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The objective of this article is to demonstrate that the Riccati equation is an economic
fundamental equation, which is marginally descriptive in time for the large majority

of economic systems.
It is also an objective to interpret the Riccati equation and the corresponding

relations in terms of economics.
The article shows that there is a close relationship between the marginal

Hamiltonian function and the Riccati equation. The marginal Hamiltonian function
will be an expression of the accounts based on optimal behaviour including both the
change in result and the change in balance.

1. Introduction

Francesco Riccati was an ltalian count who lived from 1676 to 1754. As well as
enjoying a life of privilege he was also an enthusiastic disciple of mathematics. Riccati
thereby became a significant contributor to the development of infinity calculations. In
this connection he had an extended exchange of correspondence with the tamous
mathematicians G. W. Leibniz and J. Bernoulli. Riccati’s name is particularly associated
with a type of differential equation in which there are both linear and quadratic elements

to the equation.

Today the Riccati equation emerges as the central solution equation in a control
system for a linear process with an optimal criterion in quadratic form. The Riccati
equation is often in the form of a matrix in that we normally have more thun one state

variable in our process

R()= — R(NA — ATR() + R(NBP ™ 'B'R(1) — Q (n

When R(z) is found the associated equations that together decide the optimal solution for
our process are given by the contexts — the equations for ‘the price vector’ pn

p() = R(x(r) 2)
and the decision vector u(?)
u(ry=—P~'B'p(n) 3)

For our optimal criterion ® at time r=0 we find

(0) = 1x(OR(0)x(0) (4)
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The four equations above constitute the principal equations of the Riccati system in
continuous-time form. As will be shown in section 5, there also exist equivalent
equations in the discrete-time model (Balchen, 1978).

The main objective of this article is

— to interpret the Riccati equation and the corresponding relations in terms of
€COoNnomics

— to demonstrate that the equations of the Riccati system in discrete-time form are
descriptive of marginal economic movement in time.

2. The marginal optimal system in economics

It is known from control theory that for small (marginal) deviations from the optimal
paths an optimal control system can be described by a linear process description with an
optimal criterion in quadratic form. In this connection we refer to (R. F. Stengel, 1994)
where this is described in more detail both for a continuous-time and for a discrete-time
model description.

In continuous-time form, we start with an object function which in this context we
wish to minimise over the time period f; to f, (maximising w entails a change of sign).
n

o= S(x(t)) +f n(x, i, dt (5
I
In equation (5) 7 is the current result, x the system’s state vector and u the decision
vector.

This expression is to be minimised having taken account of the process description
of our system

£=floun (6)

To find the optimal path X(f) and i(t) we apply the fundamental equations of the
maximum principle. For the Hamiltonian we have

H=n(x,u, 1)+ p'flx, u, 1) Q)

where p is the impulse vector, which is named shadow price vector in economic theory.
The Hamiltonian must have an absolute maximum (minimum) with respect to u.
We further have that p(n and x(f) are solutions to the equations

We have additional conditions at time ¢ = t,. In our examples the condition is that x(t,)
should be free, which implies that g(tg) ={Q.

When in our further analysis we use the term system, it should be taken to mean that
it is an economic system,

Around the optimal paths ¥(r) and () our optimisation problem may be described
by the following equations

‘ } Ny )
min Am = JAx (1)SAx(r) + 5,( (Ax'(1)Q(T)Ax(t) + Au(t) P()Au(t) ()]
U]

+ Au"(t)M" (1) Ax(t) + A (0)M(1)Au(T))dt (10)
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for the system

Ak =AAx + BAu (1)
Ar=x—% Au=u—1 (12)
where
_ Af(x(0), w0, 1) _ f(x@, wl1), 1)
Al = _——aj‘(r) , B(D s 70 (13)

The matrices P, Q, S and M are obtained from the second order derivatives of the
Hamiltonian function H(f) around the optimal trajectories, viz.

8’*H _ H 3%s a oH
W,PU) D S(e) = M) = ——— (14)

axUn)’ 9il(r) 3 1(r)
The solution for our optimisation problem is:

o =

Au= — P '(M"+ B'R)Ax (15)

where
R@0)=(— AT+ M'P~'BIR() + R()(— A+ BP™'M")
+RBP™'B'R—Q +MP™'M" (16)

with the final condition R(s2) = S. The equation above is a modified Riccati equation that
can be translated to the desired form by setting

A'=A—-BP™'M', Q'=Q-MP™'M" (17)

The optimal system described above, represented by a linear process description and
quadratic elements in the criterion itself, is a first approximation of optimal economic
behavior for marginal deviation around the paths &(+) and &(r). The deviation system
(Ax=x— &, Au=u— i) will, in an economic context, be the dynamic marginal optimal
system. The paths x(r), u(r) represent the real system. Similarly the paths X(r), u(7)
represent the reference system.

3. The marginal system — continuous time example

We have now come so far in our analysis that it is appropriate to introduce examples
in economics to demonstrate the entirety. We will set the following condition to our

main example:

The example should have a form which enables the Riccati equation in continuous-
time form to be solved analytically. This condition in itself demands that the model

be simple.

From this, we have come to the conclusion that a model where the process
description is linear and the current result function is of the linear/quadratic form will

be most suitable.

As will be shown, it will later be relatively simple to adapt the description to more
complex mathematical problems.
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3.1. The mode!

As a basis for the model, we will look at a ‘firm’ that is characterized by the
following economic variables which will each be a function of time .

Y = the firm’s sales measured in the number of units sold u, per time unit (u/f)
K =the firm’s production capital measured in the number of production units (u;)
J = investment in production capital calculated gross (u,/f)

We have the following prices in our model

gy = the price of the end product (€/u;)
¢ = the price of capital equipment (€/u,)
r=the rate of interest (1/f)

€ is the symbol for euro.

We assume that the firm’s production (which we assume is the same as the firm’s sale)
can be described by a production function which has the following simple form

Y=aK— a:K> (18)

In the production function above a; and a are positive constants. Normally a;, will be
significantly greater than a,.

We now wish to introduce an element into our result function n that represents costs
in connection with the decision to invest. Experience shows that installation of new
equipment often is an activity that is additional to the firm’s normal work and one which
resuits in disproportionate costs in relation to the investment itself. In our interpretation
context we shall use the following simple quadratic cost function

goJ? (19)

which will be a first approximation to costs such as overtime costs, installation costs and
similar. The quadratic element should on average form a minor part of the actual value
of the investment.

The elements portion of the value of the investment is given by the expression

9o
q

With the selected numerical figures in (23) the value will be less than 1%.
Our objective will now be that we wish to maximise accumulated cash flow over a

given period of time 7, which means that we in our example have no discount element
included in our criterion.

Our object function w (measured in €) takes the form
T T
w=j ndt=| (qy(@:K — a:K?) — goJ* — rgK)dt (21)
€)

0

J (20)

Here the element g,(«;K — a2K?) comprises the ‘firm’s revenue side’, or more precisely
the economic contribution before the cost of capital and costs related to the investment
itself are taken into account, goJ? is the quadratic element — and the element rgK
comprises the capital cost of tying up capital in production. If we for simplicity reasons
assume that labour is proportional with output, we can consider it to be hidden in the
economic contribution.
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In this model we have assumed that the capital equipment itself is leased. For this
reason we have no element included in the current result = for the investment itself.
QOur process equation is, assuming no depreciation

K=1J (22)
In the calculations we shall assume the following set of figures in our parameters
r=02, =04, a2=00909, g=¢,=1, g=0.06, 1=0, L=T=3 (23)

The high value of r (=0.2) is due to the fact that the capital equipment is leased.

3.2. Calculation of the optimal solution for the total system

The maximum principle gives the following differential equation for the capital X,
the optimal solution

2goK" — 2qva2K + (a1g, — rg) =0 (24)
The capital K is constant for

_a1g:—7rq

2g.a: £

As known, for our example the path given by (25) is characterized in the way that we
have the marginal revenue of capital equal to the marginal expenditure i.e.

aY
gy——=1rq (26)

aK
Our system wants to move to this level. In the further calculations for the continuous-
time case, we will be using equation (25) as a basis for the reference paths K and 7 in
the marginal analysis.
We have

aq, — rq _

K=
2g,a,

1.1, 7=0 27)

We will change this assumption when we go over to a discrete-time model formulation.
The solution to (24) becomes

K= K+ Crexp (fr)+ Caexp(— B0 (28)
1

B= Vaoarq, (29)

p() = 2qoJ(1) 30

where values of the constants Cy and C are deduced from the constraints K(Q) = 1.0 and
the shadow price at the end point in time p(T) equal to 0. For the constants we find

Ci=—6.1986+10"% Cy= —9.9938+ 1077 f=1.2309, 3h

The curve for K will increase quickly from the start level K(0) = | to search the level

-

K =1.1. At the end point in time we have K(3)= 1.095.
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3.3. Deviation between the actual system and the reference system

The table below gives numerical values for key economic figures for the actual,
reference and deviation systems at the time 7= 0. At this point in time AK(0) is equal
to — 0.1. For the object function w itself this is calculated over the whole interval in time
i.e. from O to three years.

Results for the total system

actual reference deviation
shadow price  p 0.01475 0 0.01475
investment J 0.12293 0 0.12293
current result n 0.10819 0.11 —0.00181 (32)
price element L, 1.8078+107* 0 1.8078 x 103
Hamiltonian H =(.11 0.11 -2.25%10"°¢
object function w  0.32926 0.33 —17.376% 1074

3.4. The marginal system

We will now compare the deviation results for the total system with what we find
with our marginal system, which means that the Riccati equation must be solved. From
the Hamiltonian function we find the expressions for Q and P (cf. (14)), we have g,=1

0°H &*H
=_T=2a,P=_:=2 33
Y e 2 372 qo (33)

The change in sign is because we now minimise.
From the process equation (22) the ‘matrices’ A and B are found

A=0, B=1 34

The Riccati equation in this context is

. 1
R=R’——2a, (35)
240

where we have the constraint R(3) = 0. The equation itself is solvable, integration gives

@ | - eZ(\/::;(I-'T))

R(r) =240 \/: ——— (36)

40 +e2(\/f,"?,"”)

R(r) will almost be constant in the first part of the period and then falls to O at the end.
With the numerical value set selected we find the value at the initial point in time
R(0) =0.14752.

Above we have assumed that the time period T = 3. There is a borderline case when
T— =. In this event we can approximately set R(0)=0. We then find that
R(0) = 0.1477. The deviation related to the value when T=3 is in other words very
small. (The cases when we can set R(0) equal to zero simplify the analytical solution
considerably).

From the expression for R(f) we can also find an expression for R(f). At the time
t=0 we find R(0) equal to — 0.00045 -— a negative but small figure. We can further
deduce that R(r) will remain negative throughout the relevant interval and that the
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absolute value will increase when we approach the end point in time. This is a point to
which we shall return from an interpretation viewpoint. With a start point in R(0) we can
now find the various key economic figures for the marginal system. The results are

shown in the following table.

Comparisons of the marginal and the total system

marginal system total system
numerical result equation marginal dev._
shadow price —0.01475 Ap =RAx 0.01475
investment 0.12293 Au = —P 'B"Ap 0.12293
current result  0.00181 Ar = }(AX"QAx+ Au"PAu) —0.00181 (37
price element — 1.8078+ 107 AL, = Ap"Ax 1.8078 %1073
Hamiltonian 225%10°° AH =Arn+AL, —2.25107°
object func. 7376+ 1077 Aw = 1Ax(0)"R(0)Ax(0) ~7.376%10""°

As shown in the table the marginal system gives the same numerical answer as what
we found from the total system even for a marginal deviation as great as
Ax(0) = AK(0)= —0.1.

We will develop the results of the table in more detail interpretationally in the
following sections.

4. Economic interpretations related to the continuous-time model

4.1. The optimal criterion

As shown in table (37) the value of our optimal criterion in the marginal system, and
where the objective has been to minimise, is given by the expression

Aw = $Ax(0)'R(0)Ax(0) (38)

This equation says that our criterion at the instant of decision t = 0 is dependent only on
the value of the marginal economic state vector Ax(0) (which in principle is given) and
the Riccati matrix R(0) . Behind this recognition lies of course the fact that we have
solved the Riccati differential equation over the period (t2, 0), having taken account of
constraints given for the end point in time fa. If we assume that Ax(0) represents a unit
marginal increase it is the value of the individual parts of the matrix R that set the value
of the criterion. We will therefore regard R as a matrix for marginal value stocks.
Correspondingly the Riccati equation itself is an equation for marginal value streams to
the ‘stocks’ R. In a non-regulated form, this value equation is given by, (see also Lystad
(1974))

R=—-RA-AR-Q (39)

We can therefore consider R to be a state matrix in the marginal description. The element
RBP™'B'R (40)

in the value equation ensures that the solution is optimal.

It follows from the equation (38) that the matrix R allocates the criterion on the
economic state variables Ax for the optimally controlled process (similarly the P and Q
matrices in the expression of the running result). The matrix R therefore also represents

weightings.
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From table (37) we find the value of our object function in the marginal system.
Aw=17.376%10"* (41)

In the same section we have calculated the economic result @ in the total system on the
path X, J. Correspondingly we have calculated the result « when we move on the actual
path K(1), J(r). From this we get the following expression for the marginal result.

w—~o=—17376x10""1 (42)

where the answer is the same as what the marginal system gives.
The expression for Aw therefore represents a marginal economic loss in our system,
a loss we have due to not being on the reference paths K, J.

4.2. The Hamiltonian function — the marginal aggregated value stream

It may now be of interest to analyse in more detail the marginal aggregated value
flow, the Hamiltonian function for our system where the object function is to be
minimised. At the point in time t (which is the current time) we have for the Hamiltonian
function

AH = }(Au"PAu + Ax"QAx) + Ap"(AAx + BAu) = An + AL, (43)

If we now use the equations (2), (3) Ap=RAx and Au= — P~ 'B"Ap which are a part
of the optimal solution we get

AH= —}Ax"(—RA—A"R+RBP™'B'R - Q)Ax= — }Ax"RAx (44)

The equations above demonstrate clearly the close relationship there is between the
Hamiltonian function and the Riccati equation itself.
The element

— $Ax"RAx (45)

is thus equal to the marginal value stream — the Hamiltonian function — for the optimal
solution on the margin.

The table below shows how the different elements in the Riccati equation represent
the elements An and AL, in the Hamiltonian function.

The Riccati equation and the Hamiltonian function
running result Axr = — !Ax"(— RBP " 'B'R — Q)Ax = — JAx"( — Am)Ax
price element AL, = — }Ax"(— RA— AR+ 2RBP~'B'R)Ax
= — AY(~ AL)Ax
Hamiltonian AH = — iAgTRA,I =An+AL,

(46)

In the table above An will be an expression of the current loss resulting from not being
on the path K, J.

The table also illustrates the clear economic interpretation the different elements in
the Riccati equation have. The Riccati matrix equation itself allocates the marginal
aggregated value stream — the Hamiltonian {unction — on the economic state variables
for the optimally controlled process. The matrix given by the expression

Amw=RBP™'B'R+Q 47)
therefore allocates the marginal result to the economic states. In the same way the matrix

~AL,= —RA—A"R+2RBP 'B'R (48)
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allocates the price element to the economic states. We therefore can divide the Riccati
equation in two

-R=+An+AL, (49)

Numerical values give (we have n=1) Am(0) =0.36315, AL,(0) = — 0.3627.
To make economic interpretations we will distinguish between

(a) the beginning of the optimisation interval and
(b) when we approach the end point in time.

For our chosen model with one state variable we have earlier shown that R(r) is
virtually constant in the beginning of the optimisation interval, which means that R
is approximately equal to O but nevertheless negative. Being able to set R approximately
equal to zero is a situation we will have when the time constants in the economic process
are shorter than the duration of the optimisation period. R being approximately equal to
zero also means that AH is approximately equal to zero, but positive in the marginal
system. The economic interpretation of this is that at the instant of decision =0 we
have approximately balance — but with a change of sign — between the running result
element Aw and the price element AL,.

For the first part of the period we can set.

|Am| =|AL,| and |Am|>|AL,| (50)

Earlier we have pointed out that R(s) falls when we approach the end point in time 7,
which means that the rate of change increases in absolute value with increasing time. In
practice this means that the running result element Aw has a significantly greater
absolute value than the price element AL,. which is quite natural from an economic
viewpoint.

As known, the ‘economic contribution result’ may be used in two ways, either by
reinvesting in the firm itself (represented by the price element) or by passing it as a
return to the owners of the firm (the running result element).

When we approach the end point in time we will put no more effort in reinvesting
in the firm, which explains why the price element approaches 0.

Development over time for A, AL,. R, AK, AH and R
Aw AL, R AK AH R

036315 —0.3627 -—45+107% —=0.1 225 107° 0.14752
035839 —035318 —521+10"% —0.0294 2.25%107% 0.14557 (51)
031095 —02583 —~527+10"2 —0.0092 225%107% 0.12449
0.1818 0 —0.1818 —-0.005 225%107% 0

WK - =™

It follows from the table that AH is numerically constant over the optimisation interval.
In the expression for AH ref. equation (46) the absolute value of AK is decreasing whilst

R in absolute value increases with time.

4.3, Main conclusions on the continwous-time model

(1) Our chosen example is characterized by:

Linear process description, current result of the linear/quadratic form — as well as
matrices P and Q being constant.



12 Lars Petter Lystad et al.

For this example, we find complete numerical agreement between the answers given
by the Riccati system and what the total system gives (cf. table 37).

(2) As we can see from (46), there is a close relationship between the marginal value
stream, the Hamiltonian function AH for the optimal solution on the margin, and the
Riccati equation itself

AH=An+AL,= — }AXRAx (52)
where R represents the left side of the Riccati equation.
(3) With reference to equation (38)
Aw = 1Ax(0)"R(0)Ax(0) (53)

Aw represents a margingl esonomic loss in our system, a loss we have from not being
on the reference paths K, J.

On the basis of the matrix R, higher weightings r; will mean that it has greater
impact on the criterion. From an economics point of view, it is therefore more profitable
to focus on the areas where r; has a high value.

5. The marginal system — discrete time model
5.1. The principal equations of the Riccati system

The description of the deviation between the real and the reference system in
discrete-time form is given by the discrete-time equations of the Riccati system. These
are briefly summarized below.

The discrete-time Riccati equation is

R(k)=Q + DRk + NP — ®'Rk+ DI(P + TRk + D)~ 'T"Rk + 1)P (54)

or in simplified form

Rk)=Q+ O Rk + 1)I+TP 'T'Rk+1))"'® (55)
Here @ and I' are matrices for the process description.
Ax(k + 1) = ®Ax(k) + T Au(k) (56)
The @ and P matrices are given by
2]
o) =%, P = Z;’fig (57)
For the price vector and the decision vector, we have
Ap(k + 1) = @~ (R(k) ~ Q)Ax(k) (58)
Autky= — P~ 'T'®"T(R(K) - Q)Ax(k) = — P~ 'TTAp(k +1) (59)
where ,_
Aulk) = u(k) — u(k), Ax(k) =x(k) — X(k) (60)

The Hamiltonian function and the optimal criterion in the discrete-time form are given

by the expressions, (see also Nyman (2004))

AH(k) = (Au"(k)PAu(k) + Ax"(k)QAx(k)) + ApT(k + DAxtk + 1) = Ax"(k)R()Ax(k) (61)
N-1

Aw(0) = ‘2 (Au"(k)PAu(k) + Ax"(k)QAx(K)) = Ax"(0)R(0)Ax(0) (62)
(=0
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which gives
AH(0) = Aw(0) = Ax"(0)R(0)Ax(0) (63)

5.2. The discrete-time marginal system — a model for marginal movement in time

So far, the Riccati system has been based on a comparison between the real and the
reference systems at the same time k. The analysis is vertical and represented among
others by the equations (59) and (60). We are now looking for a mathematical model
which is valid horizontally, i.e. which describes the marginal optimal movement of the
vectors x(k), u(k) from time k to the next time & + 1. Marginal optimal movement in time
must in this context be understood thus:

(1) The movement is in discrete steps and on a total level.

(2) Optimisation starts anew at each new step. This is congruent with normal
economic behavior.

(3) The movement starts at time k = 0 from an initial level, i.e. a baselevel value in
the total system. This baselevel value will normally be other than zero.

(4) The change from one level to the next does not necessarily have to be small
(cf. the change of approximately 9% on x, from time k=1 to k=2 in table
(101)). However, the change will normally be small compared to the baselevel
value. In the examplc, the baselevel value is x((0)= 1.

To find a horizontal model, we will split the problem in two — first we find the
mathematical model which is valid under constant economic constraints, then we expand
the model to handle changes in the constraints.

5.2.1. Constant economic constraints. In the continuous-time example, we chose the
paths given by equation (27) as reference paths. We are now going to alter this. We will
make use of the fact that values of the state vector and the decision vector in the general

form are governed by the process description

x(k + 1) = f(ak), u(k), ©) (64)
and the optimal criterion
N—1
w=SEN)) + 2, mx(k), u(k), k) (65)
k=0

Values of the state vector and the decision vector being based on optimal behavior, these
can be used as reference in the marginal analysis. For the state vector X(k) in the
reference system at time k, we therefore choose the value which appears in the real
system one period into the future. We get

T = xtk + 1) (66)

Similarly. a natural estimate of #7(k) would be the optimal decision vector at time & + 1
based on the initial value x(k + 1), and where we optimize over the interval from

k+ 1 and N periods ahcad.
Given i(k)=.(k + 1), for the case when the economic situation on which we basc
ourselves for optimisation is identical whether one starts at time k and goes N periods
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into the future, or makes a new start from time k + 1, the two calculations will give the

same result. We get
wky=u'tk+1) (67)

(The index ' makes reference to the new start from time k + 1). For the deviations, we

now have
Ax(k) = x(k) — x(k + 1), Au(k) = ulk) —u'(k+ 1) (68)

(the symbol A is used when there is a marginal change in time as defined in (68))
Equation (68) is horizontal and replaces equation (60). From equation (59) we find

u(k) — wky = — P~ 'TT®~T(R(k) — Q)x(k) — X(k)) (69)
We now use the relations

Bl=u'k+1), x(h)=xk+1) (70)

which give the decision vector u'(k+ 1) with a new start at time k + [.
u'(k+1)=P7'TT® T(R(Kk) — QALK + u(k) (71)
NUMERICAL EXAMPLE The main structure of the discrete-time model corresponds
to the continuous-time model as it is presented in section 3. We now, in addition, wish
to obtain a model where there is the closest possible agreement numerically between the

answers given by the maximum principle and those we get from the Riccati equations.
The process equation in discrete-time form is

Kk + 1) = K(k) + J(k) (72)
The discrete-time optimal criterion becomes analogous to equation (21)
w= 2 nk)= D, (aKk) — a:K(k) = qoJ(k)* = rgK(k)) (73)
k=0 k=0

We will use the same numerical values as in the continuous-time case. The maximum
principle gives the following optimal values for investment and capital with the starting
times k=0 and k=1 (k" =0).

The real system — optimal values

k 0 1 2 3 4
Ik) 0.068 0.0193 0
K() 1 1.068 1.0873 1.0873
(74)
k' 0 1 2 3
J' (k') 0.0219 0.0062 0
K(k') 1.068 1.0899 1.096! 1.0961
For the marginal system, we find
P=0.12, 0=0.1818, '=d=1 (75)

which gives R(0) = 0.2633. Placed in equation (71), this gives
u'(1)= P~ 'TT® " (R(0) ~ Q)x(0) — x(1)) + u(0) = 0.0219 (76)
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which is the same as we obtain from (74) (/’(1) = 0.0219). We will now use equation
(76) together with the process equation (72) to calculate marginal optimal movement in
time. K(0), J(0) are the initial conditions to get started with the Riccati model. This pair
of figures also raises the model to a total level.

Marginal optimal movement in time — total values

true value Ric.system
K J K J
] 0.068 1.000 0.068 initial cond. Ric. (77

1.068 0.0219 1.068 0.0219
1.0899 0.007 1.0898  0.007
1.0969 0.0022 1.0969  0.0022

W -0 =

The calculation which shows the total values for K and ] is effected with the help of the
maximum principle (true valuc) as well as the Riccati system. The values of K and J for
the first two years correspond to (74).

As we can see from table (77) when the initial conditions are given in the Riccati
model, there is for our chosen example full numerical agreement between the two
methods to describe marginal optimal movement in time.

Table (80) gives the important economic variables for the marginal system with
starting time k = 0. The reference system will be the lowest values for J'(k"), K(k') in
table (74), displaced by one period to the left.

For the shadow price Ap(1), the table gives us (see also (Kreyberg, 1969))

k=12
> An(k)
= ,L_ —_ - -3
Ap(1D) AD 5.56 X 10 (78)
which gives
k=2
AL0) = Ap(1)+Ax(1) = 2, An(k)=1.22%107* (79)
k=1
Economic variables for the marginal system
k 0 1 2 3
Au(k) 0461 0.013 0
R(k) 0.2633 0.2541 0.1818 0
Ap(k) —179X107% —556%X107° —1.6%x107° 0
Ax(k) —0.068 —0.0219 —0.0088 —0.0088  (80)
ALLK) 1.22x10°* 14x 1073 0
An(k) .07 %1077 1.08 X 1074 1.4x107°
AH(k) 1.2x1074 12191074 14x107°
Aw(0) 1.2x10°3

We will return to this in section 6 when we analyse in greater detail the economic result
development.

5.2.2. Change in the economic constraints. The premises for the equations above arc
as previously mentioned that the ‘economic constraints” which one bases oneself upon
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for optimisation are identical whether one starts at time k, or makes a new start at time
k + 1. We now wish to expand our model to handle changes in the economic constraints.
We define an expanded system with a new state vector which includes both our
process and the neighborhood.
Axl]
Ax= [ X 81
= | an ®1)

Here Ax, represents our process, and Ax, the neighborhood.

We hereby refer to (Balchen, 1978) where the theory is described in greater detail
under the condition that the neighborhood influences the process only. In our context, we
will assume that the change in the economic constraints can influence both the process
and the optimal criterion.

As we are, for the neighborhood, looking for a model of change in the external
constraints from one period to the next, the mathematical formulation will be of the form

Axa(k + 1) = OnAxs(k) (82)
The expanded system is now described by the equation
P, (D]?_] [F ]
Ax(k+1)= [ +
ket D=| 0 A+ | o fu (83)
which in compact form becomes
Ax(k+ 1) = DAx(k) + TAuk) (84)
For the marginal description, the object function is given by equation (62)
N=1
@ =2, (A" PAWK) + Ax"()OAX(K) (85)
k=0
The matrix Q can be divided into four submatrices
= [Qn le]
= 86
e [QZI O (86)

O will normaliy be other than zero.

As mentioned above, the change in economic constraints can also influence our
optimal criterion. This can happen in the way that some of the remaining submatrices
may also be other than zero.

Equation (85) ensures that the economics optimal criterion given by (65) is drawn
into the analysis. The matrices P and Q are found from the equation (57).

The solution to this problem will be in the form (cf. equation (59))

Autk)= — P~ 'TT®~T(R(k) — Q)Ax(k) (87)
where R(k) is the solution of the Riccati equation.
RUK) =0+ DRk + 1)U +TP 'T"Rk+1))"'® (88)
The matrix R may also be divided into four submatrices
Ry RIZ]
R=
[R2| Ry (89)

The optimal control variable with constant constraints is given by equation (71)

itk + 1) =P~ T (R1(k) — Q@i tk) = xi(k + 1) + (k) (90
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The ‘additional control variable’ Au; which one gets as a result of altered constraints is
given by the expression

Ak + 1) =P 'TTRp(k + 1) + TP TR (k + 1)) ™ 'DAxy(k) 91)

The control variable u’(k + 1) which gives a new start at time k + 1 is therefore equal

to
w(k+1)=wuk+ 1)+ Auglk + 1) (92)

NUMERICAL EXAMPLE For the neighborhood, we assume that the change in
constraints is due to technological changes. We therefore start by assuming that the
technological level comes in multiplicatively in the production function with the

expression
xa(ky = 1.0p¢ 93)
The process equation related to the neighborhood thus becomes

xz(k + l) = 1.0[1 * Xy (94)

which for the change description gives, cf. equation (82)
(Dzz = 1.0‘11 (95)

In our example, we set =9 i.e. a growth of 9% per annum (we have assumed such a
high figure in order to show the equal suitability of the model for high rates of growth).
Our process equation remains unchanged (x; = K, u=J)

xi(k + 1) = xi(k) + u(k) (96)
The current result function is changed to
(k) = xa(k)awxi (k) — axxi(k)?) — gou(k)” — rgx (k) o7

In this example, optimalisation is effected over two years.
Further, we have for the marginal model

=1, P=0.12 (98)

The Q matrix is given by (57). In the matrix we have that gi»(k) is given by the

expression
gialk) = —a; + 2a:x,(k) (99)

We now make use of (66) which gives
Q|3(k)= —a +2czgx,(k+ 1) (100)

implying that we must know #'(1) in addition to x,(0), x2(0) and u(0) to be able to get
started with the marginal model. We assume x,(0) = x,(0) = 1.0. With these assumptions,
the table below gives marginal movement in time when the constraints change.

Table (101) shows that now too there is numerical agreement between the answers
given by the maximum principle and what we find using the Riccati equations.

The total Riccati equation given in (88) will be the principal solution equation.

Together with the control variable equations (90), (91). (92) and the process equation
(84), these will be the fundamental equations which describe marginal movement in

time.
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The solution is in two parts in the sense that we have a feedback solution from our
economic main process assuming constant constraints, and a ‘feedforward solution’ from
the neighborhood by Aus, and which ensures that the constraints are altered.

In the chosen example with 9% external growth per annum, Au; is larger than uf.
When the economic growth rate is more normal, for example 2 to 3% per annum, wy will
be by far the largest.

Marginal optimal movement in time, two states — total values

k x X, u =uj+Au; uf Au;

0 1 1 1189

1 1.1189 1.09 .0999 0449 .0550 true value
0999 .0449 0550 Ric.system

2 12188 1.09° .0874 0357 0517 true value (101)
0874 0357 .0517 Ric.system

3 13062 1.09° .0781 0295 .0486 true value
0781 0295 .0486 Ric.system

5.2.3. The equations of the marginal system applied to a Cobb-Douglas production
function. So far, we have assumed that the Q(k) ‘matrix’ has been constant. We will
now alter this by replacing equation (18) with the well known Cobb-Douglas production
function of the form

=09 K (102)
For the two constants in the equation we choose the following numerical values
0=0.3463, =06 (103)

The remaining numerical values are identical to those in our main example. Optimalisa-
tion is effected over three years.
The Q(k) ‘matrix’ is now given by the expression

Ok) = O+ K(k)* 2% o(1 — ) (104)

which implies that Q(k) varies.
With this as a starting point, we wish to effect a comparison of the results between
the two calculation methods.

Marginal optimal movement in time, Cobb-Douglas production function — total
values

K(k)lnle J(k)lmc K(k)nc J’(k)ric

0 1 0.0503 1 0.0503
I 1.0503 0.0248 1.0503 0.0247 (105)
2 1.0751 0.0125 1.0750 0.0123
3 1.0876 0.0063 1.0873 0.0061

When Q(k) varies, we obtain a very small numerical deviation between the two methods
when we calculate K and J.
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5.3. Main conclusions on the discrete-time model

(1) Even for our growth model described in section 5.2.2 where technological
development comes in multiplicatively in the production function and where we have
two states, there is full numerical agreement between the answers given by the maximum
principle and those we get from the Riccati equation.

This conclusion is also valid for high growth rates.

(2) For the Cobb-Douglas example described in section 5.2.3, we get a numerical

deviation between the two methods.

However, it must be recognized that the deviation is very small. This is in part due
to the fact that the working point K(k) in equation (104) is ‘corrected’ by the model itself
when we move forward in time.

The calculation in the Cobb-Douglas example is effected for a period of time of one
year (the time from k to K+ 1). Provided that the length of the period is reduced, the
numerical deviation will be further reduced.

(3) The examples above demonstrate the article’s main objective which is to show
that the Riccati equation describes marginal economic movement in time.

(4) With our chosen examples, we have so far almost had full numerical agreement
between the answers given by the maximum principle and those we obtain from the
Riccati equation. To analyse the deviation problems in detail will constitute a complete

research project in itself.

6. Analysis of the economic changes in the accounts
6.1. The general equations
With reference to point 5.1, we have for AH(k)
AH(k) = Ax(k)"R(k)Ax(k) = An(k) + AL, (k) (106)

Equation (106) shows that there is also in the discrete-time case a close relationship
between the Hamiltonian function and the Riccati equation itself, in that R(k) represents

the Riccati equation’s left side.
For the result An(k) we find

An(k) = AxXT(R)(Q + DTZ(k + 1) " TRk + DITP ™ 'TTR(k + DZ(k + 1)~ '®Ax(k)  (107)
where
Zk+ 1)=I+TP TRk + 1)) (108)
Similarly, for the price element we find
AL(k)y = AxT(k)R(K)— Q—DTZ(k + 1) "R(k+ DI P'TTR(k+1)Z(k+1)"'®)Ax(k)  (109)

With reference to equation (106), the Riccati matrix equation allocates the Hamiltonian
function on the economic state variables for the optimally controlled process in a manner
which is totally equivalent to the continuous-time case.

Further, the Riccati equation can also in the discrete-time case be split into two parts

R(k) = Am(k) + AL, (k) (110)

where Am(k) is a ‘profit matrix’ and AL,(k) is the ‘price element’ matrix.
The matrix given by the expression

Ankh)=Q0+D"Z "Rtk + DTP TRk + NZ™'d (111)
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allocates the marginal result An(k) to the economic states. In the same way the matrix
AL, (k)= R(k) — Q@ — D"Z" "Rk + DI'P~'T"R(k+ 1)Z~ o) (112)

allocates the price element AL,(k) to the economic states.

6.2. Numerical example from time k=0 to k=1

The example is the same as that which is presented in section 5.2.1. Table (80) gives
the principal economic variables for the marginal system.

6.2.1. Changes in the running result. From equation (107) we find the expression
for An(0)
An(0) = Ax(0)(Q + ®"Z~T(HR(HT P~ 'T'R(Z ™ '(1)®)Ax(0) (113)
The numerical values give
An(0)=1.07x10"? (114)
Similarly, we obtain from the total system
n(0) = .10882, n'(1) =.10989 (115)
which gives the same answer for the difference.
An(0) gives an expression of the total system’s change in running result over the
period k=0 to k= 1.
6.2.2. The change in balance. From equation (109) we find the expression for ALL0)
AL,0) = AXT(0)(R(0) — Q — ®"Z~ "(HR(HI' P~ 'TTR(Z”™ '(1)®)Ax(0) (116)
The numerical values give
AL0)=122%10"* (117)

AL,(0) gives an expression for the total system’s change in balance over the period k=0
to k=1, represented through future marginal result improvements, cf. equation (79).

:2? An(k) (118)
In a general manner
AL 0) = 1:2: An(k) (119)
by having for the reference system _
X(0)=x(1) (120)

7. Main conclusions

The Riccati equation is an economic fundamental equation. There are two main
reasons for drawing this conclusion.

(1) The equations of the Riccati system are marginally descriptive in time for the
large majority of economic systems, i.e. those which can fit in with the principal
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equations and inequalities which form the basis of the marginal model. The starting
point is the general equations for the total system — the process description of the

discrete-time form

x(k+ 1) = f(x(k), u(k), k) (121)
and the optimal criterion
N-1
w=S@EN) + D, m(x(k), u(k), k) (122)
k=0

By knowing the fundamental equations in the marginal movement, we can get a broader
insight in the marginal states and parameters. This is difficult to achieve with the total

system as the relations are normally unknown.
(2) There is a close relationship between the marginal Hamiltonian function AH(k)

and the Riccati equation itself given by the relation (cf. (106))
AH(k) = Ax(k)TR(k)Ax(k) = Am(k) + AL, (k) (123)

AH(k) will be an expression of the accounts based on optimal behavior,
We have

— An(k) is the change in result which one obtains over the period & to k + 1 for the

toral system.
— AL,(k) will be an expression of the toral system’s change in balance over the same

period.
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