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Recently, the authors introduced a preconditioner for the lincar systems that arise
from fully implicit Runge-Kutta time stepping schemes applied to parabolic PDEs see
Mardal (2005). The preconditioner was a block Jacobi preconditioner, where each of
the blocks were based on standard preconditioners for low-order time discretizations
like implicit Euler or Crank-Nicolson. It was proven that the preconditioner is optimal
with respect to the timestep and the discretization parameter in space.

In this paper we will improve the convergence by considering other precondi-
tioners like the upper and the lower block Gauss-Scidel preconditioners. both in a left
and right preconditioning setting. Finally, we improve the condition number by using
a generalized Gauss-Seidel preconditioner.

1. Introduction

Since theirs introduction in 1895, the Runge-Kutta schemes have proven to be
efficient for a variety of problems. For the solution of parabolic PDEs however, the fully
implicit schemes are not that widespread. The majority of these problems are computed
using either implicit Euler, Crank-Nicolson or some higher-order Backward Difterential
Formulas (BDF) scheme in time. They all result in a Helmholtz type of problem to be
solved for cach timestep.

Because of the quadrature of the fully implicit Runge-Kutta schemes. the system to
be solved increases in dimension for increasing number of quadrature nodes. In general.
for a problem where the space is discretized using m degrees of freedom. an s stage
scheme will result in a system to be solved of dimension sm X sm. In addition. although
the ODE system matrix is symmetric and positive definite. the matrix when the
Runge-Kutta scheme is employed is in general nonsymmetric and indefinite. and requires
different linear solvers.

Diagonal implicit Runge-Kutta schemes (DIRK) have been introduced to solve this
problem. They lead to s systems of dimension m X to be solved. where the symmetric
positive definite property is preserved. Unfortunately, this type of schemes suffer from
a severe kind of order reduction for stiff’ problems |Hairer & Wanner (1996). Chapter
IV.15], leading to first order convergence.

Fully implicit Runge-Kutta schemes have several desirable properties such as
high-order of accuracy. strong stability properties. both for linear and for some schemes
also for nonlincar differential cquations. They also lead to a simple implementation of
adaptivity. both with respeet to the timestep and the order. Hairer & Wanner (1999). It
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is therefore desirable to reduce the computational costs of solving the linear systems
arising when using Runge-Kutta methods on PDEs, in order to make them competitive
to multistep methods like BDF. We will do this by reusing efficient preconditioners for
the Helmholtz problem in a block preconditioner for the fully implicit Runge-Kutta
scheme. We will discuss both block Jacobi, and block Gauss-Seidel preconditioners, and
we will also discuss both left and right preconditioning.

To the authors’ knowledge the only former work on preconditioners for the fully
implicit Runge-Kutta schemes applied to parabolic equations is done in Van lent &
Vandewalle (2004). In Van lent & Vandewalle (2004) the time stepping system (see (7))
is preconditioned with a multigrid approximation of the fully coupled system, using a
block smoother.

The benefit of the preconditioner presented in this paper is the reuse of standard
preconditioner, both when it comes to code and theory. Only an efficient preconditioner
for the Helmholtz problem is needed to implement our block preconditioner. We do
however need a linear solver for a general non-symmetric, indefinite matrix, such as e.g.
GMRES.

The remaining of this paper is organized like this: Section 2 explains the discretiza-
tion of the problem, with emphasis on the resulting block structure from the Runge-Kutta
discretization in time. The preconditioner is presented in Section 3, and some important
properties are discussed. Section 4 presents a variety of numerical experiments, demon-
strating the effectiveness of the preconditioner. In Appendix A, some optimal
coefficients for the generalized lower block Gauss-Seidel preconditioner are presented.

2. Discretization of the problem

Let Q be a bounded polygonal domain in R, with d= 1,2 or 3, and boundary Q.
We will consider a parabolic PDE on the form

f)Lt—A +f, inQ, >0, (1)
at

u=0, on dQ), t=0 2)
u=ub, in Q, +=0, 3)

The equations (1)~(3) are discretized in space by a finite element method, which gives
a R"*" gystem of ODEs to be solved,

duy,
I _a'_tl_ = Awun +fi, t>0, 4

up = up, =0, (5)

where I, is the mass matrix and A, is the stiffness matrix.

When the equations (4)—(5) are discretized by single stage dlscretlzatlon schemes
such as implicit Euler, Crank-Nicolson or higher-order BDF schemes, we arrive at the
following sequence of linear systems to be solved at each time step

Iy + Sttty = It '+ 31(...), (6)

where Jt is the time stepping parameter and %, is a coefficient specific for the chosen
scheme. All higher-order single stage schemes result in more terms on the right hand
side, leaving the left hand side unchanged (except for the ay parameter). This means that
a Helmholtz solver has to be used to compute a single timestep.




Preconditioning of fully implicit Runge-Kutta schemes Jor parabolic PDEs 111

A Runge-Kutta scheme, applied to our model problem (1)-(2), can be written on the
form

gi= Ah(uz + Ot 2 Au&) + fit" + c;01) (7)
=

u"+|=u"+512bi8h i=1,...,s ®
i=1

where A; are the Runge-Kutta coefficients, b; are the quadrature weights and c; are the
quadrature nodes of the Runge-Kutta scheme, organized in the Butcher tableau

c| A
BT

To better understand the block structure arising from the Runge-Kutta system, we write
the scheme on matrix form

Iy —0tAnA, ... — OtA A
e ) . )
= 5IAS|A;, I, — 5!.4;_‘-A;.

We then have to solve Ag =b, where b is the right hand side given by (7). We notice
the block system, with Helmholtz problems on the diagonal, and Poisson problems on
the off-diagonals. This motivates us to reuse the preconditioner for the Helmholtz
problem.

We will here give a brief introduction to the different fully implicit Runge-Kutta
schemes. For a more thorough description, the reader is referred to Hairer & Wanner
(1996). The main difference between the families of fully implicit Runge-Kutta schemes
is the choice of quadrature nodes. It can either be the Gauss, the Radau or the Lobatto
quadrature. The methods based on the Gauss quadrature are stable for both linear and
nonlinear problems, and the order is 2s. In addition the schemes are symplectic (see
[Hairer et al. (1992), Chapter 11.16]). These methods wili be denoted Gs, where s is the
number of nodes. Note that G1 is the famous implicit midpoint scheme.

When choosing the Radau quadrature. we have to decide if we want the start or the
endpoint to be one of the quadrature nodes. We choose the endpoint, leading to very
attractive schemes for parabolic PDEs. The schemes are stable for both linear and
nonlinear problems, and the order is 25 — 1. In addition the schemes are stitfly accurate
[Hairer & Wanner (1996), Chapter IV.15). which is a very attractive property when
solving different PDEs. These methods will be denoted RIls, where Il notes that the
endpoint is one of the quadrature nodes. Note that RI/1 is the tamous implicit Euler
scheme.

By choosing the Lobatto quadrature nodes. we derive three subfamilies of schemes.
Two of the subfamilies have an explicit step. cither the first or the last quadrature node.
We will not discuss these schemes here. Instead we will focus on the subfamily with
only implicit quadrature points. These schemes are also stable for lincar and nonlinear
problems, and the order is 25 — 2. As for the R/l schemes, these schemes are also stiffly
accurate. We will denote them LCs, where C refers to the subfamily C.

Note that both the Gauss methods, and the Radaull methods are collocation methods.
As a consequence, methods of any given order are casily constructed.
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3. The Preconditioner
A general description of a preconditioned problem is
B ABX = Bb, x=3;'g,
where 8, and Bg is the left and the right preconditioner, respectively. It will be made

clear from the context whether B is a left, or a right preconditioner, so we will from now
on drop the subscript for left and right.

For s = 1, we end up with preconditioning and solving a Helmholtz problem. Order
optimal solution algorithms for this system are well known for most spatial discretization
methods. The goal of this paper is to reuse such preconditioners for fully implicit
Runge-Kutta schemes.

We will investigate both a block Jacobi and a block Gauss Seidel preconditioner on

the form
-1

Iy— (5!A'51A:, 0
By = : : 9
0 ol I — ().IA',\'.\‘AI,
I,r,—afA“A,r, 0 4
BesL = , (10)

- (SIA-“AI, e l’h = {SrAv.l.‘a‘Ah

where A = A for now. A will be referred to as the preconditioner coefficients. The upper
triangular Gauss-Seidel (GSU) preconditioner Bgsy have the structure of the transposed
of the lower triangular (GSL) preconditioner B;s.. When we write Bgs, it means that it
can be either lower, or upper block Gauss-Seidel preconditioner.

For lower-order discretization methods in space, multigrid and domain decompo-
sition methods are often used as preconditioners. Such methods have been extensively
studied both in theory and in practice, and it has been shown that they are order optimal
with respect to the discretization parameters /1 and dr. When we write ‘3, it means exact
preconditioning, meaning that each block is inverted exactly. B means that we compute
a cheap approximation of 4, e.g. multigrid.

Property 1 By using an order optimal preconditioner for the Helmholtz problem for
each diagonal block, the block Jacobi preconditioner B will also be order optimal.

This is proven in Mardal et al. (2005). It can be proven in a similar way for the block
Gauss-Seidel preconditioner, but we will investigate this numerically.

Property 2 Assume that B is the approximation of the exact preconditioner B, e.g.
multigrid, and that B is either a block Jacobi or a block Gauss-Seidel preconditioner.
Then the condition number can be bounded by

K(BA) < k(BB~ ") (BA) (n

Proof: By using a Cauchy-Schwarz. like inequality valid for condition numbers; we

find that
k(B2) = k(BB 'B2)

< k(BB "K(BA)
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It is clear from Property 2 that the condition number using an inexact preconditioner
can be bounded by the condition number using exact preconditioning muitiplied by an
amplification factor. This amplification factor is the condition number of the inexact
preconditioner applied to the inverse of the exact preconditioner.

Assuming that we use a block Jacobi preconditioner, and that A, is symmetric
positive definite. Then B8~ ' is also symmetric positive definite, leading to

max;(max(eig(33™ "))
min;(min(eig(33 "))

(BB~ )=

It is well known that B can be approximated using multigrid or domain decomposition

methods.
Assume that we use a lower block Gauss-Seidel preconditioner. The inverse of a

triangular matrix is still a triangular matrix. We now write

@1] vas 0
B~ =
éit'[ éss

Then we find that

Z‘ By 'Er.j

B8 '=14, iZj i j=1, s
0 else.

Hence, the analysis is more complicated. The same argument holds for upper block
Gauss-Seidel. Obviously the block Gauss-Seidel preconditioner is less robust to a poor
approximation of the preconditioner. then the block Jacobi preconditioner in the case
with a large number of quadrature points. We are therefore interested in investigating
these amplification factors numerically when using multigrid approximation.

Property 3 Assume that the complexity of the matrix-vector product Aux scales as
o(m), for Ay € R™*" and x € R"™. Then one iteration of our preconditioned algorithm,
both the block Jacobi and the block Gauss-Seidel, scales as O(s*m). where s is the
number of quadrature nodes in the chosen Runge-Kutta scheme.

This means that the fully implicit scheme scales as the DIRK methods. but worsc
then the single stage schemes which scales as O(pm) where p is the number of steps.
However, s is usually small leading to a relatively small difference. The question is if
the increase in computational cost for one timestep is larger then the decrease in the
required number of timesteps. This will be investigated numerically.

One benefit of the presented preconditioner is that spatial discretization technigue can
easily be changed. In practice people would probably be interested in using higher-order
methods in space as well as in time. As long as there exists a preconditioner for the
implicit Euler method. this can be reused with our methodology. Note however that the
proof of Property | is based on a conforming finite element or spectral element

discretization.
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Table 1. The condition number x(8,4) for the 2D problem (1)—(3) using bilinear
finite elements in space, and the three nodes Radaull scheme in time. B, is the block
Jacobi preconditioner, and is approximated using one multigrid V-cycle.

Stlh 273 2-4 s 2-6 D= 2-8 279
0.1 14.3 15.2 15.7 16.2 16.6 16.8 16.9
0.05 13.4 14.9 15.4 16.0 16.4 16.7 16.9
0.02 11.1 14.1 15.1 15.6 16.1 16.5 16.8
0.01 8.49 13.0 14.7 15.3 159 16.3 16.7
0.005 5.71 11.2 14.1 15.1 15.6 16.1 16.5
0.002 303  7.84 12.6 14.5 15.3 15.8 16.3
0.001 199 517 10.6 13.8 15.0 15.5 16.1
4. Results

We will use multigrid to approximate the preconditioner. All computations will be
done on a domain Q = (0, 1), where d is the number of spatial dimensions. A sequence
of meshes is constructed by uniform refinement of a 2, 2 X2 or 2 X 2 X 2 partition of
the domain Q. The preconditioner B is computed using a standard V-cycle with a
symmetric Gauss-Seidel smoother. Gaussian elimination is used as the coarse grid
solver. Note that we do not reach the asymptotic region for 1D multigrid preconditioning
in our experiments, and the condition number may be higher in this case.

We want to find the condition number x(B2) for left preconditioning, and K(4B) for
right preconditioning. For large problems, this can not be found exactly. It is therefore
approximated by solving the linear system using Conjugate Gradient for the Normal
equation (CGN). More precisely we solve

(Bay' Bav = (Ba)"Bb

and approximate x(34) = Vk((BA2)'B4). A description on how to approximate the
condition number from a Conjugated Gradient method can be found in Saad (2003).

4.1. Verification of the optimality of the preconditioner using multigrid

In this experiment we verify numerically the order optimality of the block precondi-
tioner with respect to the spatial discretization parameter h and the timestep dt, by using
multigrid to approximate the blocks. This is done for the 2D problem (1)-(3) using
bilinear finite elements in space and the three nodes Radaull scheme in time. First B, is
a block Jacobi preconditioner approximated by one multigrid V-cycle. The results can be
found in Table 1. The order optimal behavior is confirmed with an asymptotic value of
roughly 17.

In the second experiment, B is a lower block Gauss-Seidel preconditioner, again
approximated by one multigrid V-cycle. The results can be found in Table 2. Gauss-
Seidel is apparently much better then Jacobi, and the asymptotic value of the condition
number is roughly 3. Again the order optimal behavior is confirmed.

4.2. Numerical investigation of the condition number when using multigrid

Property 2 states that the condition number using inexact preconditioning will be
bounded by the condition number of the exact preconditioner multiplied by the condition
number of inexact preconditioner applied to the inverse of the exact preconditioner. We
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Table 2. The condition number «(‘8gs.4) for the 2D problem (1)—(3) using
bilinear finite elements in space, and the three nodes Radaull scheme in time. Bgg,
is the lower block Gauss-Seidel preconditioner, and is approximated using one

multigrid V-cycle.

otlh 273 e 273 276 277 278 2F°
0.1 2.45 2.59 2.65 2.72 2717 2.81 2.83
0.05 2.29 2.54 2.63 2.68 275 2.79 2.82
0.02 1.96 242 2.58 2.65 2.71 2.77 2.80
0.01 1.64 2.25 2.52 2.62 2.67 2.74 2.79
0.005 1.34 1.99 242 2.58 2.65 2.71 2.77
0.002 115 1.56 2.18 2.50 2.61 2.66 273
0.001 1.13 1.29 1.90 2.38 2.56 2.64 2.70
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will investigate this numerically. This is done by computing the condition number x(34)
and x(B4), where B is computed using one multigrid V-cycle. We do this for d=1, 2,
3, with =279 279 279 respectively. The exact preconditioner is only computed in the
1D case. The results using block Jacobi preconditioning can be found in Table 3, while
the lower block Gauss-Seidel preconditioner can be found in Table 4. The one node

Gauss is included for reference.
We notice that the increase in condition number due to the inexact preconditioning

is approximately 2 in 1D, and i.1 in 2D. For the 3D case, we are not in the asymptotic
region, and the condition number is therefore some places slightly smaller then the one
using exact preconditioning. We notice that the block Gauss Seidel preconditioner is in

general much better then the block Jacobi preconditioner.

Table 3.
to the one, two and three dimensional problem
(1)-(3) with §t=0.1 and h=27°, 275, 276
respectively. Bis computed using one multigrid

Block Jacobi preconditioner applied

V-cycle.
K(BA) K(BA)

1D 1D 2D 3D
G1 1.00 1.94 1.10 1.08
G2 479 908 522 498
G3 11.8 220 127 119
G4 24 412 241 223
G5 372 678 400 369
G6 56.6 102 604  55.6
RII2 6.75 129 736 7.04
RII3 154 290 167 158
RII4 27.1 50.1 293 27.1
RIIS 412 752 443 408
RII6 57.5 104 615 564
LC2 1.34 1.96 1.42 1.42
LC3 112 214 12.2 11.8
LC4 216 406 235 222
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Table4. Lower block Gauss-Seidel precondi-

tioner applied to the one, two and three

dimensional problem (1)—(3) with 6z =0.1 and

h=27%27% 2% respectively. Bis computed
using one multigrid V-cycle.

k(BA) K(BA)

1D ID 2D 3D

Gl 1.00 1.94 1.10 1.08
G2 1.37 353 1.47 1.43
G3 2.09 6.49 2.23 2.11
G4 345 11.8 3.62 3.41
G5 6.57 219 6.99 6.38
G6 13.5 41.1 14.4 12.9
RII2 1.64 4.46 1.76 1.71

RID 263 774 280 267
RITA 405 121 438 409

RIIS 6.25 18.4 6.76 6.21
RII6 9.69 27.9 10.3 9.36
LC2 2.64 4.24 2.78 2.75
LC3 575 13.7 6.30 5.96
LC4 9.31 23.2 10.4 9.59

4.3. Comparison of left and right preconditioner for Jacobi, lower and upper Gauss-
Seidel

In our fifth experiment, the difference between left and right preconditioning, for
both the block Jacobi, lower block and upper block Gauss-Seidel is investigated. This is
done for a 1D problem on the form (1)-(3). In space we use linear finite elements with
h=2"* The preconditioner is computed exact. This is done for the Radau schemes with
two to six nodes. The results are shown in Table 5. From the results, we conclude that
right preconditioning is generally better then left preconditioning. The difference may be
more then a factor of two. We also conclude that lower block Gauss-Seidel gives the
lowest condition number. Upper block Gauss-Seidel gives by far the largest condition
number, which is not intuitive. The explanation to this is postponed to the next section,
due to the need for some simplifying assumptions.

Table 5. The condition number for the lefl preconditioned system

K(84), and the right preconditioned system w(AB) for the 1D

problem (1)-(3) using linear finite elements in space with #=2"%

B is the block Jacobi, lower block and upper block Gauss-Seidel,
and is computed exactly.

B B, Basv

‘B4 AB BA AB ‘BA AB

RIN2 6.75 312 - 1.64 1.70 7.72 4.01
RII3 15.4 5.35 2.63 2.47 19.1 7.53
RiI4 27.1 7.69 4.05 344 35.1 11.6
RIIS 41.2 10.3 6.25 4.75 54.9 16.2

RII6 575 13.3 9.69 6.59 78.4 21.2
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Tabie 6. Comparison of the condition number of the preconditioned system 84 and the

condition number of the preconditioner coefficient matrix and Runge-Kutta coefficient

matrix AA. The numbers are in good agreement, motivating us to use (12) as a cheep
cost-function for the optimization process.

B Best
B3 AT'A aB AA™! Ba AT'A AB AA~!
RII2 6.75 6.75 3.12 3.01 1.64 1.64 1.70 1.70
RII3 15.4 15.4 5.35 5.15 2.63 2.63 2.47 2.47
RlI4 27.1 27.1 7.69 7.61 4.05 4.05 344 3.4
RIIS 41.2 41,2 10.3 10.3 6.25 6.26 4.75 4.75
RII6 57.5 57.5 13.3 13.3 9.69 9.70 6.59 6.59

4.4. Finding optimal coefficients for the preconditioner

In the previous experiments we used A = R(A), where R represents the restriction to
the diagonal elements, the lower or the upper triangular part. A relevant question is if
it is possible to reduce the condition number of the preconditioned system by changing
A. From the previous example, we noticed that upper block Gauss-Seidel gives a larger
condition number then the block Jacobi preconditioner. By choosing all the off-diagonal
coefficients infinite small, we will be close to a block Jacobi preconditioner. This clearly
indicates that it should be possible to find a more optimal A. In order to find these
optimal coefficients, we need to understand what governs the condition number from the

preconditioned system. .
If we instead of solving a PDE, discretize a scalar ODE u' = Au, we get

1 — JtA 14 "(SI'Au/.. — StA 54
= OtA» /2 | — (szgg/: — OtAaA
— OtA; A — 0tAq/ o 1= OtAA }

B is identical, only changing A with A and restricting it to diagonal or lower triangular.
If 6tA>> 1, it is obvious that

K(BA) = K(A ™ 'A). (12)

For a PDE, A will be a n X n matrix, containing n eigenvalues. If we assume that all the
blocks in A4 is well preconditioned by B, all the eigenvalues will be clustered and (12)
is still a good approximation. This is tested for the 1D problem (1)—~(3), using linear finite
elements with #=2 "% and the results can be seen in Table 6.

We will now indicate why upper block Gauss-Seidel works so bad compared to
block Jacobi and lower block Gauss-Seidel. Obviously we have

(/{(;.s'}ﬁ)r‘j = 2 AyAij (13)

k=1

(AJsbA>::f = > Audy (14)

k=1
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Table 7. Comparison of the condition number of the preconditioned system B4 and the

condition number of the preconditioner coefficient matrix and Runge-Kutta coefficient

matrix AA where the preconditioner coefficient matrix is a result from the optimization
process (15).

B, Bost.
Ba AT'A AB AAT! B2 A'A a8 AA~!
RIR 4.01 3.76 2.72 2.27 1.21 1.00 1.24 1.00
RII3 7.74 7.41 4.52 427 1.24 1.00 1.33 1.00
RII4 12.9 12.6 6.82 6.77 1.45 1.39 1.49 1.03
RII5 20.0 18.9 9.50 9.50 1.55 1.27 1.65 1.39
RII6 26.2 26.2 12.4 12.4 1.91 1.72 1.76 1.54

where (A~");=A;. Most fully implicit Runge-Kutta schemes have large values in the
lower triangular part of the coefficient matrix A, and small values in the upper triangular
part.

For lower block Gauss-Seidel, Ajg A, this leads to a small number divided by a
larger number in the upper right part of the matrix, while the lower part is well
preconditioned. In general this leads to a small condition number.

For the upper block Gauss-Seidel, A A, this do however lead to a relative large
number divided by a smaller number in the lower left part of the matrix, while the upper
part is well preconditioned. In general this leads to a large condition number.

Because of its bad preconditioning properties, we will discuss upper block Gauss-
Seidel no more. Note that this is not a proof, but only a plausible explanation.

The same type of arguments can be used to explain why right preconditioning is
generally better then left.

We will now see if it is possible to improve the conditioning number by optimizing
the preconditioner coefficient matrix A . Obviously (12) is a good approximation, at least
as long as the preconditioner is computed exact. We will therefore optimize the
coefficients in A, given the structure from the choice of a block Jacobi scheme, or a
lower block Gauss-Seidel scheme.

min k(A ~'A), left preconditioning
A (15)
min k(AA '), right preconditioning
A

Note that we now use a generalized block Jacobi, or block Gauss-Seidel, since B is no
longer the block diagonal or block triangular part of 2. We use a Nelder-Mead algorithm
see Dennis & Schnabel (1989), and initialize with the values from A. Note that we might
not find the global optimal value by using this optimization process.

In Table 7 we see the condition numbers based on the optimized preconditioner
coefficient matrix A. The difference between the optimization cost function (15) and
k(BA4), is minimal. 4 is constructed for the 1D heat equation (1)~(3) using linear
elements with h=2"%

Since the difference between left and right lower block Gauss-Seidel is relative
small, and left preconditioning is the most commonly used preconditioning technique,
we will from now on only discuss left preconditioning.

It is now important to determine how much the condition number will grow when
the exact preconditioner B is changed with the inexact preconditioner 8 based on
multigrid. The results can be seen in Table 8 for the block Jacobi and the lower block
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Table 8. Condition number for optimized and non optimized
preconditioner coefficient matrix A for both exact preconditioning for
the 1D heat problem (1)—(3), and the 2D heat problem (1)—(3) using
a multigrid approximation of the preconditioner. The optimization is
not very effective when the preconditioner is approximated by
multigrid. (—) means that CGN did not converge after 3000 iterations.

Jacobi Gauss-Seidel

Optimized Non-opt Optimized Non-opt
K(B4) k(BA) «(BA) w(BA) k(BA K(BA)

G2 341 491 5.22 1.11 1.45 1.47
G3 6.97 12.0 12.7 1.20 3.46 223
G4 124 229 24.1 1.41 2.95 3.62
G5 19.8 38.1 40.0 1.47 3.69 6.99
G6 29.1 58.2 60.4 1.63 5.60 14.4
RI2 401 692 7.36 1.21 1.75 1.76
RII3 7.74 15.8 16.7 1.24 4.09 2.80
RIl4 1229 27.8 293 1.45 3.69 4.38
RIIS 20.0 42.1 44.3 1.55 10.5 6.76
RII6 26.2 59.4 61.5 1.91 271 10.3
LC2 1.34 1.42 1.42 1.08 1.56 2.78
LC3 6.83 11.4 12.2 3.64 — 6.30
LC4 10.2 222 23.5 2.50 7.10 10.4

Gauss-Seidel preconditioner. For block Jacobi preconditioning, we notice that the
reduction in the condition number is much smaller then expected from the exact
preconditioned problem. For lower block Gauss-Seidel the condition number is in some
cases larger then the non optimized case. For LC3, we do not even have convergence
after 3000 CGN iterations for the lower block Gauss-Seidel. To understand this we study

the blocks in the preconditioner.
@i(aAh), Q}i= (cAp)~ : (16)
Bl —ab), B=(~-cA)”' (17)

The condition number of (16) will not change when ¢ changes. though the impact on the
condition number of the full block matrix is more complicated. For (17) however, we can
not say that the condition number will not change when ¢ changes. considering the
approximation of the preconditioner is done by multigrid.

To avoid this, we try another approach by adding the constraint

diag (A) = diag (4) (18)

to the minimization problem (15). This results in an optimization only valid for block
Gauss-Seidel preconditioners.

The results can be seen in Table 9. As expected, the condition number using exact
preconditioning is larger for the optimization using the constraint (18). then without. But
the condition number using incxact preconditioning based on multigrid is in much better
agreement with the optimization results. By choosing a 6 nodes scheme. the lower block
Gauss-Seidel preconditioner using one multigrid V-cycle results in a condition number
of less then 2.5 for two and three dimensional problems.
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Table 9. Condition number of the precondi-

tioned system where A is the optimal

coefficients computed from the optimization
problem (15), with the constraint (18).

K(BA) K(BA)

1D 1D 2D 3D

G2 1.32 242 1.39 1.40
G3 1.51 3.25 1.53 1.55
G4 1.59 4.11 1.65 1.67
G5 1.89 5.04 1.94 1.96
G6 2.10 6.34 2.19 222
RI2 1.56 2.97 1.65 1.67
RII3 1.86 3.80 1.92 1.94
RIl4 2.10 4.65 2.12 2.17
RIIS 2.29 5.00 2.34 2.35
RIl6 2.25 5.33 230 232
LC2 1.34 1.59 1.41 1.41
LC3 3.00 5.46 3.15 3.18
LC4 4.63 8.04 4.78 4.81

4.5. Iteration count and timing results

Finally, we compare the wall clock time (wct) for a given test problem. We solve
(1)—(3), with a source term f such that the exact solution is

u(x, y, 1) = sin (@) sin (o) sin(wyf)
(wy, Wy, w)=(m, m, 20.57), t [0, 1)

The high number of oscillation in time is used to generate a certain degree of complexity
in time. In space we discretize using linear finite elements. Both the element size & and
the time-step J7 is chosen such that the error is of order 10~ %, measured in the L* norm
in both space and time. The preconditioner is a lower block Gauss-Seidel approximated
using one multigrid V-cycle, and the linear system is solved using GMRES with restart
and 5 search vectors (for Radaull | node we used conjugated gradients) with a stopping
criterion of absolute residual equal 1077,

Notice that for GMRES the residual is only evaluated before the restart. This means
that the system is possibly over-iterated. but the computational time is in general smaller
due to the high cost of evaluating the residual in every iteration. We also solve the linear
system using CGN.

The results are computed on a Linux machine with an Intel P4 2.8 GHz processor and
IGB RAM. The result is displayed in Table 10

The number of iterations for GMRES and CGN is comparable. but the difference in
the wall clock time is approximately a factor of 2. In our experiment. the five nodes
Radaull scheme is by far the fastest. This is due to the decrease in number of required
steps outweighs the increase in number of iteration for the linear solver. Implicit Euler
(RII1) is very slow due to the large number of required timesteps.

Note however that no general conclusions can be drawn from this small experiment.
Which scheme is the fastest depends on several properties like the regularity of the
solution, the required accuracy, the implementation elc.



Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs 121

Table 10. The wall clock time (wct) measured in
minutes, and the average number of iterations & for
solving the 2D heat equation (1)—(3) for Radaull schemes
with various number of stages. RII 1 is solved using
normal CG. The discretization parameters are chosen
such that the errors from the discretizations are approxi-
mately 10~ 7. The preconditioner is approximated using
one multigrid V-cycle. The higher order schemes
outperforms the lower-order schemes.

GMRES CGN
Method ot wcl k wct k
RIl | 1.0e-6 104 3
RII 2 2.0e-3 12.2 10 238 9.8
RIl 3 1.0e-2 4.2 13 9.1 13.7
RIl 4 2.5¢-2 30 2 6.4 16.6
RIS 5.0c-2 22 21 5.0 19.1

5. Final remarks

In this paper we have shown that the systems arising from fully implicit Runge-Kutta
schemes applied to parabolic equations can be preconditioned with block diagonal and
block triangular preconditioners. where the diagonal blocks are standard preconditioners
developed for the backward Euler scheme. Such preconditioner are well known to be
order optimal when constructed by, c.g.. multigrid or domain decomposition methods.

In several numerical experiments we have demonstrated that the condition number
for the preconditioned systems is bounded. We have also seen that higher-order methods
are beneficial, when using efficient preconditioners, even for problems with relatively
fast dynamics and modest accuracy requirements. For the six nodes Radaull scheme. the
new preconditioning approach with lower block Gauss-Seidel with optimal coefficients
results in a 30 times reduction in the condition number compared to the block Jacobi
preconditioner presented in the previous paper. see Mardal et al. (2005).
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A. Optimal coefficients

Here we present the optimal coefficients for the preconditioner matrix A. The coefficients are
found by solving the optimization problem (15) with the constraint (18). Due to a space limitation,
only 6 decimals are presented. Only the values for left preconditioned lower block Gauss-Seidel
are presented, since this has been the most effective preconditioner in our experiments.

Table 11. Optimal coefficients A for the two nodes Gauss scheme

0.25 0
0.488313 0.25

Table 12. Optimal coefficients A for the three nodes Gauss scheme

0.138888 0 0
0.224907 0.222222 0
0.

0.143025 0.387432 138888

Table 13. Optimal coefficients A for the four nodes Gauss scheme

0.086963 0 0 0
0.171390 0.163036 0 0
0.192773 0.273261 0.163036 0
0.245927 0.232027 0.273809 0.086963

Table 14. Optimal coefficients A for the five nodes Gauss scheme

0.059231 0 0 0 0
0.094654 0.119657 0 0 0
0.118474 0.226545 0.142222 0 0
0.156695 0.244621 0.242734 0.119657 0
0.108481 0.287240 0.227631 0.206980 0.059231

Table 15. Optimal coefficients A for the six nodes Gauss scheme

0.042831 0 0 0 0 0
0.087051 0.090190 0 0 0 0
0.112166 0.152098 0.116978 0 0 0
0.115420 0.142112 0.224669 0.116978 0 . 0
0.076975 0.168167 0.271509 0.217320 0.090190 0
0.081495 0.169801 0.311476 0.215085 0.145205 0.042831

Table 16. Optimal coefficients A for the two nodes Radaull scheme

0416666 0
0.673076  0.25
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Table 17. Optimal coefficients A for the three nodes Radaull scheme

0.196815 0 0
0.259583 0292073 0
0.194743 04.1444 O.111111
Table 18. Optimal coefficients A for the four nodes Radaull scheme
0112999 0 0 0
0.207430  0.206892 O 0
0.280581  0.238590 (.189036 0
0.321615  0.194202 0.255668 0.0625
Table 19. Optimal coefficients A for the five nodes Radaull scheme
0.072998 O 0 0 0
0.134217 0.146214 0 0 0
0.166967 0.191017 0.167585 O 0
0.181347 0.188433 0.174109 0.128756 0
0.168265 0.212583 0.132551 0.176719 0.04
Table 20. Optimal coefficients A for the six nodes Radaull scheme
0.050950 0 0 0 0 0
0.090379 0.106975 0 0 0 0
0.113069 0.173695 0.136314 O 0 0
0.117967 0.202003 0.245356 0.131006 O 0
0.100245 0.235893 0.304197 0.210749 0.092430 0
0.098567 0.240736 0.329458 0.213036 0.124316 0.027777
Table 21. Optimal coefficients A for the two nodes LobattoC scheme
05 0
0 0.5
Table 22. Optimal coefficients A for the three nodes LobattoC scheme
0.166666 0 0
—0.125000 0416666 O
—0.166666  0.606060 0.166666
Table 23. Optimal coefficients A for the four nodes LobattoC scheme
0.083333 0 0 0
—-0.031715 025 0 0
0.070601 0.508398 0.25 0
0.132073  0.522927 0.483915 0.083333
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