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Abstract

The Smith-predictor is a well-known control structure for industrial time delay systems, where the basic idea is to
estimate the non-delayed process output by use of a process model, and to use this estimate in an inner feedback
control loop combined with an outer feedback loop based on the delayed estimation error. The model used may be
either mechanistic or identified from input-output data. The paper discusses improvements of the Smith-predictor
for systemswherealso secondary processmeasurementswithout timedelay areavailableasabasis for theprimary
output estimation. The estimator may then be identified also in the common case with primary outputs sampled at
a lower rate than the secondary outputs. A simulation example demonstrates the feasibility and advantages of the
suggested control structure.
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1 Int roduc tion

Timedelay systemsarefrequently encountered in industrial
control practice, and use of a Smith-predictor structure is a
well known strategy to follow (Seborg et al., 1989). The
basic idea is then to use a process model to obtain an es-
timate of the non-delayed system output to be used in an
inner feedback loop, combined with an outer feedback loop
based on thedelayed estimation error. Themodel used may
beeither mechanistic or identified from input-output data.

In many industrial cases the process under control has
one primary output measurement y1(k) with a time delay,
and several secondary measurements y2(k) without time
delays. As indicated in Figure 1, the measurements y2(k)
may together with the controller output u(k) be used as
inputs to an estimator for the primary property z(k) with-
out time-delay. The estimator thus replaces the traditional
Smith-predictor model. Since the secondary measurements
may carry valuable information about the process distur-
bancev(k), theestimate ẑ(k) may beconsiderably improved
by use of the additional y2(k) information. The estima-
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tor may be designed on the basis of a mechanistic process
model, including known noise covariances. It may, how-
ever, bemoreconveniently identified fromexperimental input-
output processdata. Feedback or feedforward of y2(k) may
also be incorporated in thecontrol structure.

In Figure 1 the noise sources v(k), w1(k) and w2(k) are
assumed to bewhite. This isoften a reasonableassumption
for the measurement noise, while the process noise v(k)
may have to be modeled as filtered white noise, with the
filter included in theprocess model.

As also indicated in Figure 1 the primary output will in
many cases be sampled at a low and possibly also irregular
rate, i.e. y1(j) may be just some of the high sampling rate
y1(k) values. This is typically the case for product quality
measurements, wherephysical sampling and, e.g., chemical
analysis are necessary. A low primary output sampling rate
makes it necessary with a hold function in the outer feed-
back loop. Alternatively, the y1(j) measurements may be
compared with the corresponding r(j) reference values in
an outer feedback loop with integral action.
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Figure 1: Modified Smith-predictor multirate control utiliz-
ing secondary process measurements.

2 Estimator identification

Identification of the estimator from experimental data with
bothy2(k) andu(k) as inputs may be performed by use of
a prediction error method based on an underlying Kalman
filter (Ljung, 1995). The time delay is then simply removed
by appropriate data shifting. In order to obtain a theoreti-
cally optimal solution an output error (OE) structure must
be specified (Ergon, 1999a), although also an ARMAX struc-
ture or a subspace identification method may provide good
enough results for practical use. The argument for an OE
structure is that neither past nor present non-delayedy1(k)
values will be available during normal operation, and in
order to obtain correct Kalman gains they should thus not
be used in the identification stage. The identification is
straightforward wheny1(k) values are available at the same
high rate asy2(k) andu(k), and the prediction error method
can also be modified to handle the low and even irregular
primary output sampling rate case (Ergon, 1998). We then
minimize the criterion function

VN (θ) =
1

N

N
∑

j=1

[y1(j) − ŷ1(j)]
2
, (1)

whereN is the number ofy1(j) samples in the modeling
set.

In the low primary output sampling rate case it is still re-
quired thaty2(k) andu(k) are sampled often enough in or-
der to capture the dynamics of the process, and we thus have
a multirate sampling identification problem. The standard
initial value procedure based on a least squares identifica-
tion of an ARX model cannot then be used, and we have to
resort to some ad hoc initial value method (Ergon, 1999b).
It is also required that they1(j) data are representative, with
the same statistical distribution asy1(k). Further note that
minimization of (1) in the multirate case is possible only for
the OE structure, i.e. theoretical optimality coincides with
practical feasibility.

3 Simulated system

Figure 2 shows a two-stage stirred-tank mixing process where
the feed flow rateqF = 2 m3/min. is constant, while the
feed concentrationcF (t) [kg/m3] varies around50 kg/m3.
The flow rateqA(t) = u(t) [m3/min.] is the manipulated in-
put from the controller, whilecA = 800 kg/m3 is constant.
The volumes areV1 = 4 m3 andV2 = 3 m3, andx1(t)
andx2(t) are the concentrations in the tanks. The primary
output concentrationx1(t) is measured by a high quality an-
alytical instrument, causing a time delayD = 10 min. and
requiring a corresponding sampling interval, whilex2(t)
is measured by an instrument without time delay, but with
more measurement noise. The transportation time between
the tanks is considered negligible.

Figure 2: Two-stage stirred-tank mixing process in simula-
tion example.

The time varying feed concentrationcF (t) = x3(t) is
modeled as

ẋ3 = −a [x3(t) − 50] + v(t), (2)

wherea = 0.05 min.−1 andv(t) is white noise. After an
Euler discretization with sampling intervalT, the discrete-
time nonlinear process model is

x1(k + 1) =

[

1 −

TqF

V1

]

x1(k) +
TqF

V1

x2(k)

+
T

V1

u(k) [x2(k) − x1(k)]

x2(k + 1) =

[

1 −

TqF

V2

]

x2(k) +
TqF

V2

x3(k) (3)

−

T

V2

u(k)x2(k) +
TcA

V2

u(k)

x3(k + 1) = [1 − Ta] [x3(k) − 50] + v(k)

y1(k) = x1(k) + w1(k)

y2(k) = x2(k) + w2(k),

where the sample rate is chosen asT = 0.5 min., and where
v(k), w1(k) andw2(k) are white and independent noise se-
quences with variances chosen asrv = 0.02, r1 = 0.0001
andr2 = 0.01.

16



Ergon, “Modified Smith-predictor multirate control utilizing secondary process measurements”

The process was controlled as shown in Figure 1, using a
proportional-integral controller given by

e(k) = r(k) − y1(k) + ŷ1(k) − ẑ(k)

u(k) = u0 + Kp

[

e(k) +
T

Ti

k
∑

i=1

e(i)

]

, (4)

whereu0 = 0.1429, and where the controller parameters
were chosen asKp = 0.004 andTi = 34 min., based on
some trial and error starting with the Ziegler-Nichols con-
tinuous cycling method (Seborg et al., 1989). For simplicity
of notation, (4) assumes high rate sampling of the primary
output, and must thus be appropriately altered in the multi-
rate case, i.e. by using the output from the hold function in
Figure 1 instead ofy1(k) − ŷ1(k).

4 Identification of estimator

The process in Figure 2 was simulated according to (3), and
the estimator in Figure 1 was then identified from input-
output data. For comparison purposes three different esti-
mators were identified by use of the System Identification
Toolbox in Matlab (Ljung, 1995):

• An ordinary second-order Smith-predictor usingu(k)
only as input andy1(k) as output was identified by
use of thearmax function. The number of samples
was in this caseN = 400.

• A modified second-order Smith-predictor using both
u(k) and y2(k) as inputs andy1(k) as output was
identified by use of the functionpem, with an OE
model specified, and withN = 400.

• Finally, a modified second-order Smith-predictor us-
ing low sampling rate datay1(j) as output was identi-
fied by a modifiedpemfunction minimizing (1). The
y1(j) sampling interval was in this caseT1 = 20T =
10 min., i.e. the same as the time delayD = 10. The
number ofu(k) andy2(k) samples wasN2 = 8000,
i.e. the number ofy1(j) samples wasN = 400.

In all cases the input was a filtered pseudo-random binary
sequence (PRBS) with autocovarianceru(p) = 0.0016 ·

(0.8)|p|. The initial value problem in the multirate sampling
case was solved by first identifying an ARMAX model with
u(k) as input andy2(k) as output, and then finding the static
relation between the model statex(j) and the primary out-
put y1(j) by an ordinary least squares (LS) method. After
an appropriate similarity transformation, this gives an initial
model for the OE estimator to be identified (Ergon, 1999b).
Typical validation responses for this procedure are shown
in Figure 3.

Figure 3: Segment ofy1(k) validation responses (centered
data) for initial ARMAX+LS estimator (dashed
line) and final OE estimator (solid line) in the
multirate identification case. The ideal response
is shown by dotted line with o-markings at thej

sampling instants.

5 Simulation results

Simulation results for the control structure in Figure 1 with
the process in Figure 2 and the identified estimators are
shown in Figure 4a, b and c. Each typical RMSE value
is based on100 Monte Carlo runs, and computed according
to

RMSE =

√

√

√

√0.001

1500
∑

k=501

[r(k) − y1(k)]
2
. (5)

Note that in the simulationy1(k) is known also in the low
sampling rate case

For the specific process in Figure 2, the control can also
be based on feeding back they2(k) signal instead of the
ẑ(k) estimate, and holding onlyy1(j) (Figure 4d). The best
result is in fact achieved by feedback of bothy2(k) and the
ẑ(k) estimate (Figure 4e). These control structures using
feedback ofy2(k) requires2r(k) as set point.

6 Conclusions

The modified Smith-predictor using also the secondary mea-
surement information results in a considerably improved
control performance, as compared with an ordinary Smith-
predictor control structure. The primary output estimator
may be identified from recorded data also in the multirate
case with low primary output sampling rate. The modified
Smith-predictor control structure in the simulation example
essentially keeps its good performance also when the pri-
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Figure 4: Step responses for different control structures
(with typical RMSE values based on 100 Monte
Carlo runs):

a) Ordinary Smith-predictor control (RMSE =
0.52)

b) Modified Smith-predictor control (RMSE =
0.23)

c) Modified Smith-predictor control with low pri-
mary output sampling rate (RMSE = 0.25)

d) Same as c) but feedback ofy2(k) instead of
the ẑ(k) estimate, and holdingy1(k) only
(RMSE = 0.19)

e) Same as c) but feedback ofy2(k) in addition to
the ẑ(k) estimate (RMSE = 0.14).

mary output sampling interval is twenty times the ordinary
sampling interval, and much longer than what is apparently
necessary in order to capture the dynamics in the system.
In the specific simulation example, additional improvement
was achieved by also feeding back the secondary measure-
ment.
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