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E. CELLEDONI*t and N. SAFSTROM+t

Keywords: Rigid bodies, symmetric methods, symplectic methods, Jacobi elliptic
Junctions

It has been known since the time of Jacobi that the solution to the free rigid body
Euler equations of motion is given in terms of a certain type of elliptic functions.
Using the Arithmetic-Geometric mean algorithm, Abramowitz & Stegun (1992),
these functions can be calculated efficiently and accurately. The overall approach
yields a faster and more accurate numerical solution to the Euler equations compared
to standard numerical ODE and symplectic solvers.

In this paper we investigate the possibility of extending this approach to the case
of rigid bodies subject to external forces. By using a splitting strategy similar to the
one proposed in Reich (1996), we decompose the vector field of our problem in a free
rigid body (FRB) problem and another completely integrable vector field. We apply
the method to the simulation of the heavy top.

1. Introduction

The study of numerical discretizations of Hamiltonian systems which preserve one
or several of the geometric features of the continuous equations, has been quite popular
in the last few decades, Hairer er «l. (2002). Leimkuhler & Reich (2004). Symplectic
methods are suited for the numerical solution of Hamiltonian problems. The energy
is almost conserved along the numerical flow computed by a symplectic method.
with essentially no accumulation of errors in time, Hairer et al. (2002). Moreover
these methods show long-term stability of the integration. Symplectic Runge-Kutta
methods are designed to preserve the symplectic structure :of canonical Hamiltonian

problems,

._9Hq. p) dH(q, p)
g== PE T (H
dp dg
If the Hamiltonian problem considered is a holonomically constrained Hamiltonian
system, (i.e. an algebraic constraint of the type g(¢) =0 is also present), symplectic
integration cannot be achieved by the straightforward application of symplectic methods,
the use of appropriate partitioned Runge-Kutta methods is required, Hairer er al. (2002).
A efficient way to address constrained Hamiltonian problems is, when possible, to split
the constrained Hamiltonian vector field in a sum of two or more constrained Hamilto-
nian vector fields which can be separately integrated. The flows are then composed
together to form the final symplectic numerical solution.
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A similar situation arises when the Hamiltonian problem is not given in the canonical
form (1), Hairer et al. (2002). This is the case of the Euler equations describing the
motion of a free rigid body (FRB),

Lo, = (I — B)wws,
han = (I3 — I))wsw,, (2)
Lz = (I — h)wwa,

where 1, I> and I; are the principal moments of inertia. These equations are completely
integrable. Energy and angular momentum are preserved along the solution, this means
that for all times the two quantities

E = Lot + hoi + lol, (3)
G = 1%0)'} + l§m§ + [:'1!(:)_";’.,

are constant, (here E is the energy and G is the total angular momentum). There is also
a non canonical symplectic structure (Lie-Poisson structure) preserved by the flow of (2),

Leimkuhler & Reich (2004).
By using the two constants of motion it is possible to derive the solution of the
equations expressed in terms of Jacobi elliptic functions. Consider

ai=2EL -G, ag =G>~ 2El, @)
bi=Ih(—h), b =ht—1),

and assume bi/az < b)/a; (we will have a similar situation if bi/a; = b\/a;), the solutions
of the Euler equations are

acnu o a) snu » azdnu )
=, D=, U3 E e,
VL -1) b V-1

where the Jacobi elliptic functions cn, sn and dn, are defined by
Cnu=cos ¢, snu=sin @, dnu=V1-Ksin?e. ©)

Here the amplitude ¢ is given implicitly as the solution of the equation

Floli®)=u(0), u()=At—1),
where

@

F(olk®): = fo % Q)

is an elliptic integral of the first kind with modulus k. We have

b;a. b|£13

g bas’ LV
and 7 is a constant of integration that is used to satisfy the initial conditions.

The simulation of rigid body motion is interesting for applications in robotics,
structural mechanics, and molecular dynamics, Geradin & Cardona (2001), Leimkuhler
& Reich (2004). The formulae (5) for the exact solution of the Euler equations can be
turned into a numerical method by using efficient numerical approximations of the
Jacobi elliptic functions. In this paper we show how this approach is very competitive
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and can be further applied to problems of rigid bodies subject to external forces. We also
refer to Bucher (2003) and Mitchell (2000) for related literature.

Symplectic integration methods for the Euler equations have been constructed by
various authors, Ge & Marsden (1988), Moser & Veselov (1991), Lewis & Simo (1994),
see also Lrimkuhler & Reich (2004) and references therein. In spite of being a source
of insight, many of these methods cannot be straightforwardly generalized to the broader
class of non canonical Hamiltonian problems, thus their use is limited to the numerical
approximation of the Euler equations. However some of these integrators have success-
fully been applied in the simulation of rigid body dynamics. This is for instance the case
in Reich (1996), Duliweber et al. (1997).

Recently McLachlan and Reich have, independently, proposed a splitting method for
the rigid body equations McLachlan (1993), Reich (1996). In this method the right hand
side of (2) is split in the following three terms,

0 — f3a0)3 VO ON)
filw)=| hLwym, |, filw)= 0 . flowy=| — Loz, | (8)
— Lanma Ly 0

Each of the three vector fields is Hamiltonian with respect to the rigid body Poisson
bracket Marsden & Ratiu (1994), p. 8, and defines differential equations which is easy
to integrate exactly. The appropriate composition of the corresponding flows produces a
symplectic approximation of the problem. There is numerical evidence showing that this
Lie-Poisson method is very competitive compared to most of the known and previously
proposed strategies of symplectic integration of the Euler equations, Celledoni & Owren
(2003), McLachlan & Zanna (2005). For this reason we will use this method as a
comparison method in our numerical experiments.

Accurate, symplectic, energy and momentum preserving approximations for the
solution of the Euler equations. have been recently addressed in McLachlan & Zanna
(2005). Our numerical tests show that such approximations can be easily achieved by
using the exact solution and computing (6) to machine accuracy.

To solve problems modelled by rigid bodies subject to external forces, in Reich
(1996), a symplectic method based on a splitting of the vector field into a FRB problem
and another Hamiltonian vector field has been considered. We will briefly recall this
approach in the case of the heavy top in section 4. In the original approach of Reich
(1996) the author uses the splitting method (8) to solve the FRB problem. In this paper
we instead use the formulac (5) and compute the elliptic functions (6) to machine
accuracy by the Arithmetic-Geometric mean algorithm. The overall splitting is sym-
metric, but not symplectic. However. in many of the considered numerical experiments.
the new method presents better conservation of energy and better behavior of the
numerical solution then the symplectic integrator of Reich (1996) and Dullweber ¢r al.
(1997).

Some technical issues for the implementation of this approach are discussed in
section 3. In scction 4 we report some numerical experiments comparing the proposed
approach to the symplectic splitting ol Reich (1996). Dullweber er al. (1997).

2. A splitting method for the heavy top
Efficient integrators for the free rigid body can be used in connection with splitting
methods in the numerical approximation of more complex rigid body dynamics. We
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with the initial condition 7(1}) = =", computed at the previous time step. For this purpose
we use the MATLAB standard function el1lipj, which returns the values of

sn u=sin @, cnu=cos ¢, dnu=V1-=sin’p,

for a given input u = A(t — 1), with t = (tj+ 1, t;+1)" and m = k%, Here k and A are given
constants, except for the sign (se section 1), and T must be determined appropriately to
ensure that the initial condition w(t) = " is satisfied. To this end, we first find the
amplitude ¢ € [0, 2r], which is uniquely determined from the equations

a, cos v a, sin oV
() = VI._(Ig_(p—I._ (1) =__E<p_.
Furthermore, from the sign of w;(#),
ws(t) = asV'1 — i sin® oV
VI3 - 1)

we determine the sign of the constants a3 and A. Since u(#)) must satisfy (7), we obtain
that 1

t=g- iF((pU’lkz)

where
oW 6

FlgUlie) = f V1 —FKsini .

The latter integral can be computed to machine accuracy using the method of
Arithmetic-Geometric Mean, briefly described below.
Consider the sequence {¢%},=q....., q)f,”ﬂ ¢} , defined by
tan(es | — o) ==l tan(qo,, Y, of =P,
where a,, b, are given by the Arithmetic-Geometric Mean series, Abramowitz & Stegun
(1992). i.e.

a,+b — a,— b
an+l=%sbn+l= anbmcn+l= "2 n‘

Taking the initial values

ap = l,b()-_— V1 _k?',(,‘()=k,

one can show that

p(j)
o= i o

As the Geometric-Arithmetic Mean series converges quadratically, one obtains very
accurate approximations of F(¢'’|k%) in few recursion steps. In our implementation we
terminate the iteration when ¢y is less than machine epsilon.

4. Numerical experiments

The splitting method proposed in this paper is compared with the symplectic method
of Dullweber et al. (1997) and Reich (1996) which we denote in short by MR, and with
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the classical fourth order Runge-Kutta method (RK4). We also refer to the second order
symmetric splitting method, described in the previous section, as SEJ. The symplectic
method MR is based on a splitting of the the Hamiltonian #{ into four pieces.

2 2 2
-~ T ~ T ~ 3 -
= g=D =B g
V=01 MRT o Ty =

Each of the corresponding Hamiltonian vector fields can be integrated exactly (#;, 4,
#4 correspond to the vector fields (8)), the symmetric composition of the flows gives rise
to the approximation scheme,

(7[, u)(j+ M (I)M((ni u)(j))a

where
Dy = @anz 0 Py © Qapo.

Here
Drp = @p2 O P22 © P3h © Q2,42 O PLu2

is the contribution from the kinetic parts, 7, # and . The flows of kinetic parts
correspond to elementary rotations in R.Eg

i+ = R(h)r?,

Wy =
Prl(m, )™ w9+ = R(hu?,

where
1 0 0
R{)=| 0 cos(CPh) sin(CY%h) |,
0 —sin(CY) cos(C%h)
and
W
c‘f’=7l'—.
The ﬂm& Ifor #, is the same as for the system S» (10) of the previous section, i.e.
Qan =@

In the first experiment we consider the integration of the Euler equations. In Figure
1 we plot on the x-axis the execution time, taking the average over 200 experiments,
required by the methods to perform the integration on the interval [0.1]. for differcnt
choices of the step size. On the v axis we report the corresponding values ol the 2-norm
of the global error. In all the experiments the reference solution for computing the global
error is obtained using the built in function of MATLAB, oded5. setting the absolute and
relative tolerance equal to 10e-14. We compare the MR method, which in this case
involves only the computation of the three flows corresponding to the Hamiltonians 74,
F, 9, with the integration performed using the Jacobi elliptic functions. The lauer
method produces a very accurate solution of the problem (the error is of the size of
10~ ) and the error is independent on the step size of integration. In this experiment the
principal moments of inertial and the initial value for ¢y are fy=1. =2 1:=2 3 and
an = (1. 0. 2)', respectively. ’

In the sccond experiment we perform the numerical integration of the LEuler
equations, with £, =1. =2, ;=3 and cn=(l. =2, 1)/, on the interval [0, 400]. In
Figure 2 we consider the energy error as the difference between the constant exact
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Figure 1. The Euler equations. Execution time, taking the average over 200 experiments, against
the global error. Integration on the interval [0, 1] with different step sizes.
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Figure 2. Energy for the free rigid body. Integration on the interval [0, 400].
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Figure 3. Heavy top. Execution time, taking the average Over _100 experimer_\ts, against the global
error. Integration on the interval [0, 1] with different step sizes.
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Figure 4. Energy for the heavy top. Integration on the interval 10, 201, with step size /1=0. 001.
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10

Figure 5. Heavy top. Execution time, taking the average over 200 experiments, against the global
error. Integration on the interval [0, 1] with different step sizes.

energy, given by #, and the energy obtained from the numerical methods (with step size
h=0.4). We note that for the Runge-Kutta method there is a visible energy drift, for the
MR method we observe a typical behavior of symplectic methods, i.e. the energy is
oscillating around a constant value, (the amplitude of the oscillations is about 10™%), the
method based on the use of the Jacobi elliptic functions computes a very accurate
solution of the free rigid body problem and the energy is conserved to the same accuracy
(the energy error is about 10~ '*). We conclude that computing the exact solution of the
Euler equations, using el1ipj of MATLAB, for computing the Jacobi elliptic functions,
is a very efficient and accurate numerical approach for the Euler equations.

In Figure 3 we report the results of the third experiment. We consider the integration
of the heavy top problem with the splitting methods MR and SEJ on the interval [0, 11,
where the principal moments of inertia. the initial value for « and « are I, = 1000,
I, = 5000, 13 = 6000, v = (100, 100, 100)" and uy= (0, 0, 1)", respectively. Also in this
case we plot the execution time versus the global error for the two splitting methods. In
this case the advantage of the new method is quite clear. In Figure 4 we repeat the
experiment integrating on the interval [0, 20] with step size 1 =0.001. We report the
energy error for the three numerical methods, RK4 (energy error = 0(10%), MR and
SEJ. The energy error has an oscillating behavior for both MR (energy error = 0(10%))
and SEJ (energy error= 0(10™%)).

In the next two experiments we consider the integration of a heavy top with the
principal moments of inertia /y =1, /- =35, 3= 6. The initial values for « and u are
chosen ey = (10, 10, 10)" and wy= (0, 0, 1)". We first integrate on the interval |0, 1] and
compare the performance of the splitting methods in terms ol exceution time against
global error, Figure 5. The two methods perform similarly, with a slightly advantage for
the SEJ method.

Next we illustrate the qualitative performance of the two methods by comparing the
results obtained by using different step sizes. We look at the energy error and the
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Figure 6. Energy error for the heavy top. Integration on the interval [0. 100]. using the method SEJ.
h=1.T=51=6 m=(10, 10, 10)".

numerical trajectory describing the motion of center of mass, in Figures 6 and 7. For step
size h=0.01 the two methods produce similar trajectorics (the norm
leeses — umgll = O(10™1)). The energy error for SEJ is a factor 10~ smaller than for MR.
Increasing the step size to 1 =0.05 and /1 = 0.1, the amplitude of the oscillations in the
energy error increases for both methods. Consistently for all the experiments, SEJ has
smaller energy crror than MR. For /1 = 0.1 the trajectory of the center of mass produced
by the MR method becomes completely different. For the SEJ method the numerical
trajectory of the center of mass preserves the same qualitative behavior for ;= 0.01,
h=0.05 and h= 0.1, Figurc 6.

Finally, we compare the cnergy error between the two methods, MR and SEJ. for
different values of the inertia tensor. We consider the time interval [ 10] and integrate
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Figure 7. Energy error for the heavy top. Integration on the interval [0, 100], using the method MR.
L=1,5L=55L=6,m=(l10, I0, lO)T.

with a fixed step size, h = 0.01. In Figure 8 we report on the y-axis the average absolute
value of the energy error, | »
Nn§=:l I " 5{1 |’

with #, the value of the numerical energy for the methods at time step # and { the exact
energy value, and N = 10/0.01 = 1000. On the x-uxis we report the value of a parameter
x used for varying the principal moments of inertia, /; = &, /= 2a, I3 = 3o. The initial
conditions for the angular velocity and the position of the center of mass are chosen
we=(1, 2, 3) and uy= (0, 0, 1). Studying the graph 8 it appears that the energy error
for the SEJ method is smaller compared to the MR method when the inertia is large, i.e.
when the external torque is relative small compared to the momentum.
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Figure 8. Energy error for the heavy top. Integration on the interval [0, 10], # = 0.01, using different
inertia tensors, /; = a, I = 2a, I; = 3a, | <a =< 10°. The initial value for the center of mass, uo = (0,
0, )", and angular velocity,wy = (1, 2, 3)7, are held fixt.

5. Conclusions

In this paper we presented a symmetric splitting method for the integration of rigid
body problems subject to external forces. The numerical strategy is based on the use of
available efficient algorithms for the computation of Jacobi elliptic functions. We show
that thanks to its symmetry, the method performs much better then classical integrators.
like the Runge-Kutta method of order 4, in the long time integration of the considered
problems. We also compared the method with a similar symplectic splitting method
which inspired the present approach. In many of the performed experiments the
presented symmetric splitting is more efficient then the symplectic splitting. giving
smaller global error for the same amount of floating point operations. Moreover the new
method presents in our cxperiments a better energy conservation. This seems to be true
especially for problems where the principal moments of inertia are large.
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