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Advanced life support therapy on out-of-hospital cardiac arrest
patients: Applying signal processing and pattern recognition
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In the US alone, several hundred thousands die of sudden cardiac arrests each year.
Basic life support defined as chest compressions and ventilations and early
defibrillation are the only factors proven to increase the survival of patients with
out-of-hospital cardiac arrest, and are key elements in the chain of survival defined
by the American Heart Association. The current cardiopulmonary resuscitation
guidelines treat all patients the same, but studies show need for more individualiza-
tion of treatment. This review will focus on ideas on how to strengthen the weak parts
of the chain of survival including the ability to measure the effects of therapy,
improve time efficiency, and optimize the sequence and quality of the various
components of cardiopulmonary resuscitation.

There are several hundred thousand sudden cardiac deaths in the United States each year
with an estimated event rate of one sudden cardiac arrest per 1000-person years
(Guidelines 2000) and survival rate of less than 10%. Similar dismal numbers are
reported in other countries worldwide.

At present only two factors are proven to increase survival of patients with
out-of-hospital cardiac arrest: basic life support (BLS) defined as chest compressions and
ventilation, and defibrillation of patients with ventricular fibrillation (VF) or pulseless
ventricular tachycardia (VT) (Guidelines 2000). The whole purpose of using a
defibrillator is to eliminate the chaotic electrical activity of the heart during VF or the
too-rapid ventricular activity in VT which precludes a circulation, hoping that the regular
rhythm-generating system of the heart again can take over and generate a pulse
(circulation of blood). No drugs being used during cardiopulmonary resuscitation (CPR)
have been shown to improve clinical outcome (Guidelines 2000). Without the use of a
defibrillator no patients with VF obtain return of spontaneous circulation (ROSC). With
the use of a defibrillator approximately 40-60 percent of these patients might achieve
ROSC (Hargartem ef al., 1990; Wik er al., 2003; Sunde et al., 1999) with a survival rate
to hospital discharge varying between 5 and 30% (Hargartem et al., 1990; Wik et al.,
2003; Sunde et al., 1999; Herlitz er al., 1999; Eisenberg et al., 1990). For other cardiac
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rhythms, the prognosis is dismal, with a survival rate of 1-2% (Eisenberg er al., 1990),
and most survivors have gone through a stage with VF and successful defibrillation
before achieving ROSC.

Defibrillation has therefore been moved forward in the chain of survival for patients
with cardiac arrest, and the new international guidelines state that early defibrillation
within 5 minutes of call-receipt by the emergency medical service (EMS) is a high
priority goal (Guidelines 2000). To achieve this, non-medical personnel must be enabled
to defibrillate in so-called public access defibrillation (PAD) programs using automated
external defibrillators (AEDs). Marenco et al reviewed the role of the automated
defibrillator in improving survival from sudden cardiac death (Marenco ef al., 2001). The
focus has turned onto development of more efficient waveforms, and designing
lightweight, easy-to use defibrillators.

The following review will be limited to the out-of-hospital setting where AEDs are
used primarily for the termination of VF. A short outline of therapy according to the
current guidelines of advanced life support (ALS) precedes the discussion of factors
weakening the chain of survival. Following this, we discuss suggestions for improve-
ments and possible means to achieve these applying signal processing and pattern
recognition methods. This article is modified from a previous review article (Eftestgl
et al., 2003). The modifications are minor, mostly presenting an update on recent results.

Current guidelines

The AED records an ElectroCardioGram (ECG), and uses a software algorithm
analyzing the ECG waveforms to determine whether the thythm is shockable (VF or VT)
or not. Based on the analysis, a voice prompt recommends defibrillation or not.

The current CPR guidelines recommend immediate defibrillation if the first recog-
nized rhythm is shockable. If this first shock is unsuccessful in terminating the VF or
VT, up to two more shocks are recommended before BLS is started. Thereafter series
of defibrillation attempts and BLS periods are repeated until ROSC is achieved or the
whole CPR attempt is discontinued. For non-VF/VT rhythms, BLS is continued until a
shockable rhythm is achieved, or the whole CPR attempt is discontinued.

Problems with current guidelines—the weak chain

The most important factors influencing the survival rates of out-of-hospital cardiac
arrest patients are:

e Time elapsed from collapse until the first defibrillation attempt (Hargarten ef al.,
1990; Larsen et al., 1993; Wik et al., 2003).

e Whether BLS has been provided or not (Cummins et al., 1985).

e The quality of both BLS and ALS (Van Hoeywegen ef al., 1993; Wik et al., 1995).

The interplay of these factors is decisive for the final outcome. Recent studies
strongly indicate that it is time-dependent whether defibrillation should be attempted as
soon as a defibrillator is available, if good-quality BLS has not been provided in the
meantime. If more than a few minutes have passed from the time of arrest until
the defibrillator arrives (more than 4-5 minutes response time), a 1.5-3 minute period
of BLS should precede the defibrillation attempt (Cobb ef al., 1999; Wik et al., 2003).
This is probably due to myocardial deterioration during the arrest period resulting in an
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inability of the regular rhythm-generating system of the heart to take over after a
defibrillation attempt.

Preparing for, delivering and determining outcome after the use of defibrillations

Many studies report very high defibrillation success rates, 95-99%. Yet the ROSC-
rate is frequently less than 50%, and many patients achieving ROSC require many
defibrillation attempts (Hargarten ef al., 1990:; Sunde et al., 1999). This might be
somewhat confusing, and is due to the definition of defibrillation success. As mentioned
above, the immediate purpose of using the defibrillator is to eliminate VF or VT, hoping
that this will give room for a pulse-generating rhythm (ROSC). Thus defibrillation
success is frequently defined as the absence of VF or VT for at least 5 seconds after the
shock (Gliner & White, 1999). Clinically, we are interested in ROSC which as suggested
above does not only depend on the quality of the defibrillator and defibrillation attempt.
but also on the condition of the myocardium, which again depends on the duration of the
cardiac arrest and the BLS provided (Wik er al., 2003). A clinical definition of a
successful defibrillation attempt could therefore be ROSC, stable or not (Sunde er al.,
1999). In these terms, only 10% of 883 shocks were successful in the study by Sunde
et al., 1999.

It would be of great potential advantage if defibrillation attempts not resulting in
ROSC could be avoided. It has been shown that a defibrillation attempt in itself is
harmful to the myocardium.

It would therefore be desirable if the myocardial situation, and thus the probability
of ROSC, could be predicted before defibrillation is attempted. There are now quite a
few studies showing that the VF waveform contains such information (Noc et al., 1999;
Eftestgl et al., 2000; Small et al., 2001: Strohmenger et al., 2001; Povoas er al., 2002).
This information could then be used to decide whether BLS should be given first in an
attempt to increase probability of ROSC. As discussed in more detail below, this
information is represented by features calculated from ECG waveforms, the hypothesis
being that the feature characteristics reflects changes in resuscitability.

Aspects of hands-off-intervals (HQO)

We discussed the problem of unsuccessful defibrillations above. In addition to the
myocardial damage, it is important to consider that each such defibrillation attempt
requires a time period for thythm analysis, defibrillator charging, shock delivery and new
post-shock rhythm analysis where no BLS can be given, as the rhythm analysis software
requires that the patient lics completely still to avoid any ECG artefacts being created.
In one study, the median time from initiation of rhythm analysis until shock was given,
was 20 seconds (Sunde er al., 1999). In a follow-up study of the same material the
myocardial condition deteriorated substantially during that same period (Eftestgl ef al.,
2002). In general one might say that the chance for ROSC is at its highest level
immediately after the arrest, when the heart muscle still has a high supply of energy
resources and oxygen. As time passes, these resources are drained. The rate of this
drainage can at least be reduced by properly performed BLS, which as mentioned above,
might even improve the myocardial situation if there has been a period without properly
executed BLS before the defibrillator is available. Such an improvement was indeed
demonstrated in a study of VF waveform changes due to precordial compressions
(Eftestgl et al., 2004). With series of three defibrillation attempts followed by one-minute
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periods of BLS, approximately 50% of the time is spent without any blood flow being
generated to the tissues.

Decision support—identifying and strengthening the weak chains of survival
Summarizing, some of the crucial problems in resuscitation are:

o A large number of shocks are unsuccessful.

e Much hands-off time, without blood flow being generated, occur with the use of
presently available AEDs.

e Quality of compressions and ventilations delivered might be poor.

The last 15 years has seen advances in research addressing these issues, investigating
methods that have a potential for improving cardiac arrest survival rates. In essence, the
rescuer should be guided by information at least partly gathered on-line and processed
in real-time, in her/his decision making on which therapeutic component to use. Such
methods are parts of a decision support system.

A decision support system might be considered as representing the knowledge of
former therapy. Data representing the documentation of therapy is structured into this
knowledge system (Mitra ef al., 2002; Kovalerchuk et al., 2000; Fong et al., 2002). This
documentation might include patient demographics, ECG derived information and
outcome information. Further analysis techniques are used to find the functional link
between patient data and outcome variables. Considering these factors, we might
envisage a potential for increased survival if we are able to develop a decision support
system incorporating functionality for:

Reading and integrating multiple sources of information

Measuring the effects of therapy—online monitoring

Reducing duration of hands-off-time during ALS and BLS

Optimize the sequence and quality of the various ALS and BLS components.

Several rescarch groups have been occupied with developing methods pointing
toward such a decision support system. We review how advanced information technol-
ogy methods such as signal analysis and pattern recognition can be used to develop such
functionality.

Reading and integrating multiple sources of information
The therapy of cardiac arrest is documented in several ways:

1. The defibrillator provides an event report of and time series recordings of ECG
and in some cases impedance measurements. The coded information appears in a
file or several files which might be transmitted to a computer.

2. Report sheets carry information about patient demographics and important ther-
apy, which can been stored electronically.

To extract meaningful information, the data have to be imported and integrated in a
software environment. This requires knowledge about coding formats of the event
records, ECG and other physiological data (Virri ef al., 2001). The data are decoded so
that each time series is available as a continuous sequence of numbers on which logical
and arithmetic operations can be performed for statistics and signal analysis. Both
defibrillator event records and report data are synchronized to the time series data.
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Figure 1: ECG tracing illustrating VF, with artefacts from precordial chest compressions, hands-off
intervals, countershocks and return of spontaneous circulation. Each line shows 30 seconds of ECG
continuing from the previous line. The time stamps and defibrillator usage text above and below each
line of tracing are read from the electronic defibrillator log file. The text within the tracing axes are
the therapy, defibrillation outcome and rhythm annotations provided by the medical experts.

Medical experts can then interpret and annotate the data based on integration of this
information. Such primary annotations will typically be rhythm changes. From these
primary annotations, secondary annotations can be generated automatically. As an
example, an algorithm for determining individual defibrillations outcomes can be devised
based on which post-shock rhythms are present. Figure 1 illustrates such visualization
with the rhythm annotations and CPR sequences identified. The ECG time series is
shown as a continuous tracing. The events logged are shown with event descriptions
below and time stamps above each axis window aligned with the ECG according to time
of appearance. Both primary and secondary annotations are shown within the axis
windows with the top ones indicating presence of CPR and the bottom ones showing
thythm changes. The annotations in the second line are examples of secondary annota-
tions indicating the outcome of the next defibrillation.

In recent years, several studies utilizing data from AEDs have given information on
exact numbers of shocks given, time intervals between important events, outcomes like
conversions after defibrillation attempts, duration of CPR sequences and duration of
hands-off intervals (Sunde er al., 1999; Gliner & White, 1999). For many years,
statistical information derived from analysis of digitally stored reporl sheets has also
provided valuable information about time intervals such as duration from collapse to call,
arrival of ambulance personnel, and delivery of first shock. There are many examples of
how such analyses have identified weaknesses in the chain of survival. For instance, in
Oslo a lack of decentralization of the ambulances caused long response times (Sunde
et al., 2001). Also, identifying and computing hands-off interval duration revealed a
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median time of 20 seconds for preparing for and delivering a shock in the same material
(Sunde et al., 1999). ldentitying such weaknesses provides opportunities to strengthen
the chain, for example by decentralizing the ambulance service, or switching from an
AED mode to manual defibrillation, thereby reducing the time spent on rhythm analysis
and enabling BLS during defibrillator charging, consequently shortening the duration of
the hands-off intervals.

Measuring the effects of therapy—online monitoring

Work aiming at measuring the effects of therapy goes back 15 years with several
research groups involved as reviewed by Amann et al., 2001. In our opinion, the ability
to predict the outcome of defibrillation is the key to improve resuscitability. It is the most
mature method we will discuss, although no AED available has this kind of functional-
ity. Defibrillation outcome prediction has only been used for retrospective analysis, but
is considered in the evidence evaluation and science review process in preparation of the
new resuscitation guidelines scheduled for 2006.

The hypothesis is that features can be derived from the ECG waveform. Features
with good discriminative power can be used to develop a defibrillation outcome predictor
that will enable the avoidance of unsuccessful defibrillation attempts (NO ROSC).
Shocks will only be given when the chance for success (ROSC) is high. Such a decision
should be based on a compound analysis of one or several features, with the predictor’s
output being a hard decision SHOCK/DO NOT SHOCK or a soft decision producing a
continuous outcome variable. Such a continuous variable can be used to represent the
probability of ROSC. An outcome predictor can be developed using several possible
methods. We will discuss the basic aspects and give some examples from our own
research which applies signal processing and pattern recognition methods.

[rom a signal processing perspective, the main approaches applied in characterising
the VF fall within the categories of time- and frequency domain techniques. It is
important to note that the physiological processes related to cardiac arrest change due to
time and therapy. Thus, the parameters describing these processes change accordingly.
The VF analysis features estimate these parameters which are subsequently used to
distinguish VF with a high probability of ROSC from those of low probability. The time
domain technigues involve characterisation of the signal’s amplitude behaviour. The VF
signal, typically does not exhibit one distinct periodic component, but rather a composite
spectrum of several such components which are more naturally expressed in frequency
rather than time units. Due to this, and that signals with such properties are commonly
and naturally analysed in the frequency domain, the power spectral density (PSD)
function has been widely used in the analysis of the signal’s periodic behaviour.

Pattern recognition methodology is applied to develop and evaluate a defibrillation
outcome predictor from a specific feature combination derived through time- and
frequency domain techniques (Duda et al., 2001). In Bayesian decision theory, a pattern
represented by a certain feature combination (feature vector) is classified according to a
decision rule. This rule is established through estimates of the 4 priori probabilities of
the successful and unsuccessful outcome classes and the class specific probability density
functions (PDFs) describing the distribution of the feature vectors. The & priori
probability represents our degree certainty of which class the next pattern to be observed
belongs to. After observing this pattern, we apply Bayes rule to the 4 priori probabilities
and the class specific PDFs to adjust this certainty into 4 posteriori probabilities.
According to Bayes decision theory, selecting the class according to the highest
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a posteriori probability corresponds to the minimum error decision rule. In some cases,
wrong classification of one class of patterns is considered more serious than mis-
classifications of patterns from the other class. In this case, a weighting of the PDFs can
be applied in a risk minimising strategy. In outcome prediction this can be used to
prioritise correct classification of successful defibrillations. This ensures that the patient
do not receive worse treatment than what is advised by the standard treatment protocol.
Amman et al give an excellent overview of feature extraction techniques having been
applied in VF analysis (Amann ez al., 2001).

The starting point of defibrillation outcome prediction as we defined it in our study
of 87 ROSC and 781 NO ROSC VF segments, was to extract VF waveforms and
outcome information from the available data material (Eftestgl e al., 2000). For all
registered defibrillations, the corresponding VF waveform segment immediately prior to
a defibrillation attempt was extracted and grouped according to the corresponding
outcome being ROSC or NO ROSC as illustrated in Figure 2. For each segment, the PSD
was estimated. From the PSD, four spectral features: the centroid frequency, peak power
frequency, spectral flatness and energy were computed (Eftestgl er al., 2000). From a
feature set being a decorrelated representation of the original spectral feature set, the two
most expressive features, vpca, and vpca, yielded the highest performing outcome
predictor (Eftestgl et al., 2000). Figure 3 illustrates how these two feature components
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Figure 2: Examples of VF waveforms extracts from immediately prior to defibrillations. Each tracing
corresponds to four seconds of ECG tracing. The four second tracings immediately prior to the two
first defibrillations in Figure 1 would fall in the unsuccessful group labeled NO ROSC, while the four
seconds of tracing immediately prior to the third defibrillation would fall in the successful group
labeled ROSC. The different size of the two groups illustrates the typically higher a priori probability
of the NO ROSC class.
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Figure 3: The feature representations of all the VF waveforms extracts shown as coordinates in feature
space. For each of the 87 ROSC (*) and 781 NO ROSC (e) extracts the Fourier transform was
computed to estimate the Power spectral density (PSD). From the PSD four spectral features, the
centroid frequency, peak power frequency, spectral flatness and the energy feature were computed.
These four features were further reduced into two expressive features, vpca, and vpca,, through
decorrelation. These two features yields the highest performing defibrillation outcome predictor. Each
of the VF waveform extracts shown in Figure 2 is represented as a coordinate (Vpca,» Veca,) int this
feature space.

measured from 87 ROSC (*) and 781 NO ROSC (e) VF segments disiribute as
coordinates in feature space.

In a related study, the 4 posteriori probability function for the ROSC class was used
to represent the probability of successful outcome, Prosc, as shown in Figure 4 (Eftestgl
et al., 2001). The ECG features and the Prosc function can be computed online, offering
a tool for monitoring the patient’s resuscitability during therapy. The predictive value of
any such Prosc must be established. In Eftestgl ef al., 2000 we did this by investigating
the Prosc-features’ ability to predict defibrillation outcome. Recently we applied the
decision rules established in the original study (Eftestgl et al., 2000) on new data. The
results showed good correspondence between the training and independent test results
(Eftestgl et al., 2005).

We investigated the monitoring capabilities of Prosc in two studies. In one study we
used Prosc to evaluate the effect of interrupting precordial compressions (Eftestgl et al.,
2002) and in more recent study we investigated the effects of giving precordial
compressions (Eftestgl et al., 2004). In conclusion, the studies demonstrated a negative
change in Pgosc due to interrupting compressions (Eftestgl ef al.. 2002) and a positive
change after prolonged sequences of precordial compressions (Eftestgl er al., 2004).

Other groups have investigated features, individually, or combined into indicators for
resuscitability similar to Pgosc, using regression techniques or pattern recognition
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Figure 4: A functional relationship between the feature representations of all the VF waveforms
extracts and corresponding ROSC/NO ROSC outcome with the feature representation coordinates
from Figure 3 superimposed. This can be explained as a division of the feature space defined by vpc,
and vpca, into equal-sized cells. In each cell the Prosc value is estimated as the number of ROSC
coordinates divided by the total number of coordinates in the cell.

methods (Noc er al., 1999; Amann et al., 2001; Achleitner ez al., 2000; Watson ef al.,
2000; Monsieurs et al., 1998). When used in animal studies, both outcome prediction
and correlation analysis between the features and established indicators of resuscitability
have been applied for feature evaluation. One of the problems with evaluating features
in animal studies is that features with high discriminative power in animal studies often
perform much worse when applied to human data, possibly due to the differences in VF
frequency spectra between experimental animals and patients.

Reducing duration of hands-off-intervals

AEDs record and analyse the ECG in order to make a shock/no-shock decision.
However, the mechanical activity from chest compressions and ventilations during CPR
introduces artefact components in the ECG (Langhelle er al., 2001). For AEDs to
perform reliable ECG signal analysis, CPR is therefore discontinued for a substantial
time before the potential delivery of an electric shock. Reduction or elimination of this
“hands-off” time requirement by removing these artefacts, should significantly improve
defibrillation success rate (Sato et al., 1997; Yu et al., 2002).

The artefacts have been successfully removed from animal ECGs by applying
high-pass digital filters with fixed coefficients (Noc et al., 1999: Strohmenger et al.,
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Figure 5: Two examples of CPR artefact removal using MC-RAMP: Shockable rhythm: VF segment
(), Non-shockable rhythm: PEA segment (b). Each segment is 20 sec. with CPR on first half. Each
half is presented to a shock/no-shock classifier with the shock advice written on the plot. From top
to bottom the plots are ECG before and after filtering, and four reference signals: compression depth,
thorax impedance, ECG common, and compression acceleration, respectively.




Advanced life support therapy on out-of-hospital cardiac arrest patients 231

20
15

10

Frequency [Hz]

Frequency [Hz]

Frequency [Hz]

1] 2 4 6 B 10 12 14 16 18 20
Time [s]

()
Figure 6: Spectrograms (time-frequency plots where each vertical line can be said to be the PSD for
a given time instant) for BCG with CPR artefacts on the first 10 seconds, (a) Spectrogram of the VF
signal from Figure 5(a). (b) Spectrogram of the VF signal from Figure 5(a) after filtering of CPR
artefacts using MC-RAMP. (c) Spectrogram of CPR in pig VF showing non-overlapping frequency
components of pig VF and CPR
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1996). In human ECG, however, the frequency components of the artefacts overlap with
the frequency components of the desired signal, which makes separation by such filters
infeasible.

In a mix of pig CPR artefacts and human VF/VT, CPR artefacts were successfully
reduced using a multichannel time varying Wiener filter (Aase et al., 2000) and a
multichannel recursive adaptive matching pursuit (MC-RAMP) filter (Husoy ef al.,
2002). These types of filters use reference signals that correlate with/resemble different
artefact types, e.g. compressions and ventilations, and are recorded simultaneously with
the ECG. Using these signals, the CPR artefacts are modelled recursively in the filter and
subtracted from the ECG, revealing the underlying heart rhythm.

Two examples of filtering using MC-RAMP are shown in Figure 5. The spectro-
grams of the VF signal in Figure 5(a) before and after filtering are shown in Figure 6(a)
and (b), respectively. As seen from these plots, the frequency components of the CPR
and human VF overlap, making the filtering non-trivial. For comparison, Figure 6(c)
shows the spectrogram of CPR in pig VF, showing non-overlapping frequency compo-
nents of VF and CPR artefacts making such a signal trivial to filter using standard
frequency-selective filters.

Recently we have worked on using the MC-RAMP algorithm for realistic removal
of CPR artefacts in human out-of-hospital cardiac arrest ECG (Eilevstjgnn et al., 2004).
While CPR artefacts in the ECG can be reduced using MC-RAMP, it may not always
be good enough for the shock/no-shock decision classifier. In a recent study, we have
analysed and quantified the benefit of using artefact removal during CPR (Eilevstjpnn et
al., 2005). The study concluded that the time without blood flow from compressions can
be reduced significantly, hopefully increasing the survival (Eilevstjgnn et al., 2005).

Optimising CPR quality using thorax impedance based measurements of ventilation and
pulse

An animal study implies the application of transthoracic impedance signals for
breath- and pulse-check (Pellis et al., 2002). Recent experiments have demonstrated the
potential of measuring ventilation and pulse using thoracic impedance on realistic human
cardiac arrest data (Risdal et al., 2005) (risl, ris2, ris3, ris4).

In (Risdal et al., 2005) (risl) we studied the relationship between lung volume
changes and resulting thoracic impedance changes measured by a modified defibrillator
to evaluate the potential of using thoracic impedance for estimation of ventilation rate,
inspiration time and tidal volume. The respiratory and impedance waveform of a
ventilation cycle was found to be highly correlated. This facilitates ventilation rate and
inspiration time estimation in a CPR quality feedback system, but the results also showed
that thoracic impedance is not suitable for estimation of tidal volume. A pattern classifier
did not perform convincingly in discriminating between to low, sufficient and to much
ventilation (Risdal et al., 2005) (ris2).

In Risdal et al., 2005 (ris3) we investigated the potential of acquiring circulatory
information from patients undergoing resuscitation. We studied the correlation between
impedance-derived parameters related to circulation and arterial blood pressure measure-
ments in 58 patients. The results showed poor correlation between impedance and
pressure measurements indicating that the impedance-derived parameters are not suitable
for quantification of circulation but can be used to indicate circulation. In Risdal et al.,
2005 (ris4) a neural network-based classifier using ECG and thorax impedance recorded
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by AEDs to distinguish between pulse rhythms and pulseless electrical activity demon-
strated the possibility of indicating circulation automatically.

Conclusion

Defibrillation is the single most important decisive factor for outcome from out-of-
hospital cardiac arrest. Recent research has identified and renewed focus on the
important role of chest compressions and ventilation. Retrospective analyses of infor-
mation stored electronically during therapy have offered additional explanations for the
weak links in the chain of survival. Signal analysis and modelling of cardiac arrest ECG
for prediction of shock outcome and monitoring of resuscitability have been applied in
diverse ways with gradual use of more sophisticated methods in recent years. Focus has
also turned on other factors, modelling compressions, ventilations and automated pulse
detection. The studies so far are retrospective and indicate a potential that these methods
have a potential for monitoring resuscitability during therapy.

We believe that collection of large amounts of data allowing more accurate and
general models might fuse these methods into a decision support system for cardiopul-
monary resuscitation, suitable to be integrated into AEDs within the next three years.
Thus, development of advanced digital signal processing algorithms for decision support
systems might provide online guidance to emergency medicine personnel equipped with
an AED. Based on this guidance, the various components of ALS can be administered
optimally. Thus, a sequence of treatment steps can be given based on the estimated state
of each individual patient, rather than according to some specified fixed protocol as is
common today. This is expected to significantly increase the survival rate.
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