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In this paper a controllability study of different actuator configurations consisting of
magnetic torquers, reaction wheels and a gravity boom is presented. The theoretical
analysis is performed with use of controllability gramians, and simulation results with
the different configurations are presented and compared regarding settling time and
power consumption to substantiate the theoretical analysis. A reference model is also
introduced to show how the power consumption can be lowered to the same
magnitude as when magnetic torquers are used, without degrading the satellite
response significantly.

1. Introduction
1.1. Background

The orientation of a satellite in space, described relative to some other object or
system, is known as the attitude of the satellite. The attitude may be changing with
respect to time. Some satellites are spinning around a major axis to provide directional
stabilization around this axis. These satellites are well suited for operations requiring
directional attitude control, such as RF-antennas and deep space monitoring. Alterna-
tively, a satellite can use three-axis attitude control to direct itself towards any given
location is space. This solution is typically used for Earth or deep space imaging
applications. To be able to control the attitude of the satellite, it must be equipped with
actuators that can produce angular torque. Several types of actuators exist today, and the
most common solutions used for small satellites are gyroscopic torquing and magnetic
torquing.

Gyroscopic torquing is a phenomenon where an internal gyro or rotor is accelerated
to apply angular torque. For this purpose, it is possible to use reaction wheels which
nominally maintain zero momentum but change speed to apply torques about their spin
axis. When the reaction wheels are in motion, they will also provide a stabilizing effect
on the satellite, since spinning bodies are known to be gyroscopically stiff. This is an
advantage since the satellite will be more robust towards external disturbances, but a
problem arise when the satellite orientation must be altered for some reason, because it
then requires more power to rotate it about its axis.

Magnetic torquers, or magnetorquers, have been used for attitude control of satellites
since the mid-sixties, when Harold Perkel created a three-axis attitude control system
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with one fixed-gimbal momentum wheel and magnetic torquers for controlling transverse
momentum components (Kaplan, 1976). A magnetic torquer produces a magnetic
dipole when current flows either way in the loop. The magnitude of this dipole is
proportional to the ampere-turns and the area enclosed by the coil. A satellite carrying
such magnetic torquers, will have the possibility to influence its orientation by applying
current to these torquers, and in this way interact with the magnetic field surrounding the
Earth.

The advantage of using reaction wheels, as compared to magnetic actuators, is the
possibility of controlling the satellite independently of its geographical location and
altitude. The disadvantages lie primarily in expenses, the moving parts and the weight.
Magnetic torquers are inexpensive, light and contain no moving parts, and are thus less
vulnerable to failure. Reaction wheels introduce nonlinearities such as friction and
stiction in the wheel bearings, saturation in the wheel angular velocity, and possible
misalignments of the wheels with the principal axis of the satellite. They also cost and
weigh a lot more.

The major obstacle in magnetic actuation is that a magnetic torquer will produce
maximum torque when it is directed normal to the magnetic field vector, and zero torque
when it is aligned with the local magnetic field vector. The available torque is therefore
dependent on the current local magnetic field vector, and independent torques on all
three axes of a supposed control system using three orthogonal magnetic torquers are not
achievable. Accordingly, the yaw axis of the satellite will not be controllable over the
magnetic poles of the Earth, and the roll axis will lose its torque over the Equator. Since
the magnetic field is also constantly changing, magnetic control becomes nonlinear and
time-varying.

Wheel saturation is a major problem when reaction wheels are used as actuation.
Constant external disturbances will lead to increased angular velocity, as the wheel is
accelerated at a constant rate in order to compensate for the disturbance. Clearly, such
effects can be sustained only up to a certain limit, until wheel saturation occurs. It is thus
necessary with an extra set of actuators generating external torques in order to desaturate
the wheels, and in that way dump angular momentum from the satellite. Magnetic
torquers have often been used as desaturation actuators on satellites with reaction wheels.
When magnetic torquers are the principal means of actuation, no such saturation
problems arise.

Magnetic actuation together with a gravity boom has been utilized earlier on the
Danish Orsted micro satellite, launched from California on January 8, 1999. Information
on the attitude control system can be found in Bggh et al. (1997), Bak er al. (1999), and
in teferences therein. Also, the first Norwegian pico-satellite nCube, based on the
CubeSat concept, is designed to use magnetic actuation for attitude control, as described
in Riise ef al. (2003) and Gravdahl et al. (2003).

Several missions have utilized combinations of reaction wheels and magnetic
torquers for attitude control. The Odin mission, a Swedish science satellite project. used
four reaction wheels as main actuators, where three were mounted orthogonally, and the
fourth was mounted iso-angular to the three others and served as a backup. In addition,
magnetic torquers were mounted on the satellite, but these were mainly used for
momentum dumping (Von Schéele, 1996). Similarly, the UoSAT-12 mission by Surrey
Satellite Technology Ltd. (SSTL) employed an attitude control system consisting of
reaction wheels and magnetic torquers, in addition to a gravity boom (Steyn & Hashida.
1999).
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1.2. Contribution

The contribution of this paper is the presentation of a controllability study of
different actuator configurations consisting of magnetic torquers, reaction wheels and a
gravity boom, and is a summary of the work reported in (Kristiansen, 2000). Mathemat-
ical models for satellite dynamics and kinematics are presented, together with models of
the different actuators and the geomagnetic field of the Earth. The mathematical
framework behind theoretical analysis of controllability based on gramians is also laid
out, and results from this analysis are presented. In addition, theory on the linear
quadratic (LQ) optimal controller used in the simulations is presented. A baseline
actuator configuration consisting of three orthogonally mounted magnetic torquers in
conjunction with a gravity boom is simulated, and the results regarding controllability
and power consumption are compared to results from simulations with reaction wheels
mounted on the body axes. Lastly, simulations of a satellite with three reaction
wheels and no gravity boom are presented, and a reference trajectory is introduced to
show how the power consumption can be lowered to the same magnitude as when
magnetic torquers are used, without compromising the satellite response significantly.

The rest of the paper is organized as follows: Section 2 defines the different reference
frames used and reviews the mathematical models of rigid-body dynamics and kinemat-
ics. In addition, actuator dynamics and modeling of the geomagnetic field of the Earth
complements the section. Section 4 contains the controllability theory used in the
theoretical analysis, accompanied by the controllability results for the different configu-
rations. The controller design is performed in Section 3, and simulation results of the
satellite with the different actuator configurations are presented in Section 5. Section 6
comprises final conclusions and remarks,

2. Modeling
2.1. Coordinate frames
The different reference frames used throughout the paper are given as follows:

Earth-Centered Inertial (ECI) Frame: This frame is denoted %, and has its origin
located in the center of the earth. Its z axis is directed along the rotation axis of the earth
towards the celestial north pole, the x axis is directed towards the vernal equinox, and
finally the direction of the y axis completes a right handed orthogonal frame.

Earth-Centered Earth Fixed (ECEF) Frame: The ECEF frame has its origin similar
to the ECI frame in the cemer of the Earth, and its z axis directed towards the celestial
north pole, but its axes rotates relative to the ECI frame with the same rate as the Earth
spins about its center. The x axis is always pointing towards the intersection of (°
latitude and 0° longitude. This frame is denoted 7.

North East Down (NED) Frame: This frame is denoted %,, and is defined as an earth
fixed tangent plane on the surface of the Earth with the x axis and y axis pointing
towards true north and east, respectively. The z axis is pointing towards the center of the
earth, and is perpendicular to the tangent plane of the Earths reference ellipsoid. The
location of the NED frame relative to ECEF frame is determined by using the geocentric
latitude and longitude.

Orbit Reference Frame: The orbit frame, denoted 7,, has its origin located in the mass
center of the satellite. The z axis is pointing towards the center of the earth, and the x
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axis is directed forward in the travelling direction of the satellite, tangentially to the
orbit. In a circular orbit, the orbit frame rotate relative to the ECI frame with an angular
velocity of approximately

~ |Fe
@o=\p 0y

where i, is the Earth’s gravitational coefficient and r. is the distance from the frame
origin to the center of the earth. Satellite rotation about the x-, y- and z-axis is named
roll, pitch and yaw respectively.

Body Reference Frame: This frame has, similar to the orbit frame, its origin located in
the satellite center of mass, but its axes are fixed in the satellite body and coincide with
the principal axes of inertia. The frame is denoted 7.

2.2. Kinematics

Transformation between the previously described reference frames is done by
rotation matrices, members of the special orthogonal group of order three, Le.

SO3)={R|R e B***, R'R=1,detR=1}
where 1 is the 3 X 3 identity matrix. A rotation matrix for a rotation  about an arbitrary
unit vector k can be angle-axis parameterized as

Ry o=1+ S(k) sin 8 + S*(k)(1 — cos 0) 2)

and coordinate transformation of a vector r from frame a to frame b is written as
r’ = R%“. In general, the matrix describing transformations from the orbit frame to the
body frame can be described by

R’ =(ci e ¢3) 3

where the elements ¢; are the directional cosines. The time derivative of a matrix R® can
according to Egeland & Gravdahl (2002) be expressed as

R{ = S(w) R} = R§S(e)y) @

where @, is the angular velocity of frame b relative to frame a represented in frame b
and S(-) is the cross product operator given by

0 —w; @
S((D) =mX = o 0 — Wy
-, Wy 0

where @ = [0, o, @.]". Similar to (4), the time derivative of the directional cosines in 3)
can be expressed as
& =S(e)og,

The rotation matrix in (2) can be expressed by an Euler parameter representation given
as

R, =1+ 21S(€) + 287(e) 5)

where
n=rcos (0/2) e R (6)
e=ksin (0/2) € R @
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are the Euler parameters, which satisfies the constraint

7+ee=1 (8)
A vector consisting of the Euler parameters
q=[n €T

is in the following treated as a unit quaternion vector, and referred to as a quaternion.
The inverse rotation is given by the complex conjugate of q as
=l — €7
It should be noted that if q represents a given attitude, then — q represents the same
attitude after a rotation of * 2x about an arbitrary axis. Hence, even though q#+ —q
mathematically, they represent the same physical attitude.
The kinematic differential equations can be found from (4) together with

(6)~(7) as
n=—}€wl, ©)
€= 1yl + S(e)]o’, (10)

The deviation between the current attitude q=[ne]’ and the desired attitude
qs= 172 €]" is given by the quaternion product (Egeland & Gravdahl, 2002) as

i _ |t nol_ qdq+e§£
[é’] [ed]®[-e] [qde—ned—S(ed)e] an

2.3. Dynamics

With the assumptions of rigid body movement, the dynamical model of a satellite can
be found from Euler’s moment equation as (Sidi, 1997)

Jol,= — ol X Job) + &+ (12)

wg,, - wﬁ, + w3 (13)

where J is the satellite inertia matrix, @} is the angular velocity of the satellite

body frame relative to the inertial frame and (), is the angular velocity of the satellite
body frame relative to the orbit frame, all expressed in the body frame. The parameter
75 is the total disturbance torque, 72 is the actuator torque, and c; is the directional cosine
vector from (3).

2.4. Actuator torque

The actuator torque 7, in (12) is produced by a set of orthogonally placed magnetic
torquers, located on each of the %, axes. In addition, reaction wheels are in turn added
to the body axes to investigate the effect on system performance and power consump-
tion. Accordingly, the actuator torque can be written

%= Tt

where 7%, and t’, are the torques generated by the magnetic torquers and the reaction
wheels, respectively.
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2.4.1. Geomagnetic field. Under the assumptions that only negligible electric field
changes occur and that the amount of current flowing across the boundary between the
Earth and the atmosphere is relatively significant, a solution for the main geomagnetic
field of the earth can be obtained from the negative gradient of a scalar potential as
(Campbell, 1997)

av L av ad
=—|li—4j—+k—|=— 14
B [lax Jay ka:] w (14

where i, j and k represents three orthogonal directions. From Maxwell’s equations we
know that the divergence of the field is zero, given as
aB, B, 0B,

By inserting equation (14) into (15) we obtain the relation known as Laplace’s equation
Viv=0 (16)

which implies that this potential function will be valid over a spherical surface through
which current does not flow. Equation (16) can be written in spherical notation according

to
al,o 1 @ d 1 v
__ ,2‘]+__[ 9_‘/]=— T
6!’[ ar] " sinoaol™" sin’0 o’

in which r, 8 and ¢ are the geographic, earth centered coordinates of the radial distance,
co-latitude’ and longitude, respectively. When the assumption that essentially all
contribution to the field comes from the internal earth sources is made, the scalar
potential can be expressed in spherical coordinates as

Vir. 6, ) =“él (2) o, 6}] a7

where a = R, = 6371.2 km is the Earth radius, r = R,, = 6971.2 km is the orbit radius and
Fi(¢, 0) is the Legendre polynomial of the independent variable 6 that is multiplied by
sine and cosine of the independent variable ¢. The labeling superscript i indicates
internal source terms of the potential functions. The Legendre polynomial F {(¢ .0) can
be expressed as

Fi= " [g!cos (md)+Hhy sin (md)P,(6)
m=10

where g and K are Gaussian coefficients, and P;(6) is the Gauss function of co-latitude
only. The degree n in the equation has a value of one or greater, and the order m is
always less than or equal to n. With a degree n = 1 and order m = 0,1, the magnetic field
model is a conventional dipole model. The choice of degree and order of the magnetic
field depends on the desired accuracy needed, and it is desired to have a relatively good
approximation of the field without requiring enormous calculating capabilities. It is
argued, however, that increasing the order of the spherical harmonic model not
necessarily increase the accuracy. Bak (2000) suggest that the model of order 8 serves
as a better simulation model of the geomagnetic field than that of order 10, based on the

"The co-latitude is given as 90°latitude. For more information, sec Campbell (1997).
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Figure 1. The magnitude of the magnetic field vectors in an IGRF model with order 10 and degree
10 (upper) and the conventional dipole model (lower).

comparison of an 8'th order reference model and measured data from the FREJA
satellite. The reference field of order 10 includes higher harmonics than that of order 8,
and thus incorporates higher frequency components of the field. It should also be pointed
out that when the altitude above the Earth surface is increased, the variations become
more regular, and the magnetic field resembles more and more a dipole model. A
description of the field magnitude over three orbits for a conventional dipole model and
a field model of order 10 and degree 10 is shown in Figure 1. From (14) and (17), the
field B can be calculated as (Wertz, 1978)

aV
B= -

ar

1aV
By= ———
0 r a0
B 1
" rsin®

B, is the outward positive radial component of the field, By is the south positive
coelevation component, and By is the east positive azimuthal component. These field
components can be expressed relative to an oblate Earth in the NED coordinate frame
as

—~Bycose— B, sine
B"= B,
Bygsing — B, cos &

where £= py—6<0.2° p, is the geodetic latitude and & =90° — 6 is the declination.
The magnetic field vector can now be expressed in the orbit frame by using the rotation
matrices between the different frames, i.e.

B
B°=| BY |=R/B" = R/RIR;B"
BO
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The rotation matrix R’ can be written out in the form (Kristiansen, 2000)
2cpsps’h  —2cpels) — 1 +2¢%ps’
Ro=| —2susich A—s2 —2cpicisi
| —25%uc’)  2spsick — 2epsus®A

where p and A are the geocentric lattitude and longitude, respectively, and ¢- and s - are
the respective abbreviations of cos (-) and sin (-). Finally, the magnetic field can now be
expressed in the body frame as

B;
B’ =| B} |= R0B’
B;

2.42. Magnetic torquers. The total torque generated on the satellite by the magnetic
torquers can be expressed in %, as (Marshall & Skitek, 1990)

7, =m" X B® = S(m")B® (18)

where m’ is the magnetic dipole moment and B is the local geomagnetic field vector.
The magnetic dipole moment is given by the sum of all the partial moments from the
magnetic torquers

NiiAx iy
m’ =m’ +mi+ml =| Ni,A, |=| m,
NiA. ) Lm

where Ny is the number of windings in the magnetic coil on the axis in the k direction,
i, is the coil current and Ay is the coil area.

2.4.3. Reaction Wheels. Neglecting friction and stiction in the wheel bearings, the
reaction wheel equation can be written as (Kaplan, 1976)

hwx + Bty — By,

dh,, .
7, = dr-+w§’,,>< hy={ hyy+ Byx, — hop0s

f:u.z + Ry, — huxtoy

where t°, is the reaction wheel torque expressed in the body frame and
h, = [hux huy by =L, is the total angular momentum of the wheels. Due to the
principle of conservation of angular momentum, a torque rotating the reaction wheels
will produce an opposite directed torque on the satellite.

2.5. Disturbance torques

The disturbance torques influencing on a satellite in its orbit are caused by both
internal and external effects. Internal disturbances owe mostly to electromagnetic torques
and fuel sloshing. External disturbances are dominated by the gravity gradient torque and

_



A Comparative Study of Actuator Configurations for Satellite Attitude Control 209

aerodynamic drag, but also solar wind and radiation, variations in the gravitational field
and collisions with meteoroids could be mentioned. These torques differ very much in
magnitude, but relative to the control torques from the satellite they are small. In
accordance with the discussion performed in (Kristiansen, 2000), all disturbance torques
are neglected in the following, except for the dominating gravity gradient torque, which

can be expressed as
7y = 3ajes X (Jes) (19)

This gravity gradient torque is exploited by using a gravity boom for passive stabiliza-
tion of the satellite in the Earths gravity field. The gravity boom is in this paper modeled
as an ideal rigid body. However, it should be noted that the gravity boom is likely to
introduce oscillatory disturbances. The amplitude and frequency of these oscillation is
dependent on its construction.

3. Controller design
3.1. Linearized model

A linearized state space model of the satellite dynamical model (12) and the attitude
kinematic equations in (9) and (10) can be written as

x(r) = Ax(?) + B(Du(z) (20)
where the state vector x and the torque vector u are given as
x=la & & & & &)
u=[m my, m hy hy hl

The system matrix A and the actuator matrix B(¢) are found by standard linearization
techniques, and will not be given here. However, it should be noted that since the
satellite orbit is circular, the system matrix A will be constant and time-invariant. On the
other hand, the actuator matrix B(r) will be time-varying when magnetic torquers are
used for actuation, due to the implications of the geomagnetic field of the Earth and its
aperiodic and time-varying nature. Details of the system linearization can be found in
(Kristiansen, 2000).

3.2. Linear Quadratic (LQ) controller

For the purpose of controlling the attitude of the satellite in orbit, an LQ optimal
controller will be used. By minimization of a quadratic performance index

min J = ;.; j (X(0)Q%(0) + u”(0)Pu(o))do
0

where X is the system error vector, P> 0 and Q = 0 are constant weighting matrices, the
optimal control law can according to Athans & Falb (1966) be obtained by utilizing the
feedback from the state x(f) and the feed forward from the desired state x,(t) as

u(t)= — P~ (OB ()p(1)
Furthermore, p can be expressed as the linear combination

p() = R(Ox() + hy(r)
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where R(f) must be solved from the differential Ricatti equation
R+RA+A"R—-RBP 'B'R=—Q @n
and hy(?) is the solution of
h, + (A —BP 'B'R)h; = Qx, (22)
The boundary conditions for (21) and (22) are given as
h(T)=0 and R(T)=0
Hence, the differential equations for hy(f) and R(#) can be solved for all te[0,T] by
backward integration. The weighting matrices P and Q are defined as
P =diag (Ip1, p2s --- , Pu)) (23)
Q=diag ([91, g2, --- » gn])
and the individual weights are chosen according to (Balchen & Mummé 1988) as
_ 1
Py Buy
where Ax; and Aw; are the nominally acceptable variation in the states and actuator
torques, respectively.

and ¢;=

4. Controllability

For the purpose of evaluating the controllability of the different actvator configura-
tions, a gramian-based analysis is performed in the following, based on controllability
definitions given in Antsaklis & Michel (1997). A solution for the linearized satellite
model given in (20) can be expressed as

L}
x(1) = @, 10)xo +| D(t, HB(D)u(r)de
1
where Xo= X(f;) is the initial state, t € [0, 7], and ®(z, tp) denotes the state transition
matrix for the transition from state xp at time 7 to state x at time ¢. For a linear system
with a time-invariant system matrix A as in (20), the state transition matrix can be
written as

Dt 1) =

The system (20) is said to be state controllable at time #, if there exists a finite time
1, >ty such that for any x(fy) there exists an input u(f) that will transfer the state x(f0)
to the state x(f;). Otherwise the state equation is said to be uncontrollable at time 7o Wie
(1998). The trajectory taken by the state is not specified, since any trajectory will do. It
should also be noted that there is no constraint on the control inputs and the magnitude
of these. Furthermore, the controllability gramian W, ;) of the system (20) is the
n X n matrix

n

WA ©(to, BB ()P (1o, T)l

0

The system is said to be controllable if the matrix W.(to, 1;) is positive definite,

Wto, n)>0
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The natural selection of the time period #, in this analysis is the time for the satellite to
complete one orbit, which can be calculated as the orbit angle in one orbit period divided
by the orbit angular velocity,

h=2"~ 5793 s
and the starting time is set to zero, fo = 0. A numerical Runge-Kutta method of order four
is used for integration of the gramian. To investigate the positive definiteness of the
resulting matrices, Sylvester’s theorem of eigenvalues Strang (1988) is used, which
states that since W (fo, 1;) is symmetric, a necessary and sufficient condition for positive
definiteness is that all the matrix eigenvalues are strictly positive. It is therefore
necessary to ensure that the smallest eigenvalue of W.(tg, #;) is larger than zero,

Amin(wc(rl}, 4 }) >0

Because of the difference in actuator torques from the magnetic coils and the reaction
wheels, the actuator matrix in the linearized system should be normalized. The magnetic
coils delivers a maximum torque of 8 Am?, while the wheels deliver 0.1 — 0.01 Nm. In
this analysis a maximum wheel torque of 0.01 Nm is considered, and the actuator term
in (20) can be expressed as

B(Hu =B(ON 'Nu = BN~ "t,um(f)

where u,,,, = Nu is the normalized actuator vector where all the torques vary from — 1
to 1. The scaling matrix N can now be obtained as

N = diag (}, £, £, 100, 100, 100)

and its inverse is thus
N~ ' = diag (8, 8. 8, 700, 1. 70)

inserting these normalization terms into (20) leaves the normalized system as
(1) = Ax(0) + BON ~"trn(n)

The results of the theoretical analysis are presented in Table 1. The first obvious, and
expected, result in Table 1 is that the satellite controllability in general improves
radically for every reaction wheel added. In addition, the expected performance improve-
ment when using three reaction wheels instead of magnetic torquers is shown.

In regard to optimal locations for the reaction wheels, it should be noted that a
reaction wheel on the pitch axis y will not provide the same improvement as a reaction
wheel on the roll axis x or the yaw axis z. Placing a wheel on the latter two axes will
result in approximately the same improvement. A slight difference between the effect
of placing a reaction wheel on the roll axis x or yaw axis z is also seen in Table 1.
Since both of these axes are coupled by the actuator torque when using magnetic
actuation (actuated by same torquer), it is to be expected that placing a wheel on either
of these axes results in an improvement. Also, since the moments of inertia about these
axes are very different when the gravity boom is deployed, it is expected that a reaction
wheel, which provides more torque than a magnetic torquer, will be of more use on the
roll axis x, since this axis has a larger moment of inertia and thus needs more torque for
control.
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Table 1. Smallest eigenvalues of the controllability
gramian in the different configurations

Actuator configuration Aminl W (fo, 1))
No reaction wheels

Magnetic coils only 3.6686 - 1010
One reaction wheel

Axis x 1.3410-107°

Axis y 3.6813- 10 ¢
Axis z 1.3193-10°°

Two reaction wheels

Axes x and y 1.5169 - 106

Axes y and z 1.0002- 1077

Axes x and z 1.3420-107°

Three reaction wheels
Axes x, y, and z 3.3410- 103

5. Simulations
5.1. Satellite data

In the following section, simulation results for different actuator configurations will
be presented. The satellite, including the gravity boom, is assumed to be a rigid body,
with moments of inertia given as

J=diag {178 181 4.3} kgm?
with the gravity boom deployed and
J=diag {4 4 3) kgm?

with the boom stowed. The magnetic torquers on the satellite are assumed to produce a
maximum dipole moment of 8 Am?, and the reaction wheels are taken to have a
maximum speed of 6000 rpm, and a maximum output torque of 0.01 Nm. The satellite
is assumed to rotate about the Earth in a 600 km circular polar orbit, and the satellite
insertion point in the simulations is above the Equator. The magnetic field of the Earth
is approximated with spherical harmonics of order 10 and degree 10. The satellite
attitude is simulated using quaternions, but the results are converted to Euler angles
before they are presented, to improve viewing. The satellite system was simulated with
an initial deviation from the equilibrium point, which would be the case in for example
a detumbling phase of operation, and initial angles ®;=[10° 10° 10°]" and desired
angles ®;=[0° 0° 0°]” were used in all the simulations. The initial angles are chosen
equal to visualize the difference of performance in the three axes. They are also chosen
relatively close to the equilibrium point, which is the usual working area for a satellite
with a gravity boom. Also, it is easier to recognize the implications of the magnetic field
when the deviations are small. The LQ controller parameters are tuned to give the best
possible performance for each actuator configuration. The desired attitude accuracy for
the satellite is within #0.5° in all axes. A possible scheme for this is a surveillance
satellite with a payload for Earth imaging applications.
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Figure 2. Step response of the satellite actuated by three orthogonal magnetic torquers.

5.2. Results

5.2.1. Three magnetic torquers only. The result from simulation of the satellite
actuated by three magnetic torquers is shown in Figure 2. In addition to the magnetic
torquers, the gravity boom was deployed and used for passive stabilization. The satellite
settled within  +0.5° after approximately 1.2 orbit periods, and the total power
consumption for the entire maneuver was 7.7 - 10> W. The peak in angular velocity,
and the settling time for the different axes, together with the slight deviation in yaw
angle after about one quarter of the orbit should also be observed. The reason for the
rapid response in the yaw axis of the satellite, together with the loss of controllability
in the same axis after about one quarter of the orbit, stems from the dependency on the
magnetic field. The yaw axis is controllable when the satellite passes by the equator, but
not when it passes by the poles.

5.2.2. One reaction wheel. Figure 3 shows the results of actuating the satellite with
three orthogonal magnetic torquers and one reaction wheel, which was located on the
body roll axis. In addition, the gravity boom was deployed for passive stabilization. Note
that the scale on the time-axis is stretched relative to Figure 2. There was no problem
for this configuration to achieve the desired accuracy after one orbit period, and the
improvement in settling time for the roll axis was good. However, this configuration
added a great deal of overshoot for the first turn on the yaw axis, and the decreased
controllability of the pitch axis should be observed, together with the slight deviation in
the yaw axis after approximately one quarter of the orbit, which occur when the
magnitude of the magnetic field vector orthogonal to the torquer on the pitch axis is
small. The angular velocities of the satellite also increased due to the adding of the
wheel, and the power consumption was 6.8 - 10 W,

With the reaction wheel moved from the roll axis to the pitch axis, the simulation
results were as shown in Figure 4. The figure shows that less than +0.5° attitude
deviation was achieved within one orbit, but with a slight increase of oscillations before
settling, especially in the roll motion. The total power consumption also increased to
1210 °W.
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Figure3. Stepresponse of the satellite actuated by three orthogonal magnetic torquers and a reaction
wheel on the roll axis.
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Figure4. Step response of the satellite actuated by three orthogonal magnetic torquers and a reaction
wheel on the pitch axis.

Finally, placing a reaction wheel on the yaw axis results as illustrated in Figure 5.
This configuration should according to the theoretical analysis have approximately the
same controllability as the configuration with a reaction wheel placed on the roll axis.
The satellite oscillated a great deal, but remained within * 30° of the equilibrium point.
This was unexpected in view of the gramian analysis, and the likely reason for this is
the magnitude of the output torque of the wheel. Figure 6 shows the step response of the
satellite with the same actuator configuration, but with a lower output torque on the yaw
reaction wheel. The satellite stopped oscillating due to the decreased output torque, but
now suffered from poor controllability. This is a trend in all the configurations involving
a reaction wheel on the yaw axis, and further results for such configurations will
therefore not be presented here. Details about these results can be found in (Kristiansen,
2000).
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Figure5.  Step response of the satellite actuated by three orthogonal magnetic torquers and a reaction
wheel on the yaw axis.
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Figure 6.  Step response of the satellite actuated by three orthogonal magnetic torquers and a reaction
wheel on the yaw axis with decreased output torque.

5.2.3. Two reaction wheels. Combining the previous two actuator configurations,
leaves a satellite actuated by three magnetic torquers and two reaction wheels, located
on the body roll and pitch axes. The gravity boom was also deployed to passively
stabilize the satellite. The result of this configuration is presented in Figure 7. Again, the
denomination on the time-axis of the figure should be noticed. The overall response
improved significantly, and the satellite settled within 0.15 orbits. The total amount of
consumed power during the maneuver was 1.7 - 103 W.

5.24. Three reaction wheels. When three reaction wheels are used as actuators on the
satellite, the magnetic torquers can be neglected regarding active attitude control of the
satellite, due to their low thrust torque compared to the reaction wheels. It should be
noticed that the gravity boom was removed in this configuration. This is done based on
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Figure7. Step response of the satellite actuated by three orthogonal magnetic torquers and a reaction
wheels on the roll and pitch axes.
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Figure 8. Step response of the satellite without the gravity boom, actuated by three orthogonal
reaction wheels.

a mission viewpoint, since a satellite controlled by three reaction wheels will be more
vulnerable to wheel saturation when a gravity boom is used, since it requires more torque
to rotate the satellite and to keep it in orientations where the boom is not parallel to the
local vertical. For satellite reorientations from an initial angle deviation towards the
equilibrium point, this will have small impact on the controller performance and power
consumption, since the gravity torque from the boom is negligible compared to the
torque provided by the reaction wheels. The simulation result is presented in Figure 8.
This is the configuration with the most satisfactory controllability result in the theoretical
analysis, and the improvements can clearly be seen in the figure. The satellite settled
within the angular limitations after 0.005 orbit periods, which corresponds to approxi-
mately thirty seconds. In addition, no overshoot is observed, and the satellite body frame
is equal to the orbit frame. This is a very satisfactory result, and substantiates the result
found in the gramian analysis in Table 1. On the other hand, the increase in angular
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Figure9. Response of the satellite actuated by three orthogonal reaction wheels, tracking a reference
trajectory generated by a second order Filter.

velocity in all axes should be observed, which was introduced by the removal of
the gravity boom. In addition, the gravitational torque on the satellite has been
greatly reduced, and the satellite will thus be able to rotate faster. However, it also
entail degraded robustness towards external disturbances, since the gravity gradient
stabilization has been removed. The reaction wheels will introduce some stabilizing
effects when they are rotating, but not in the same magnitude as the gravity gradient.
Still, the satellite will be robust towards external disturbances due to the increase in
available torque.

The total power consumption of the maneuver was 2.9 - 107*W, a large amount
relative to the 7.7 - 10~ ° W consumed for the same maneuver when magnetic torquers
were used for actuation. Also, high angular velocities on the satellite can sometimes be
a problem for onboard equipment, i.e. attitude determination sensors. To remedy this, a
reference trajectory can be generated that slows down the satellite in slew maneuvers.
This can be achieved by introducing a second order filter with a cross-over frequency
@p=0.01, and a relative damping factor { = 0.8 to generate the reference trajectory. The
resulting behavior of the satellite is shown in Figure 9. The satellite followed the
reference trajectory, and the angular velocities were kept low. In addition, monitoring the
power consumption actually shows that the control system consumes 5.7538 - 10~ 6 W
before settling, which is lower than the power consumption of three magnetic torquers
in the same step.

6. Conclusion

This paper presents results from the analysis on controllability of a mini satellite by
performing numerical calculations based in the controllability gramian. The analysis is
performed by numerically calculating the gramian integral, and then studying the
eigenvalues of the resulting matrix. The smallest eigenvalues of the gramians found for
different actuator configurations have been presented. The results of this analysis have
been supported by simulation results. It was found that the performance of an attitude
control system consisting of three orthogonal magnetic torquers and a gravity boom is
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significantly improved by adding one reaction wheel. The improvement is actually
almost 600%, and caused the satellite to settle after 0.2 orbit periods rather than 1.2 orbit
periods. Including even one more reaction wheel in the optimal axis will also result in
an improved performance, but not of the same magnitude. When three reaction wheels
were used for actuation. the satellite settled from initial angles in 0.005 orbit periods.
Regarding the location of the reaction wheels, comparison of the simulation results
indicates that the roll axis is the optimal location for one reaction wheel on this satellite.
Adding a reaction wheel in the pitch axis does not improve satellite controllability to the
same extent as using a wheel in the roll axis.

The problem with the restricted amount of available energy in the satellite will be
reduced when using magnetic actuation, compared to actuation by reaction wheels.
According to the simulation results, three reaction wheels will consume approximately
32 times more power than three magnetic torquers. However, when using magnetic
actuation, the satellite controller has to be used actively over large periods of time to
rotate the satellite to desired orientations. When reaction wheels are providing the torque,
the same change of attitude will require less time, and the satellite will be idle in some
time periods. In these periods the satellite could be rotated to get an optimal angle for
the solar arrays towards the sun, and in that way compensate for its relatively large use
of energy for stabilization. Simulations also showed that introduction of smooth
reference trajectories instead of abrupt step changes reduced the power consumption.
In fact, using this approach a satellite actuated by three reaction wheels consumed 30
times less power than a satellite with three magnetic torquers, but still the response
of the satellite was satisfactory. This is a good argument for using reaction wheels
together with a reference model for actuation. In this paper, the reference model is
used only as a means to lower the power consumption when reaction wheels are
used for actuation. However, it will probably have a positive effect for configurations
consisting of magnetic torquers also. A satellite using magnetic actuation will have
available torque about a given axis in some periods of time. If the attitude errors
are large, the actuators will be used extensively to rotate the satellite, and thereby
increasing the angular velocity. If the satellite looses its controllability when the angular
velocities are high, it will not be able to decelerate. If a reference model is used, there
will not be large attitude errors and hence, the angular velocities of the satellite are kept
low.

Even though the results described in this paper are based on a specific satellite, they
will extend to a more general result for small satellites. The choice of actuator
configurations is typically done based on a tradeoff between control performance and
power consumption. For a low powered satellite with low accuracy requirements, the
typical configuration consists of magnetic torquers and a gravity boom. However, with
higher accuracy requirements, the solution is often to equip the satellite with three
reaction wheels, remove the gravity boom, and keep the magnetic torquers for momen-
tum dumping. However, as this study shows, this is a drastic solution, as adding only one
reaction wheel to the satellite will significantly improve the performance of the
controller. On the other hand, magnetic torquers are often used on satellites among other
reasons because of their low power consumption. However, this study shows that the
relatively higher power consumption for the reaction wheels can be significantly
decreased by introducing reference trajectories in the control loop. The result of this is
that the power consumption is not longer an issue when debating the use of reaction
wheels versus magnetic torquers.
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