
Modeling, Identification and Control, Vol. 29, No. 2, 2008, pp. 51–58

Observer Design for Second-Order Distributed

Parameter Systems in R
2

Tu Duc Nguyen 1

1Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim,

Norway. E-mail: Tu.Duc.Nguyen@itk.ntnu.no

Abstract

Observer design for second-order distributed parameter systems in R
2 is addressed. Particularly, second

order distributed parameter systems without distributed damping are studied. Based on finite number
of measurements, exponentially stable observer is designed. The existence, uniqueness and stability of
solutions of the observer are based on semigroup theory.
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1 Introduction

Observer design for dynamic systems has been exten-
sively studied by numerous of authors (see e.g. An-
derson and Moore (1990),Balas (1999),Gauthier and
Kupka (2001),Luenberger (1979),Nijmeijer and (eds.)
and references therein). Most of these observers were
mainly developed for dynamic systems described by
ordinary differential equations (ODEs), i.e. finite-
dimensional models. There exist few results for dy-
namic systems described by partial differential equa-
tions (PDEs), i.e. infinite-dimensional models. Par-
ticularly, for second order distributed parameter sys-
tems. Traditionally, observers for infinite-dimensional
model are designed via finite dimensional models, i.e.
some finite-dimensional approximation scheme is ap-
plied to the infinite-dimensional model, e.g. finite el-
ement method, finite difference method, finite volume
method, etc., and a set of n-2nd order ODEs is ob-
tained. These n-2nd order ODEs are then converted
into a vector first order form, and observers for the orig-
inal system are then designed after this step. The main
drawback of this approach is the loss of the advanta-
geous algebraic structure of the second-order systems.
Additionally, this approach does not ensure that the es-
timated states are the estimates of the true state. This

is argued in great details in Balas (1999),Demetriou
(2004).

In Smyshlyaev and Kristic (2005), Smyshlyaev and
Krstic considered backstepping observers for a class
of parabolic PDEs. Vazquez and Krstic Vazquez and
Krstic (2005) presented a nonlinear PDE observer for
the channel flow Navier-Stokes system. Bounit and
Hammouri Bounit and Hammouri (1997) studied ob-
server design for infinite dimensional bilinear systems,
described by vector first order systems. Balas Balas
(1999) considered observer design for linear flexible
structures described by FEM. Recently, Xu et al. Xu
and Sallet (2006) considered infinite dimensional ob-
servers for vibrating systems. Kalman type observers
were proposed, and it was shown that the observer er-
ror system might become unstable for large observer
gain. In (Demetriou (2004),Kristiansen (2000)), a
method for construction of observer for linear second
order distributed parameter systems is presented. The
damping forces were included in both cases. Thus,
exponentially stable observers can easily be designed.
In (Nguyen and Egeland (2003),Nguyen and Ege-
land (2006)), as opposed to the work of (Demetriou
(2004),Kristiansen (2000)), observer design for one di-
mensional second order distributed parameter systems
without strictly positive damping is studied. This note
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extends the approach in Nguyen and Egeland (2006)
to two dimensional second-order distributed parame-
ter systems. The main analysis tool is the semigroup
theory.

The paper is organized as follows. First, a model
of the system is presented. Then, observer design is
studied. Finally, concluding remarks are given.

2 System Model

We consider dynamic systems of the form

ρwtt + Cwt + Kw = Bu, (x, t) ∈ Ω × R
+ (1)

where

Kw =
2
∑

i=1

(−1)i ∇i
(

ki∇
i
w
)

Cwt = c0wt +

2
∑

i=1

(−1)i ∇i
(

ci∇
i
wt

)

K is the stiffness operator of the system with stiffness
coefficients ki > 0, C denotes the damping operator of
the system with damping coefficients ci ≥ 0, Ω ⊂ R

2 is
the domain of definition, ρ represents the mass density
of the flexible structure, w(x, t) ∈ H2p

0 (Ω) ⊂ H2p (Ω)
is the vertical displacement of the structure at x ∈ Ω
and time t ≥ 0, u(x, t) ∈ U is the control signal gen-
erated at x ∈ Ω and time t ≥ 0, B : U → L2 (Ω)
is the input operator (typically of type L (U , L2 (Ω)),
i.e. a bounded linear operator that maps from U to
L2 (Ω)), U is the space of input signals, and the stan-
dard spaces L2 (Ω), Hm (Ω) and Hm

0 (Ω) are for the
sake of clarity given below. The subscript (·)t denotes
the partial differential with respect to t. This notation
will be applied throughout the paper.

The boundary conditions associated with (1) are
given as

w = 0, Γ0 × R
+(2)

k1∇w · n = 0, Γ0 × R
+(3)

k2∇
2
w = 0, Γ1 × R

+(4)
2
∑

i=1

(−1)i−1 ∇i−1
(

ki∇
i
w
)

· n+cΓwt = 0, Γ1 × R
+(5)

where cΓ > 0 is the boundary damping coefficient, Γi

are the boundaries of the domain Ω, and n is the unit-
normal vector of Γi pointing outward of Ω.

The initial conditions of (1)-(5) are denoted as

w (x, 0) = W0 (x) , Ω (6)

wt (x, 0) = V0 (x) , Ω (7)

where Ω = Ω∪Γ, Γ = Γ0∪Γ1, W0 and V0 are the initial
position and velocity functions of the flexible structure,
respectively.

Note that with p = 1 and p = 2, we get the damped
membrane equation and plate equation, respectively,

ρwtt = −Cwt + ∇ (k1∇w) + Bu, Ω × R
+

ρwtt = −Cwt −∇2 (
k2∇

2
w
)

+ ∇ (k1∇w) + Bu, Ω × R
+

2.1 Basic Equalities, Inequalities and

Spaces

The most frequently used equalities, inequalities and
spaces in this note are collected here.

Let Ω be a bounded domain of R
n with smooth

boundary Γ. We denote the space of all equivalence
classes of real-valued Lebesgue-measurable functions
by Lp (Ω), 1 ≤ p ≤ ∞. Lp (Ω) is a Banach space with
the norm

‖w‖
Lp(Ω) =

(∫

Ω

| w |p dΩ

) 1
p

, 1 ≤ p < ∞

‖w‖
L∞(Ω) = ess sup

x∈Ω
|w (x)| , p = ∞

For m ∈ N, 1 ≤ p ≤ ∞, Wm,p (Ω) is defined to be the
Sobolev space consisting of all functions w in Lp (Ω)
whose distribution derivatives of order up to m are
also in Lp (Ω). It is known that Wm,p (Ω) is a Banach
space with the norm

‖w‖
W m,p(Ω) =





∑

|α|≤m

‖Dα
w‖p

Lp(Ω)





1
p

where α = {α1, . . . , αn} ∈ N
n, |α| = α1 + . . . + αn,

Dαw = ∂α1+···+αn w

∂x
α1
1

···∂x
αn
n

. When p = 2, the space Wm,p (Ω)

is denoted by Hm (Ω). It is well-known that the
Sobolev space Hm (Ω) is a Hilbert space with the cor-
responding inner product.

Now, let Ω be a bounded domain of R
2 and m ∈

{2, 3, 4, ...}. Consider the subspace of Hm (Ω) defined
as

H
m
0 (Ω) = {f | f,∇f, ...,∇m

f ∈ L2 (Ω) ,

f |Γ0
= ∇f · n|Γ0

= 0
}

(8)

where n is the unit-normal vector to Γ pointing out-
ward of Ω, and

L2 (Ω) =

{

f |

(∫

Ω

|f(x)|2 dx

) 1
2

< ∞

}

(9)

We have the Poincare inequality and Sobolev inequality
∫

Ω

|f |2 dx ≤ c1

∫

Ω

∣

∣

∣∇
j
f
∣

∣

∣

2

dx (10)

∫

Γ1

|f |2 dΓ ≤ c2

∫

Ω

∣

∣

∣
∇j

f
∣

∣

∣

2

dx (11)
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for j = 1, 2, ∀f ∈ Hm
0 (Ω), and some constants c1,c2 >

0.
The normal derivative of f(x) is defined as

∂f

∂n
= ∇f · n, Γ (12)

where n is the unit-normal vector to Γ pointing out-
ward of Ω. For f ∈ H1 (Ω) and g ∈ H2 (Ω), we have
the integral equalities

∫

Ω

∇2
g f dx =

∫

Γ

∇g · n fdΓ −

∫

Ω

∇g · ∇f dx (13)

∫

Ω

r · ∇f dx =

∫

Γ

r · n f dΓ −

∫

Ω

∇ · r f dx (14)

Let a,b ∈ R
2, we have

a · b ≤ (µ |a|)2 +

(

|b|

µ

)2

, µ ∈ R\ {0} (15)

2.2 Assumptions

We assume

A.1 ρ > 0, ki > 0, ci ≥ 0 , cΓ > 0 are constant, and

ci = αki, i = 1, 2

for some constant α ≥ 0.

A.2 Ω is rectangular or formed by smooth boundary Γ
such that the following holds

r · n ≤ 0, Γ0

r · n > 0, Γ1

where r = x and n is the unit-normal vector of Γi

pointing outward of Ω.

2.3 Problem Statement

This note addresses the problem:

Problem 1: Given the system (1)-(5) and measure-
ments,

yi (x, t) = wt · χi (x) , x ∈ Ωi, t ≥ 0

for i = 1, 2, . . . , N , where Ωi = ]x1,i − εi, x1,i + εi[ ×
]x2,i − εi, x2,i + εi[ ⊂ Ω, εi > 0 are small positive con-
stants, and χi : Ωi → R

+ are given smooth distribution
functions (Figure 1). Design an observer for the system
(1)-(5).

Figure 1: Distribution function χi

3 Observer Design

Copying the model (1)-(7) and adding output injection
terms, we get the observer

ρŵtt = − Cŵt −Kŵ + Bu

−

N
∑

i=1

Hi · (ŵt − yi) · χi, Ω × R
+ (16)

with the boundary conditions

ŵ = 0, Γ0 × R
+(17)

k1∇ŵ · n = 0, Γ0 × R
+(18)

k2∇
2
ŵ = 0, Γ1 × R

+(19)
2
∑

i=1

(−1)i−1 ∇i−1
(

ki∇
i
ŵ
)

· n+cΓŵt = 0, Γ1 × R
+(20)

and initial conditions

ŵ (x, 0) = Ŵ0 (x) , Ω (21)

ŵt (x, 0) = V̂0 (x) , Ω (22)

where ŵ denotes the estimate of w, Hi > 0 are the ob-
server gains, and Ŵ0 and V̂0 denote the initial position
and velocity functions of the observer, respectively.

Subtracting (16)-(22) by (1)-(7) gives the error dy-
namics

ρw̃tt = − Cw̃t −Kw̃ −

N
∑

i=1

Hiw̃tχi, Ω × R
+ (23)

with the boundary conditions

w̃ = 0, Γ0 × R
+(24)

k1∇w̃ · n = 0, Γ0 × R
+(25)

k2∇
2
w̃ = 0, Γ1 × R

+(26)
2
∑

i=1

(−1)i−1 ∇i−1
(

ki∇
i
w̃
)

· n+cΓw̃t = 0, Γ1 × R
+(27)

and initial conditions

w̃ (x, 0) = Ŵ0 − W0, x ∈ Ω (28)

w̃t (x, 0) = V̂0 − V0, x ∈ Ω (29)
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where w̃ = ŵ − w denotes the observer error.

Now, we divide the stability analysis of (23)-(29) into
two parts. First, the case where c0, α > 0, i.e. strictly
positive distributed damping, is studied. A Lyapunov-
like argumentation will be applied.

The second part treats the case where c0, α ≥ 0. To
show the well-posedness and stability of the observer
(16)-(22), the semigroup theory in combination with
the energy-multiplier method are applied. This is the
main contribution of the note.

3.1 Case 1: Strictly Positive Distributed

Damping

Let the damping coefficients be strictly positive, i.e.
ci > 0. Consider the Lyapunov functional

W (t, w̃, w̃t) = E + γ

∫

Ω

ρw̃tw̃ dx (30)

where E is the natural energy functional given as

E =
1

2

∫

Ω

ρw̃
2
t dx +

1

2

∫

Ω

2
∑

i=1

ki

∣

∣

∣
∇i

w̃
∣

∣

∣

2

dx

+
1

2

∫

Ω

2 (1 − ν)

[

(

∂2w̃

∂x1∂x2

)2

−
∂2w̃

∂x2
1

∂2w̃

∂x2
2

]

dx(31)

ν > 0 denotes the Poisson’s ratio, and γ > 0 is the Lya-
punov gain (to be determined below). The first term
and the last two terms represent the kinetic energy
and potential energy of the observer error dynamics
(23)-(27), respectively. Due to the boundary condi-
tions (24)-(27) and the assumption A.2, the Gaussian
curvature integral is zero I. and Dym (1991).

Neglecting the Gaussian curvature integral, and ap-
plication of (10) to (31) yields

W ≥
1

2

∫

Ω

ρw̃
2
t dx + γ

∫

Ω

ρw̃tw̃ dx

+
1

2

∫

Ω

k1

c1
|w̃|2 dx +

1

2

∫

Ω

k2

∣

∣∇2
w̃
∣

∣

2
dx

for some constant c1 > 0. Choosing

|γ| <

√

k1

ρc1
(32)

ensures that

W > 0, ∀ (w̃, w̃t) 6= 0

Assume now that the initial conditions (28)-(29) are
sufficiently smooth such that the problem (23)-(29) is
well-posed (see next sub-section and Remark 2). Tak-
ing the time derivative of (30) along the solution tra-

jectories of (23)-(27) gives

Ẇ =
10
∑

i=1

Ẇi

= −

∫

Ω

c0w̃
2
t dx −

∫

Ω

N
∑

j=1

Hjχjw̃
2
t dx

−

∫

Ω

w̃t

2
∑

i=1

(−1)i ∇i
(

ci∇
i
w̃t

)

dx

−

∫

Ω

w̃t

2
∑

i=1

(−1)i ∇i
(

ki∇
i
w̃
)

dx

+

∫

Ω

[

k1∇w̃ · ∇w̃t + k2∇
2
w̃ ∇2

w̃t

]

dx

+γ

∫

Ω

ρw̃
2
t dx − γ

∫

Ω

c0w̃w̃t dx

−γ

∫

Ω

w̃

2
∑

i=1

(−1)i ∇i
(

ci∇
i
w̃t

)

dx

−γ

∫

Ω

w̃

N
∑

j=1

Hjχjw̃t dx

−γ

∫

Ω

w̃

2
∑

i=1

(−1)i ∇i
(

ki∇
i
w̃
)

dx

Application of (13)-(14) and (24)-(27) to Ẇ3, Ẇ4, Ẇ8

and Ẇ10 give

Ẇ3 = −

∫

Ω

w̃t

2
∑

i=1

(−1)i ∇i
(

ci∇
i
w̃t

)

dx

=

∫

Γ

w̃tc1∇w̃t · n dΓ −

∫

Ω

[

c1 |∇w̃t|
2 + c2

∣

∣∇2
w̃t

∣

∣

2
]

dx

−

∫

Γ

w̃t∇
(

c2∇
2
w̃t

)

· n dΓ +

∫

Γ

c2∇
2
w̃t∇w̃t · n dΓ

= −

∫

Γ1

αcΓw̃
2
t dΓ −

∫

Ω

[

c1 |∇w̃t|
2 + c2

∣

∣∇2
w̃t

∣

∣

2
]

dx

Ẇ4 = −

∫

Ω

w̃t

2
∑

i=1

(−1)i ∇i
(

ki∇
i
w̃
)

dx

=

∫

Γ

w̃tk1∇w̃ · n dΓ −

∫

Ω

k1∇w̃t · ∇w̃ dx

−

∫

Γ

w̃t∇
(

k2∇
2
w̃
)

· n dΓ +

∫

Γ

k2∇w̃t · n∇
2
w̃ dΓ

−

∫

Ω

k2∇
2
w̃t∇

2
w̃ dx

= −

∫

Γ1

cΓw̃
2
t dΓ −

∫

Ω

[

k1∇w̃t · ∇w̃ + k2∇
2
w̃t∇

2
w̃
]

dx
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Ẇ8

γ
= −

∫

Ω

w̃

2
∑

i=1

(−1)i ∇i
(

ci∇
i
w̃t

)

dx

=

∫

Γ

c1w̃ ∇w̃t · n dΓ −

∫

Ω

c1∇w̃ · ∇w̃tdx

−

∫

Γ

w̃ ∇
(

c2∇
2
w̃t

)

· n dΓ +

∫

Γ

c2∇w̃ · n∇2
w̃t dΓ

−

∫

Ω

c2∇
2
w̃∇2

w̃t dx

= −

∫

Γ1

αcΓw̃w̃tdΓ −

∫

Ω

[

c1∇w̃ · ∇w̃t + c2∇
2
w̃∇2

w̃t

]

Ẇ10

γ
= −

∫

Ω

w̃

2
∑

i=1

(−1)i ∇i
(

ki∇
i
w̃
)

dx

=

∫

Γ

w̃k1∇w̃ · ndΓ −

∫

Ω

k1 |∇w̃|2 dx

−

∫

Γ

w̃ ∇
(

k2∇
2
w̃
)

· ndΓ +

∫

Γ

k2∇
2
w̃ ∇w̃ · ndΓ

−

∫

Ω

k2

∣

∣∇2
w̃
∣

∣

2
dx

= −

∫

Γ1

cΓw̃w̃tdΓ −

∫

Ω

[

k1 |∇w̃|2 + k2

∣

∣∇2
w̃
∣

∣

2
]

dx

Thus,

Ẇ = −

∫

Ω

(c0 − γρ) w̃
2
t dx −

∫

Ω

N
∑

j=1

Hjχjw̃
2
t dx

−

∫

Γ1

cΓ (1 + α) w̃
2
t dΓ

−

∫

Ω

[

c1 |∇w̃t|
2 + c2

∣

∣∇2
w̃t

∣

∣

2
]

dx

−γ

∫

Ω

c0w̃w̃t dx − γ

∫

Γ1

αcΓw̃w̃t dΓ

−γ

∫

Ω

[

c1∇w̃ · ∇w̃t + c2∇
2
w̃∇2

w̃t

]

dx

−γ

∫

Ω

w̃

N
∑

j=1

Hjχjw̃t dx − γ

∫

Γ1

cΓw̃w̃t dΓ

−γ

∫

Ω

[

k1 |∇w̃|2 + k2

∣

∣∇2
w̃
∣

∣

2
]

dx

Now, let γ > 0. Application of (15) yields

Ẇ = −

∫

Ω

(c0 − γρ) w̃
2
t dx

−

∫

Ω

N
∑

j=1

Hjχjw̃
2
t dx

−

∫

Γ1

cΓ (1 + α) w̃
2
t dΓ

−

∫

Ω

[

c1 |∇w̃t|
2 + c2

∣

∣∇2
w̃t

∣

∣

2
]

dx

+γ

∫

Ω

c0

[

(µ0w̃)2 +

(

w̃t

µ0

)2
]

dx

+γ

∫

Ω

c1

[

(µ1 |∇w̃|)2 +

(

|∇w̃t|

µ1

)2
]

dx

+γ

∫

Ω

c2

[

(

µ2∇
2
w̃
)2

+

(

∇2w̃t

µ2

)2
]

dx

+γ

∫

Γ1

αcΓ

[

(µ3w̃)2 +

(

w̃t

µ3

)2
]

dΓ

+γ

∫

Ω

N
∑

j=1

Hjχj

[

(µ4w̃)2 +

(

w̃t

µ4

)2
]

dx

+γ

∫

Γ1

cΓ

[

(µ5w̃)2 +

(

w̃t

µ5

)2
]

dΓ

−γ

∫

Ω

[

k1 |∇w̃|2 + k2

∣

∣∇2
w̃
∣

∣

2
]

dx, ∀µi ∈ R\ {0}

Using (10)-(11) gives

Ẇ = −

∫

Ω

[

c0 − γρ −
γc0

µ2
0

]

w̃
2
t dx

−

∫

Ω

N
∑

j=1

Hjχj

[

1 −
γ

µ2
4

]

w̃
2
t dx

−γ

∫

Ω

[

k1 − c0c1µ
2
0 − cΓc2

(

αµ
2
3 + µ

2
5

)

−c1µ
2
1 −

N
∑

j=1

Hj ‖χj‖∞ c1µ
2
4

]

|∇w̃|2 dx

−γ

∫

Ω

[

k2 − c2µ
2
2

] ∣

∣∇2
w̃
∣

∣

2
dx

−

∫

Ω

c1

[

1 −
γ

µ2
1

]

|∇w̃t|
2
dx

−

∫

Ω

c2

[

1 −
γ

µ2
2

]

∣

∣∇2
w̃t

∣

∣

2
dx

−

∫

Γ1

cΓ

[

1 + α −
γ

µ2
5

−
γα

µ2
3

]

w̃
2
t dΓ

for some constants c1,c2 > 0. By choosing µ0, . . . , µ5

and γ > 0 (such that (32) also holds) sufficiently small,
there exists a constant υ > 0 such that

Ẇ ≤ −υW , t > 0

Thus,
W (t) ≤ W (0) e−υt, t ≥ 0
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Hence, the origin (w̃, w̃t) = 0 of the observer error
dynamics (23)-(27) is exponentially stable. The result
is summarized in the following theorem:

Theorem 3.1 Let Hj > 0 be given. The origin
(w̃, w̃t) = 0 of (23)-(27) is exponentially stable.

Now, what happens if the damping coefficients c1

and c2 are not strictly positive? From the analysis
above, it is clearly that the parameter dependent Lya-
punov functional (30) is not applicable; since it de-
pends critically on the strictly positive damping prop-
erty of C. Using the natural energy metric (31), i.e.
ignoring the cross term in (30), it can be verified that
the observer error dynamics (23)-(27) are stable, i.e.

Ė = −

∫

Ω

w̃tCw̃t dx −

∫

Ω

N
∑

j=1

Hjw̃
2
t χj dx −

∫

Γ1

cΓw̃
2
t dΓ

The observer is thus stable, but the convergence of the
observer (16)-(20) to the plant (1)-(5) can not be con-
cluded. The inconclusive result will now be resolved
by using the semigroup theory.

3.2 Case 2: Non-strictly Positive

Distributed Damping

Let C = 0. Define q = (q1, q2) = (w̃, w̃t) and the spaces

H = H
2
0 (Ω) × L2 (Ω)

D(A) =
{

q ∈ H
4
0 (Ω) × H

2
0 (Ω)

∣

∣ ∇2
q1

∣

∣

Γ1
= 0,

2
∑

i=1

(−1)i−1 ∇i−1
(

ki∇
i
q1

)

· n+cΓq2

∣

∣

∣

∣

∣

Γ1

= 0







where Hm
0 (Ω) and L2 (Ω) are given by (8) and (9),

respectively. The observer error dynamics (23)-(29)
can be compactly written as

d

dt
q = Aq, t > 0; q0 ∈ H (33)

where

Aq =

[

q2 ,−
1

ρ

(

Kq1 +
N
∑

j=1

Hjq2χj

)]>

,∀q ∈ D(A)

and q0 = (w̃ (·, 0) , w̃t (·, 0)) ∈ H denotes the initial
condition of the problem.

In H , we define the inner product

〈f ,g〉H =

∫

Ω

ρf2g2 dx

+

∫

Ω

[

k1∇f1 · ∇g1 + k2∇2f1∇2g1

]

dx

where f = (f1, f2) ∈ H and g = (g1, g2) ∈ H . Note
that the natural energy (31) can be compactly ex-
pressed as

E =
1

2
〈q,q〉H =

1

2
‖q‖2

H , ∀q ∈ H

It can be verified that (H, 〈·, ·〉H) forms a Hilbert space.
We have the result:

Theorem 3.2 Let Hj > 0 be given. The operator A

generates a C0-semigroup
{

eAt
}

t≥0
of contractions on

H, and
{

eAt
}

t≥0
is exponentially stable.

Proof 1 To show the first assertion, we apply the
Lumer-Phillips theorem (see e.g. Pazy (1983)). It can
be verified that

〈q,Aq〉
H

= −

∫

Ω

N
∑

j=1

Hjw̃
2
t χj dx −

∫

Γ1

cΓw̃
2
t dΓ (34)

for every q ∈ D(A), which shows that A is dissipative.
Consider now the equation

(λI − A) f = g (35)

for some given λ > 0 and g = (g1, g2) ∈ H. By the
Lax-Milgram theorem (see e.g. Evans (1998)), it fol-
lows that (35) has a unique solution f ∈ D(A) for any
given g ∈ H and λ > 0. Thus, λI − A : H → H is
onto for all λ > 0.

Since (H, 〈·, ·〉H) is a Hilbert space, it follows from
the argument above and (Th. 4.6, p. 16, Pazy (1983))
that D(A) is dense in H, i.e. D(A) = H. Thus, A

generates a C0-semigroup
{

eAt
}

t≥0
of contractions on

H.

To show the last assertion, we use a combination of
the energy multipliers method and (Th. 4.1, p. 116,
Pazy (1983)). Define the functional

V (t) = 2 (1 − ε) tE (t) + U (t) , t ≥ 0 (36)

where ε ∈ ]0, 1[ is an arbitrary constant, E is given by
(31), and

U = 2

∫

Ω

r (x) · ∇w̃ρw̃t dx (37)

First, it can be verified that

|U (t)| ≤ 2

∫

Ω

|r (x)| · |∇w̃| ρ |w̃t| dx

≤ ‖r‖∞

∫

Ω

ρ
(

|∇w̃|2 + |w̃t|
2
)

dx

≤ KE (t)

for some constant K> 0. Hence, the following holds

[2 (1 − ε) t − K] E (t)≤ V (t)≤ [2 (1 − ε) t + K] E (t) (38)
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for t ≥ 0.
Next, taking the time derivative of (36) along solu-

tion trajectories of (33) gives

V̇ = 2 (1 − ε) E + 2 (1 − ε) tĖ +

4
∑

j=1

U̇j

where E and Ė are given by (31) and (34), respectively,
and

U̇1 = 2

∫

Ω

r · ∇w̃∇ (k1∇w̃) dx

=

∫

Γ

k1r · n |∇w̃|2 dΓ −

∫

Ω

k1∇ · r |∇w̃|2 dx

U̇2 = −2

∫

Ω

r · ∇w̃∇2 (
k2∇

2
w̃
)

dx

= −2

∫

Γ

r · ∇w̃∇
(

k2∇
2
w̃
)

· n dΓ

+2

∫

Γ

n·∇w̃ (∇ · r) k2∇
2
w̃ dΓ

+

∫

Γ

k2r · n
∣

∣∇2
w̃
∣

∣

2
dΓ

−3

∫

Ω

k2∇·r
∣

∣∇2
w̃
∣

∣

2
dx

U̇3 = −2

∫

Ω

r · ∇w̃

N
∑

j=1

Hjw̃tχj dx

≤
N
∑

j=1

2Hj ‖r‖∞

∫

Ω

[

(

w̃t

µ6

)2

+ (µ6 |∇w̃|)2
]

χj dx

U̇4 = 2

∫

Ω

r · ∇w̃tρw̃tdx

=

∫

Γ

ρr · n w̃
2
t dΓ −

∫

Ω

ρ∇ · rw̃2
t dx

for all µ6 ∈ R\ {0}, where (13)-(15) have been applied.

Hence,

V̇ ≤ −

∫

Ω

ρ [∇ · r − 1 + ε] w̃2
t dx

−

∫

Ω

[k1∇ · r − (1 − ε) k1

−

N
∑

j=1

2Hj ‖r‖∞ µ
2
6χj

]

|∇w̃|2 dx

−

∫

Ω

[3k2∇·r − (1 − ε) k2

−2cΓ ‖r‖∞ c2µ
2
7

] ∣

∣∇2
w̃
∣

∣

2
dx

−

∫

Ω

N
∑

j=1

2Hjχj

[

(1 − ε) t −
‖r‖∞
µ2

6

]

w̃
2
t dx

−

∫

Γ1

[

2 (1 − ε) cΓt − ρr · n − 2cΓ
‖r‖∞
µ2

7

]

w̃
2
t dΓ

−

∫

Γ1

k1r · n |∇w̃|2 dΓ −

∫

Γ0

k2 |r · n|
∣

∣∇2
w̃
∣

∣

2
dΓ

for t > 0 and ∀µ7 ∈ R\ {0}, where (11), (24)-(27)
and the assumption A.2 have been applied. Note that
∇ · r ≥ 1, r · n|

Γ0
≤ 0 and r · n|

Γ1
> 0.

Now, let ε ∈ ]0, 1[ be fixed and choose µ6, µ7 suffi-
ciently small. Thus, the following holds

V̇ (t) ≤ 0, t ≥ t1 (39)

for sufficiently large time,

t1 = max







‖r‖∞
(1 − ε)µ2

6

,
‖r‖∞

(

ρ + 2cΓ
µ2
7

)

2 (1 − ε) cΓ







Moreover, by (34) and (38)-(39), we have

E (t) ≤
K

2 (1 − ε) t − K
E (0) , t ≥ tmax

where

tmax = max

{

t1,
K

2 (1 − ε)

}

Since E (t) = 1

2
‖q (t)‖2

H , it follows that ‖q (t)‖H < ∞,

∀t ≥ 0, and decays as O
(

1/
√

t
)

for sufficiently large
time. Thus,

∫ ∞

0

‖q (t)‖2q
H

dt =

∫ ∞

0

∥

∥

∥
e
At

q0

∥

∥

∥

2q

H
dt < ∞

∀q> 1 and ∀q0 ∈ D (A). By density of D(A) in H,
the following also holds

∫ ∞

0

‖q (t)‖2q
H

dt < ∞

∀q> 1 and ∀q0 ∈ H. According to (Th. 4.1, p. 116,
Pazy (1983)), there exist constants M≥ 1 and κ > 0
such that

∥

∥

∥
e
At
∥

∥

∥

H
≤ Me

−κt
, t ≥ 0

i.e.
‖q (t)‖H ≤ Me

−κt ‖q (0)‖H , t ≥ 0

∀q (0) ∈ H.

Remark 3.1 Note that the stability analysis of the ob-
server (16)-(20) is based on the vector first order form,
i.e. (33). But the design and implementation of the
observers are based on the original form of the system,
i.e. (1)-(5). Hence, the advantageous algebraic struc-
tures of the system are preserved.

Remark 3.2 Let the control law u be designed such
that the closed loop system (1)-(7) is wellposed, i.e.
the closed loop system of (1)-(7) has a unique solution.
Since w̃(x, t) = ŵ(x, t)−w(x, t), it follows from Theo-
rem 2 that the observer (16)-(22) is wellposed.
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4 Conclusions

Observer design for second-order distributed parame-
ter systems in R

2 is studied. Based on finite number
of measurements, exponentially stable observer is de-
signed. The existence, uniqueness and stability of the
observer are based on semigroup theory.
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