. This will give four solutions. The solu-
tion that results in the smallest value of g(ψ) is then
chosen.

However, by avoiding the half angles in Equation
(64), the solution is found simply by the inverse tangent
and the computational complexity is reduced. In Wang
and Chen (1991) a ψ is found by maximising g(ψ). In
the following, a cost function, representing the sum of
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the position and orientation error is presented. This
cost function can then be used as a threshold limit
directly, which was not the case in Wang and Chen
(1991). The approach resembles the one in Ahuactzin
and Gupka (1999), but allows the programmer to weigh
the importance of the position and orientation error.

The cost function can be written as a function of
ψ by representing the desired orientation of each joint
by a rotation of the three unit vectors by xQd = Qd ∗
ei ∗ Q

∗
e.

yQd and zQd are constructed similarly from
ej and ek where ei, ej , ek are the unitary axes. Then
the unitary axes are transformed by the quaternion Qd
into

xQd = Qd ∗ ei ∗Q
∗
d =





0
q20 + q21 − q22 − q23
2(q1q2 + q0q3)
2(q1q3 − q0q2)



 , (65)

yQd = Qd ∗ ej ∗Q
∗
d =





0
2(q1q2 − q0q3)
q20 − q21 + q22 − q23
2(q0q1 + q2q3)



 , (66)

zQd = Qd ∗ ek ∗Q
∗
d =





0
2(q0q2 + q1q3)
2(q2q3 − q0q1)
q20 − q21 − q22 + q23



 . (67)

Then the cost function can be written as

g(ψ) = wpgp(ψ) + wogo(ψ) (68)

where wp and wo are constant weights, gp(ψ) is given
by Equation (38) and gp(ψ) is found similarly by rep-
resenting the difference between the desired position of
the unitary axes and the current position of the same
axes. The desired position for the x-axis is given by
xQd =

[
0 xxd

xyd
xzd
]
. Assume that the z-axis

is the revolute axis. Then the position of the unitary
x-axis is given by xQc =

[
0 cos (ψ) sin (ψ) 0

]
and

the difference is written as

xgo(ψ) =(xxd−cos (ψ))2 + (xyd−sin (ψ))2 + (xzd−0)2

= 2 − 2xxd cos (ψ) − 2xyd sin (ψ), (69)

and similarly for the y- and z-axes. By adding these
three to Equation (38), g(ψ) can be written as

g(ψ) = wpgp(ψ) + wo(
xgo(ψ) + ygo(ψ) + zgo(ψ))

= Kψ + aψ cos (ψ) + bψ sin (ψ) (70)

where

Kψ = wp
(
x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2zdzc
)

+ wo (6 − 2zzd) ,

aψ = −2wp(xdxc + ydyc) − 2wo(
xxd + yyd),

bψ = 2wp(xdyc − ydxc) + 2wo(
yxd −

xyd).

Similarly when the y-axis is the revolute axis

g(θ) = Kθ + aθ cos (θ) + bθ sin (θ) (71)

where

Kθ = wp
(
x2
d + y2

d + z2
d + x2

c + y2
c + z2

c − 2ydyc
)

+ wo (6 − 2yyd) ,

aθ = −2wp(xdxc + zdzc) − 2wo(
xxd + zzd),

bθ = 2wp(zdxc − xdzc) + 2wo(
xzd −

zxd).

The minimum of the cost function, with respect to each
joint, is given by Equation (46) and the error is given
by E = K + a (set ψ = θ = 0 in (70) and (71)).

For redundant manipulators, the cost function can
be expanded to include an addition term

g(ψ) = wpgp(ψ) + wogo(ψ) + wrgr(ψ). (72)

Whenever gr can be written on the form of (70) the
same analytical solution to the sub-problem can be
found. This is a large class of cost functions that allows
a great variety of secondary objectives to be included
in the cost function, such as distance to obstacles and
elbow position.

Note also that for the pointing task, Equation (70)
reduces to

g(ψ) = wpgp(ψ) + wo
zgo(ψ) (73)

which is widely used in applications such as spray
painting, welding and high pressure water jets. In this
case only the direction of the end-effector tool is con-
sidered and thus the computational complexity is re-
duced.

5 Solutions to the Inverse

Geometric Problem

5.1 Algorithm 1 - Coordinate Descent

The coordinate descent algorithm optimises a cost
function with respect to each of the variables of the
cost function (Wang and Chen, 1991). That is, for each
joint in the chain, the minimum of the cost function,
when only the respective joint is moved, is found.

There are several different ways the algorithm can
work its way through the chain:

• Start from the end and work its way towards the
base.

• Start from the base and work its way towards the
end.
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• Start from one end and sweep its way towards
the other and then back (Aitken double sweep
method).

• If the gradient is known, select the coordinate (in
this case the joint) that corresponds to the largest
(in absolute value) component of the gradient vec-
tor (Gauss-Southwell Method, presented in the
Section 5.2).

The cost function must be objective, i.e. independent
of the coordinate frame in which it is measured (Lin
and Burdick, 2000), and preferably describing some
physical property, as the sum of the position and orien-
tation error. Objectivity is important because all the
calculations are done in local coordinates, and thus the
coordinate frame changes for each iteration. Objectiv-
ity is in this case sufficient to guarantee that the algo-
rithm is descent and convergent (to a point satisfying
the first order necessary condition). The cost function
should also be computationally efficient, i.e. the mini-
mum of the cost function should be found analytically.

The cost function presented in Section 4.5 have these
properties. This cost function, together with an algo-
rithm that starts from the end and moves its way to-
wards the base, is a fast and stable algorithm. The
cost functions representing rotation or orientation er-
ror only are also well-defined on SO(3) and R

3, re-
spectively. They can also be combined as described in
Section 4.5 to a metric function on SE(3). Caution
must be taken when dealing with metrics on SE(3), as
it will depend on the choice of units and an unfortu-
nate implementation of the algorithm may cause the
algorithm to fail to converge. This is, as will be clear
in the following, for example the case when iteratively
optimising with respect to orientation and position er-
ror.

Three different approaches are presented:

Algorithm 1a: Loop until the error is under a
threshold limit or a maximum number of iterations
is performed.

• for each joint, in a pre-defined order, find the
joint position that locally minimises the po-
sition error of the end-effector, as in Section
4.4.1.

• for each joint, in a pre-defined order, find the
joint position that locally minimises the orien-
tation error of the end-effector, as in Section
4.4.2.

Algorithm 1b: Loop until the error is under a
threshold limit or a maximum number of iterations
is performed. For each joint, in a pre-defined order

• find the joint position that locally minimises
the position error of the end-effector, as in
Section 4.4.1.

• find the joint position that locally minimises
the orientation error of the end-effector, as in
Section 4.4.2.

Algorithm 1c: Loop until the error is under a
threshold limit or a maximum number of iterations
is performed. For each joint, in a pre-defined order

• Minimise a cost function representing the sum
of the position and orientation error, as in Sec-
tion 4.5.

The change of reference frame on the cost function
must be studied. The cost function needs to be objec-
tive, as defined in Lin and Burdick (2000), if not, the
algorithm may fail to converge. A well defined met-
ric function will guarantee that the the value of the
cost function does not change with the change of refer-
ence frame which again means that it does not change
with the joint. The cost function must also be so that
the total error decreases when iterating between SO(3)
and R

3 such as in Algorithms 1a and 1b. This is not
guaranteed by just successively iterating between po-
sition and orientation as a decrease in the orientation
error might cause an increase in the position error and
vice versa. There is no guarantee that the total error
decreases for every iteration.

5.2 Algorithm 2 - Modified

Gauss-Southwell

The Gauss-Southwell Method determines the largest
component of the gradient ∇g(x) and chooses this for
descent. This sub-section presents an alternative ap-
proach, where the minimum of the cost function is
found for each joint. The joint that corresponds to the
smallest possible value of the cost function is then cho-
sen. This is found simply by Equation (46). This ap-
proach is computationally more efficient than to com-
pute the gradient. It will also converge faster (at least
in the beginning) because the joint that corresponds to
the maximum possible decrease of the cost function is
always chosen. This algorithm is descent.

5.3 Algorithm 3 - Gauss-Southwell

The method presented above can be modified some-
what so that each joint is chosen by the steepest de-
scent instead of maximum possible descent. Assume
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Figure 1: General structure of a robotic manipulator.

that the position of each joint that results in the min-
imum of the cost function g(x) is found. Denote this
by x̂ki for joint i and iteration k. The rate of decrease
with respect to this joint is estimated by

∂g(xki )

∂xki
≈
g(x̂ki ) − g(xki )∣∣x̂ki − xki

∣∣ , for i = 1 . . . n. (74)

This is a good estimate only when
∣∣x̂ki − xki

∣∣ is small.
Then the joint with the largest corresponding absolute
value of the “gradient” is chosen. This approach is
different from the solution given in Section 5.2 in that
not only the absolute minimum is taken into account,
but also how much the manipulator has to move reflects
the choice of search direction, which leads to a more
energy preserving solution. The joint update is then
given by

xk+1
i = xki + wi(x̂

k
i − xki ), with 0 < wi ≤ 1. (75)

5.4 Algorithm 4 - Steepest Descent

Equation (74) gives information about all the joints.
This information can be exploited by applying (75) to
all the joints for every iteration. As the optimal posi-
tion of each joint is found, assuming that all the other
joints are fixed, the weights 0 < wi ≤ 1 need to be
chosen conservatively. As this approach requires ap-
proximately the same computational burden as the ap-
proach in the previous section but all joints are moved,
the convergence can be improved substantially. The
algorithm is not descent, and convergence cannot be
proven. This is due to the fact that Equation (74) is
an estimate of the gradient and not the actual gradi-
ent. In some cases the wi’s must be chosen very small
which makes the convergence very slow.

5.5 Algorithm 5 - Manipulator Dependent

Steepest Descent

The manipulator structure can be taken into account
to improve convergence. For instance if two joints work

in the same “direction” in the operational space, they
should be scaled down so that the sum of the two joints
will result in the desired movement, and not each one
looked at separately. By studying the structure of the
manipulator in Figure 1, joint 1 is seen to be very much
decoupled from the others when it comes to the effect
on the end-effector position and orientation, and thus
xk+1

1 is set close to x̂k1 . Joint 2 and 3, however, are
strongly coupled, so w2,3 should be set to about 0,5.
The three wrist joints should also be scaled due to cou-
pling. In addition, this scaling vector should be scaled
down somewhat by a factor 0 < ws ≤ 1, to ensure con-
vergence. The following scaling vector is suggested for
a manipulator with a structure similar to the one in
Figure 1:

W = ws
[
1 0.5 0.5 0.3 0.3 0.3

]
. (76)

As the previous algorithm, this algorithm is not de-
scent. However, ws can be set so that the behaviour
of the algorithm resembles that of a descent algorithm.
This is done at the cost of fast convergence. A simple
approach to make the algorithm behave like a descent
algorithm is to perform a test for every iteration to
check whether the cost function has decreased or not.
Then, if it has not, ws should be reduced until a de-
crease in the cost function is obtained. For the steepest
descent, a decrease of the cost function can be guaran-
teed as w → 0. As ∇g(x) is only an approximation of
the gradient, this cannot be guaranteed in this case.

5.6 Algorithm 6 - Steepest Descent with

Gradient Estimate

Equation (74) can also be used to make an estimate of
the gradient of the cost function. If the absolute sign
is removed, the gradient of g(xk) can be estimated as

∇̂g(xk) ≈





g(x̂k
1
)−g(xk

1
)

x̂k
1
−xk

1

...
g(x̂k

n)−g(xk
n)

x̂k
n−xk

n




(77)

As g(x) is on the form of (70),
∣∣∣∇̂g(xki )

∣∣∣ ≤
∣∣∇g(xki )

∣∣ for

all i so that ∇̂g(x) is a conservative estimate of ∇g(x).
Now, Equation (77) can be applied to Equation

(34) directly. The “step size” can be set similar to
Equation (76) with (somewhat conservatively) ws =
mini=1...n

∣∣x̂ki − xki
∣∣. When the solution approaches

zero, the it can be simplified to ws =
∣∣x̂k1 − xk1

∣∣.
It should be noted that when Equation (75) is ap-

plied to all joints, or the estimate of the gradient is
applied in Equation (34), the algorithm is not descent.
Again, however, the behaviour of the algorithm can be
made descent by choosing the weights conservatively.
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The steepest descent with gradient estimate differs
from Algorithm 4 steepest descent in that for the steep-
est descent the optimal solution for each joint looked
at separately is found, and then the update is done for
all joints. For the steepest descent with the gradient
estimate is the well known steepest descent method,
but with an estimate of the gradient.

6 Numerical Examples

All the inverse geometric algorithms have been tested
for a great variety of problems with the cost functions
given in Sections 4.4 and 4.5. For comparison, the same
test has also been done for a Jacobian-based inverse ge-
ometric algorithm. The Jacobian-based algorithm used
in the simulations is an iterative algorithm based on the
pseudo-inverse of the manipulator Jacobian, as the one
presented in Robotics Toolbox (Corke, 1996). The con-
vergence of the algorithms are tested for very difficult
problems and very easy problems. Difficult problems
are problems for which the solution is very far from
the initial guess or the geometric considerations makes
it difficult to “move” the manipulator from the initial
condition to the solutions. For the easy problems the
initial guess is chosen close to one of the solutions. 20
difficult and 20 easy problems are chosen and conver-
gence is investigated for the two cases for all algorithms
presented. The convergence for easy and difficult prob-
lems for all algorithms presented are plotted with re-
spect to iterations and time in Figures 4-7.

6.1 Algorithm 1 - Coordinate Descent

The conventional CCD presented in Section 5.1 is com-
putationally fast. The convergence of the CCD algo-
rithms can be found in Figures 2-3. The following al-
gorithms are tested:

• Alg1a (6 → 1)

• Alg1b (6 → 1)

• Alg1c (6 → 1)

• Alg1c (1 → 6)

• Alg1c (double sweep)

where Alg1x refers to the algorithms in Section 5.1
and (6 → 1) means that the algorithm works its way
through the chain from the end effector to the base.

It is clear that the first two algorithms that optimise
iteratively between orientation and rotation error are
not descent and convergence is poor. It is found that
optimising with respect to one criteria, while disregard-
ing the other, will not necessarily decrease the sum of
the two cost functions.

The three algorithms presented that are based on a
cost function representing the sum of the orientation
and position error are all descent algorithms and con-
vergence is reasonably good due to the analytical so-
lution of each sub-problem. The algorithm that starts
at the base and works its way towards the end of the
chain has fastest convergence in the beginning an also
finds the most accurate solution. The fast analytical
solution to the sub-problem, presented in Section 4.5
makes this algorithm reasonably good. Alg1c (6 → 1)
is chosen to compare convergence in Figures 4-7.

6.2 Algorithm 2 - Modified

Gauss-Southwell

Gauss-Southwell is computationally slower as it finds
the minimum for all the joints but only one joint is
chosen for decrease. As the Modified Gauss-Southwell
finds the minimum possible value of the cost function
by moving one joint only, it has the best convergence
in the beginning among the algorithms that move only
one joint at the time. This makes this algorithm a
very good choice when an approximate solution to the
problem is needed. Convergence is very good for 5-10
iterations. After this the convergence flattens out and
one should switch to another algorithm to find an exact
solution.

6.3 Algorithm 3 - Gauss-Southwell

Also the Gauss-Southwell has good convergence in the
beginning, but only for about 5 iterations. Then it
flattens out and the closest solution found is farther
from the desired solution than for the Modified Gauss-
Southwell. The algorithm easily gets stuck, and for the
majority of the problems, it does not converge toward
a correct solution. The algorithm can only be said to
perform satisfactory for the first few iterations.

6.4 Algorithm 4 - Steepest Descent

The Steepest Descent moves all joints for every iter-
ation which results in very good convergence. For a
weight w ≈ 0.5, the behaviour of the algorithm is very
stable and a very accurate solution is found reason-
ably fast. This is the algorithm presented that best
competes with the Jacobian approach when the initial
condition is close to a solution. Also for more difficult
problems, this is the algorithm that finds the most ac-
curate solution if many iterations are allowed.
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Alg1a − Coordinate Descent, 6−>1
Alg1b − Coordinate Descent, 6−>1
Alg1c − Coordinate Descent, 6−>1
Alg1c − Coordinate Descent, 1−>6
Alg1c − Coordinate Descent, double sweep

Figure 2: Convergence of Coordinate Cyclic Descent Algorithms that move one joint at the time. Initial condi-
tions is set far from a solution.
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Figure 3: Convergence of Coordinate Cyclic Descent Algorithms that move one joint at the time. Initial condi-
tions is set close to a solution.
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Figure 4: Convergence of algorithms with initial conditions far from a solution.
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Figure 5: Convergence of algorithms with initial conditions far from a solution with respect to time.
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Figure 6: Convergence of algorithms with initial conditions close to solution.
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Figure 7: Convergence of algorithms with initial conditions close to solution with respect to time.
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6.5 Algorithm 5 - Manipulator Dependent

Steepest Descent

The convergence of the Manipulator Dependent Steep-
est Descent is about the same as the Steepest Descent,
but convergence is better in the beginning for difficult
problems. An algorithm that applies a few (5-10) iter-
ations of the Manipulator Dependent Steepest Descent
and then changes to Steepest Descent will give a fast
and reliable algorithm which is easy to implement as
the two algorithms are almost equal when it comes to
implementation.

6.6 Algorithm 6 - Steepest Descent with

Gradient Estimate

The Steepest Descent with Gradient Estimate is hard
to tune and the weights need to be chosen relatively
small for the algorithm to behave stable. This results
poor convergence. The convergence is about the same
as the Coordinate Descent methods, but the compu-
tational complexity makes this algorithm slower. The
weight used in the simulations was ws = 0.05.

6.7 Iteration Speed

The simulations were performed on an 2GHz processor.
Table 1 shows the iteration speed of each algorithm.
For algorithms 1-6, this is the time needed to analyti-
cally solve the optimisation problem and to update the
joint position and the value of the objective function.

Algoritm Iteration Speed [ms]
Alg0 3.85
Alg1 2.62
Alg2 12.36
Alg3 12.46
Alg4 18.87
Alg5 18.88
Alg6 15.27

Table 1: Iteration speed of each algorithm

7 Conclusions

A new class of solutions to the inverse geometric prob-
lem is presented. Convergence is found to be very good
for problems which cannot be solved efficiently or can-
not be solved at all with Jacobian-based algorithms.
For all tests, an approximate solution was found in
only a few iterations. The analytical solution to the
sub-problem guarantees computational efficiency. A
combination of the algorithms presented will give a

stable and fast solution to any inverse geometrics prob-
lem. For problems with initial condition close to a solu-
tion, conventional Jacobian-based algorithms converge
faster. The algorithms presented are thus well suited
to find an initial condition for the Jacobian-based algo-
rithms in order to improve convergence and guarantee
that a solution is found.
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Appendix I - Formal Metric Proof

A metric on a set X is a function

Ψ : X ×X → R (78)

which for all x, y, z ∈ X satisfy the following conditions

1. Ψ(x, y) ≥ 0

2. Ψ(x, y) = 0 if and only if x = y

3. Ψ(x, y) = Ψ(y, x)

4. Ψ(x, z) ≤ Ψ(x, y) + Ψ(y, z)

Let U define the set of all quaternions of unit length

U={(q0, q1, q2, q3)|q0, q1, q2, q3 ∈ R, q20+q21+q
2
2+q

2
3 = 1}

(79)
Further let e0 be the scalar part of E = P ∗ Q∗ given
by

e0 = p0q0 + p1q1 + p2q2 + p3q3. (80)

We will, without loss of generality, assume that all an-
gles are in the interval −π ≤ φ ≤ π.

Proposition 7.1 The function

Ψr = U × U → R (81)

given by Ψr = arccos(e0), is a metric function.

Proof For all P,Q,R ∈ U we have

1. Ψ(P,Q) ≥ 0
We have

−1 ≤ e0 ≤ 1 ⇒ arccos(e0) ≥ 0. (82)
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2. Ψ(P,Q) = 0 if and only if P = Q

We have
arccos(e0) = 0 (83)

if and only if
e0 = 1 (84)

for which P = Q.

3. Ψ(P,Q) = Ψ(Q,P )

Ψ(P,Q) = arccos(p0q0 + p1q1 + p2q2 + p3q3) =

arccos(q0p0 + q1p1 + q2p2 + q3p3) = Ψ(Q,P ).
(85)

4. Ψ(P,R) ≤ Ψ(P,Q) + Ψ(Q,R)
By definition the rotation E = P ∗ R∗ takes P
into R by the shortest rotation. This is obtained
by the rotation

φPR = 2 arccos (ePR0 ) (86)

where ePR0 is the scalar part of P ∗ Q∗. Thus we
have that

φPR ≤ φPQ + φQR. (87)

Because the rotation from P to Q followed by the
rotation from Q to R also take P into R, and from
(86) and (87) we have

φPR ≤ φPQ + φQR

1

2
φPR ≤

1

2
φPQ +

1

2
φQR

arccos (ePR0 ) ≤ arccos (ePQ0 ) + arccos (eQR0 )

Ψ(P,R) ≤ Ψ(P,Q) + Ψ(Q,R) (88)

which concludes the proof.

Finally we show, by contradiction that the function

Ψr = U × U → R (89)

given by Ψr = 1 − e0, is not a metric function.
Given the triangular inequality

Ψ(P,R) ≤ Ψ(P,Q) + Ψ(Q,R))

(1 − ePR0 ) ≤ (1 − e
PQ
0 ) + (1 − e

QR
0 )

−ePR0 ≤ −(ePQ0 + e
QR
0 − 1)

ePR0 ≥ e
PQ
0 + e

QR
0 − 1 (90)

Consider the following rotations

P =
[
1 0 0 0

]T

Q =
[
cos (φ2 ) 0 sin (φ2 ) 0

]T

R =
[
cos (2φ

2 ) 0 sin (2φ
2 ) 0

]T
(91)

Then we have that both P ∗R∗ and P ∗Q∗ followed by
Q ∗R∗ will take P into R. If we set φ = 0.1 we have

e
PQ
0 = 0.9988

e
QR
0 = 0.9988

ePR0 = 0.9950 (92)

and we have

0.9950 ≥ 0.9988 + 0.9988− 1

0.9950 ≥ 0.9975 (93)

and thus a contradiction.
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