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Abstract

The Smith-predictor is a well-known control structure for industrial time delay systems, where the basic ideais to
estimate the non-delayed process output by use of a process model, and to use this estimate in an inner feedback
control loop combined with an outer feedback |oop based on the delayed estimation error. The model used may be
either mechanistic or identified from input-output data. The paper discusses improvements of the Smith-predictor
for systems where also secondary process measurements without time delay are available as a basis for the primary
output estimation. The estimator may then be identified also in the common case with primary outputs sampled at
alower rate than the secondary outputs. A simulation example demonstrates the feasibility and advantages of the

suggested control structure.
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1 Introduction

Time delay systems are frequently encountered in industrial
control practice, and use of a Smith-predictor structureisa
well known strategy to follow (Seborg et al., 1989). The
basic idea is then to use a process model to obtain an es-
timate of the non-delayed system output to be used in an
inner feedback |oop, combined with an outer feedback loop
based on the delayed estimation error. The model used may
be either mechanistic or identified from input-output data.
In many industrial cases the process under control has
one primary output measurement y; (k) with a time delay,
and several secondary measurements ys (k) without time
delays. Asindicated in Figure 1, the measurements y» (k)
may together with the controller output w(k) be used as
inputs to an estimator for the primary property z(k) with-
out time-delay. The estimator thus replaces the traditional
Smith-predictor model. Since the secondary measurements
may carry valuable information about the process distur-
bance v(k), theestimate Z(k) may be considerably improved
by use of the additiona y»(k) information. The estima
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tor may be designed on the basis of a mechanistic process
model, including known noise covariances. It may, how-
ever, be more conveniently identified from experimental input-
output process data. Feedback or feedforward of y» (k) may
also be incorporated in the control structure.

In Figure 1 the noise sources v(k), w1 (k) and ws (k) are
assumed to be white. Thisis often areasonable assumption
for the measurement noise, while the process noise v (k)
may have to be modeled as filtered white noise, with the
filter included in the process model.

As also indicated in Figure 1 the primary output will in
many cases be sampled at alow and possibly also irregular
rate, i.e. y1(j) may bejust some of the high sampling rate
y1 (k) values. Thisistypically the case for product quality
measurements, where physical sampling and, e.g., chemical
analysis are necessary. A low primary output sampling rate
makes it necessary with a hold function in the outer feed-
back loop. Alternatively, the y;(j) measurements may be
compared with the corresponding r(j) reference values in
an outer feedback loop with integral action.

(© 2007 Norwegian Society of Automatic Control



Modeling, Identification and Control

ik 3 Simulated system

Time Yik Y1

delay Figure 2 shows a two-stage stirred-tank mixing processevher
the feed flow rate;z = 2 m3/min. is constant, while the
feed concentrationr(t) [kg/m?] varies arounds0 kg/m?.

The flow rateg 4 (t) = u(t) [m3/min.] is the manipulated in-

Controller

Time | Yik MJF put from the controller, while 4 = 800 kg/m?® is constant.
delay - The volumes ard; = 4 m® andV, = 3 m3, andz,(¢)
andz,(t) are the concentrations in the tanks. The primary
Hold ¢ output concentration; (t) is measured by a high quality an-

alytical instrument, causing a time del&y= 10 min. and
Figure 1: Modified Smith-predictor multirate control wtii requiring a corresponding sampling interval, while(t)
ing secondary process measurements. is measured by an instrument without time delay, but with
more measurement noise. The transportation time between
the tanks is considered negligible.

2 Estimator identification o -
F=Xs y

F
Identification of the estimator from experimental data with g Y1
bothy, (k) andu(k) as inputs may be performed by use dfA G =u

a prediction error method based on an underlying Kalman | O +0a

filter (Ljung, 1995). The time delay is then simply removed

by appropriate data shifting. In order to obtain a theoreti- Qb v \ >
cally optimal solution an output error (OE) structure must Vo X2 d@ n
be specified (Ergon, 1999a), although also an ARMAX struc- Vi X1 F 0

ture or a subspace identification method may provide good
enough results for practical use. The argument for an @fy re 2: Two-stage stirred-tank mixing process in simula-
structure is that neither past nor present non-delgyék) tion example.

values will be available during normal operation, and in

order to obtain correct Kalman gains they should thus not

be used in the identification stage. The identification isThe time varying feed concentratian:(t) = x3(t) is
straightforward whemy, (k) values are available at the samgodeled as

high rate ag» (k) andu(k), and the prediction error method

can also be modified to handle the low and even irregular i3 = —alrs(t) — 50] + v(t), (2

rimary output sampling rate case (Ergon, 1998). We the . . . .
Eﬂnimi};e thg criterio% fugnction (Erg ) W?lerEa = 0.05 min.~! andwv(t) is white noise. After an

Euler discretization with sampling interval the discrete-
time nonlinear process model is

I,
VN (0) = — — , (1)
V0= y b)) a1+ = [1= T a0+ Fautt)
where NV is the number ofj; (j) samples in the modeling + %U(k) [x2(k) — 21 ()]

set.
Tq Tq

In the low primary output sampling rate case itis still re- ~ z2(k+1) = {1 - VF] za(k) + TF%(’C) 3)

quired thaty, (k) andu(k) are sampled often enough in or- 2 ?

der to capture the dynamics of the process, and we thus have — Zu(k‘)xQ(k) + %u(k)

a multirate sampling identification problem. The standard V2 V2

initial value procedure based on a least squares identifica- #3(k + 1) = [1 — Ta] [z5(k) — 50] + v(k)
tion of an ARX model cannot then be used, and we have to y1(k) = z1(k) + wi(k)

resort to some ad hoc initial value method (Ergon, 1999b). yo (k) = zo(k) + wa(k),

Itis also required that the (j) data are representative, with

the same statistical distribution gs(k). Further note that where the sample rate is choser¥as: 0.5 min., and where
minimization of (1) in the multirate case is possible only fa(k), w; (k) andws (k) are white and independent noise se-
the OE structure, i.e. theoretical optimality coincideshwiquences with variances chosenrgs= 0.02, r; = 0.0001
practical feasibility. andry = 0.01.
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The process was controlled as shown in Figure 1, usin
proportional-integral controller given by

e(k) = r(k) —yi(k) +§1(k) — 2(k)

k
e(k)—i—;Ze(i)], @

<
—~

)
~

I

ug + K

whereuy = 0.1429, and where the controller parameter
were chosen a&, = 0.004 andT; = 34 min., based on
some trial and error starting with the Ziegler-Nichols cor |
tinuous cycling method (Seborg et al., 1989). For simplici

of notation, (4) assumes high rate sampling of the prime -
output, and must thus be appropriately altered in the mu

rate case, i.e. by using the output from the hold function __

Flgure l Instead 0(&1 (k) _ :gl (k) 0 10 20 30 40 samp|:?1umber 60 70 80 90 100
Figure 3: Segment of; (k) validation responses (centered
4 |dentification of estimator data) for initial ARMAX+LS estimator (dashed
line) and final OE estimator (solid line) in the
The process in Figure 2 was simulated according to (3), and multirate identification case. The ideal response
the estimator in Figure 1 was then identified from input- is shown by dotted line with o-markings at thie
output data. For comparison purposes three different esti- sampling instants.

mators were identified by use of the System Identification
Toolbox in Matlab (Ljung, 1995): . .
(Hung ) 5 Simulation results

An ordinary second-order Smith-predictor ust . . - .
* y P @) Simulation results for the control structure in Figure 1hwit

only as input andy, (k) as output was identified by i ) . 4
use of thearmaxfunction. The number of samplestr;]e pro_ce:;‘zg n Fljr)urebZ a;d thé 'dﬁqt'f'?d le;t'\lﬂrré?ztorslare
was in this caséV — 400. shown in Figure 4a, b and c. Each typica value

is based o100 Monte Carlo runs, and computed according

¢ A modified second-order Smith-predictor using boti? pr—
u(k) and yo(k) as inputs andy; (k) as output was
id(er)1tified b)E L)jse of the functio(pgm with an OE RMSE = ,10.001 Z (k) = (B (8)
model specified, and with/ = 400. k=501

Note that in the simulatio; (k) is known also in the low

e Finally, a modified second-order Smith-predictor Usampling rate case
ing low sampling rate datgy (j) as output was identi-  For the specific process in Figure 2, the control can also
fied by a modifiecoemfunction minimizing (1). The pe pased on feeding back the(k) signal instead of the
y1(j) sampling interval was in this cadg = 207" = 3(x) estimate, and holding only; (§) (Figure 4d). The best
10 min., i.e. the same as the time delBy= 10. The resylt is in fact achieved by feedback of batt{k) and the
number ofu(k) andy, (k) samples wasV, = 8000, (k) estimate (Figure 4e). These control structures using
i.e. the number of; (j) samples wasV' = 400. feedback ofy, (k) requires2r(k) as set point.

In all cases the input was a filtered pseudo-random binary
sequence (PRBS) with autocovarianggp) = 0.0016 - 6 Conclusions
(0.8)I7I, The initial value problem in the multirate sampling
case was solved by first identifying an ARMAX model witirhe modified Smith-predictor using also the secondary mea-
u(k) asinput andsz (k) as output, and then finding the statisurement information results in a considerably improved
relation between the model statéj) and the primary out- control performance, as compared with an ordinary Smith-
puty; (j) by an ordinary least squares (LS) method. Aftgredictor control structure. The primary output estimator
an appropriate similarity transformation, this gives d@tiah may be identified from recorded data also in the multirate
model for the OE estimator to be identified (Ergon, 1999gase with low primary output sampling rate. The modified
Typical validation responses for this procedure are sho8mith-predictor control structure in the simulation exdenp
in Figure 3. essentially keeps its good performance also when the pri-
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Figure 4: Step responses for different control structures
(with typical RMSE values based on 100 Monte
Carlo runs):

a) Ordinary Smith-predictor controlRM SE
0.52)

b) Modified Smith-predictor controlKM SE
0.23)

¢) Modified Smith-predictor control with low pri-
mary output sampling rateRM SE = 0.25)

d) Same as c) but feedback ¢f(k) instead of
the z(k) estimate, and holding; (k) only
(RMSE =0.19)

e) Same as c) but feedback gf(k) in addition to
the2(k) estimate RM SE = 0.14).

mary output sampling interval is twenty times the ordinary
sampling interval, and much longer than what is apparently
necessary in order to capture the dynamics in the system.
In the specific simulation example, additional improvement
was achieved by also feeding back the secondary measure-
ment.
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