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Rotational data in the form of measured three-dimensional rotations or orientations
arise naturally in many fields of science, including biomechanics, orthopaedics and
robotics. The cyclic topology of rotation spaces calls for special care and consider-
ations when performing statistical analysis of rotational data. Relevant theory has
been developed during the last three decades, and has become a standard tool in some
areas. In relation to the study of human kinematics and motion however, these
concepts have hardly been put to use. This paper gives an introduction to the
intricacies of three-dimensional rotations, and provides a thorough geometric in-
terpretation of several approaches to averaging rotational data. A set of novel,
simple operators is presented. Simulations and a prosthetics-related real-world exam-
ple involving wrist kinematics illuminate important aspects of the results. Finally
generalizations and related subjects for further research are suggested.

1. Introduction

The overall function of human joints is of a mainly rotational nature. Consequently,
the study of rotational movement is essential to the study of human motion and relevant
to the design of prosthetic devices, planning of orthopaedic surgical procedures,
ergonomics, sport science and biomechanics in general, as well as to technical fields like
robotics and vessel control. The inherent cyclicity of rotations differs substantially from
the properties of linear translations. Therefore many statistical methods cannot be
translated into the rotational domain in a straightforward manner.

One objective of this paper is to briefly review the theoretical basis for conducting
unbiased statistical analysis on general three-dimensional rotational data. Much of the
relevant literature is very theoretical and abstract. A second purpose of this work is
therefore to derive and analyse optimal operators related to orientational average and
variance by using geometric considerations, in an attempt to give the reader a concrete
understanding of the operators’ practical significance, applications and implications. The
resulting operators, which we refer to collectively as the Cosine Statistics, operate on
data in rotation matrix form, and are closely related to theoretical results previously
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derived by others. The performance of the Cosine Statistics is compared to that of more
naive approaches by application to simulated data. In a real-world example we employ
the Cosine Average to estimate the optimal static alignment of a prosthetic terminal
device.

1.1. On representations

The choice of representation for body or joint orientations and rotations has occupied
the biomechanics society for more than two decades, and several publications have been
dedicated to the subject (Wu & Cavanagh, 1995; Chao, 1980; Grood & Suntay, 1983;
Andrews, 1984; Woltring, 1994; Sheehan & Mitiguy, 1999). Any rotation in space can
be represented by a single rotation through a suitable angle 0 about a suitable fixed axis
represented by a unit 3-vector k. Similarly, any orientation in space can be obtained, and
thus represented, by such a single rotation from a reference orientation. Each axis/angle
pair (K, 0) corresponds to a unique 3 X 3 rotation matrix which can be parameterized in
many ways. One popular “joint coordinate system" representation, often referred to as the
Chao/Grood and Suntay convention (Chao, 1980; Grood & Suntay, 1983), in effect
resembles an Euler or Cardan angles convention. This model has been opposed
on the basis of singularities and poor metric properties, the latter which can cause
the individual angles to be much larger than the total rotation in question (Woltring,
1994). Alternatives that have been suggested to alleviate these problems include the
four-parameter ‘unit quaternion’ (BEuler parameter) representation (Andrews, 1984)
q = [g0 q1- g2» g3)" L Tcos  sin §k"T", and the closely related three-parameter ‘attitude
vector’ (Woltring, 1994) ® = [0,, 0,, 0,172 6k, 6 < [0, nr], which we will refer to as the
‘orientation vector’ to comply with pertinent robotics literature. Though superior to Euler
angles in many respects, both these representations as well as the full rotation matrix
representation may yield meaningless results if averaged arithmetically. This calls for
a different approach to statistics that accounts for the special topology of three-
dimensional rotations.

1.2. Previous research

Most prosthetic devices available exhibit very simple kinematic structures. A recent
study explored compensatory movements in response to different static wrist alignments
by comparing extremal values of scalar joint angles (Landry & Biden, 2002). The
majority of literature relevant to upper-limp prosthesis kinematics, however, is of a
mainly qualitative or non-statistical nature.

In the more general field of biomechanics, statistics has been applied to rotational
data for example in conjunction with movement estimation from noisy marker position
data (Woltring er al., 1985; Veldpaus et al., 1988). The reported results apply to
differential (i.e. small) rotations, justifying certain simplifications which were actively
exploited by the respective investigators. Several studies related to the human wrist have
focused on joint range of motion in the well-known ‘clinical angles’ flexion/extension,
adduction/abduction and internal/external rotation. The reported results include averaged
extreme values for the clinical angles across a test population (Brumfield er al., 1966;
Sarrafian er al., 1977; Ruy et al., 1991); average arcs of motion for each clinical angle
(Palmer ef al., (1985); and the ‘centroid’ of motion in terms of the average flexion/
extension angle and adduction/abduction angle (Youm et al., 1978). Such practice is
acceptable when the clinical angles are viewed separately as such. However, pairs or
triplets of average angles do not give a representative value for the joint’s overall
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average orientation; clinical angles resemble the Chao/Grood and Suntay convention
(Chao, 1980; Grood & Suntay, 1983), and thus suffer the metric defects previously
mentioned. Use of Euler parameters has been suggested for interpolating orientation data
in animation applications (Ariel et al., 2000). Rotation statistics has been applied for
the analysis of variations of static postures (Rancourt ef al., 2000), but most of the
specific methods used rely on the assumption of closely spaced data. However, there
seems to have been little or no tradition in the study of human kinematics and motion,
including orthopaedics, to consider the statistics of arbitrary sets of three-dimensional
orientations.

The theoretical literature relevant to orientation statistics has been concisely reviewed
by Krieger Lassen, Juul Jensen and Conradsen (1994). Important results are related to the
Bingham and the matrix Fisher probability distributions, which are equivalent but related
to quaternion vectors and rotation matrices, respectively. This theory has been applied
for estimating average crystal orientation from data obtained in an electron microscope
(Krieger Lassen et al., 1994). Others who reported the same application calculated the
average orientation as the normalized vectorial sum of individual quaternions (Humbert
et al., 1996; Humphreys et al., 2001). This latter approach is computationally trivial;
however, in some situations it may lead to absurdities which makes the approach less
suitable for general application.

2. Mathematical preliminaries

The set of all three-dimensional rotation matrices i.e. all orthogonal 3 X 3 matrices
R with R =1, is referred to as the special orthogonal group of order 3 and is denoted
SO(3). Inversion and transposition are equivalent operations on SO(3):

R '=R"T©R'R=RR"=1 (1)

The orientation of a coordinate frame S, relative to a frame S, can be represented by a
rotation matrix R). Let p: be a coordinate vector decomposed in frame Sy, and let p; be
the same vector decomposed in frame S, with the same origin as ;. The transformation
between p; and p- is then given by:

P =Rpepi=Rp, éRsz (2)

Let the basis vectors of the two frames be the orthonormal unit vector triples (xi, yi, z;)
and (X,, y», ), respectively. Then R} can be written:

X1 XY X%

Ry = Y2°Xi Y2')1 Y2t E 3)

L°X) Ty 414

Thus, the elements of Ré are the direction cosines of the basis vectors of S, with respect
to those of S).

As already stated, any rotation can be defined by an angle 6 and a unit vector k. The
matrix representing this rotation will be denoted Ry 4, which is equivalent to Ry ¢ and
which is cyclic (mod 27) with respect to (.. The formula for Ry s is given in many
kinematics textbooks (Spong & Vidyasagar, 1989).
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2.1. Metric on SO(3): angular distance

Let S; and S, denote two coordinate frames whose orientations are given by the
rotation matrices R, and R,, respectively. The geodesic angular distance between R, and
R; then is defined to be the minimum angle f# by which any of the two frames must be
rotated, about a suitable fixed axis, in order to make the two frames’ axes parallel. The
relationship between the two matrices can be expressed as Ry =Ry pRy so that
Ri g = R\R}. The geodesic distance between Ry and R, is given by the formula

tr(R\R}) — 1)

L(R],Rz) =ﬁ=aroos( 2

4)
where tr is the frace operator, i.e. the sum of the argument’s diagonal elements. This
metric, or distance measure, is the core of many optimization problems related to
rotations, including some of those discussed in this paper.

3. Derivation of the Statistics

Let {R;}’_, be a set of rotation matrices. The aim of this section is to define an
operator which calculates the single rotation matrix which best represents the whole set,
i.e. the ‘average rotation’ of the set, as well as operators related to the dispersion of the
data about this average. For an average quantity to be justifiable, it must satisfy certain
criteria, e.g.: for trivial data sets it must yield the expected result; the average must be
independent of the order of the data elements; and for a given data set it must provide
a unique average value or an explanation of why a unique average cannot be found.

3.1. Shortcomings of vectorial approaches

We will start by showing how two techniques used in the literature, namely the
arithmetic average of orientation vectors and normalized average of Euler parameter
vectors, respectively, may come short in trivial cases. Without loss of generality we will
assume rotations about the x-axis (i.e. k=1, 0, 0]"), so that the two representations can
be represented completely in the (0,, 6,) and the (qgo, g1) plane, respectively. These planes
are illustrated in the left and right part of Figure 1, respectively. As the angle of rotation
0 sweeps through the interval [0, 2n] the orientation vector @ goes through the path
defined by the bold arrows labelled 1, 2 and 3, in that order. The dashed arrow 2
represents the sign shift occurring at 6 =7, i.e. the representation singularity of the
orientation vector representation. In contrast, the plain Euler parameter representation
has no intrinsic singularity. When averaging Euler parameter vectors, however, the
double representation of this space creates a dilemma: each orientation can be equiva-
lently represented by two oppositely directed vectors; which sign should be used for the
averaging? A common convention is to choose the sign so that go=0 (Humbert et al.,
1998) which is the case in the right part of Figure | where the labelled arrows
correspond to those in the left figure. As indicated by arrow 2, the sign convention has
introduced a representation singularity very similar to that of the orientation vector.

We now quickly review a trivial case in which the data set contains only two
elements, corresponding to 0;=m—380 and 6,=mn+ 60, where |60)<<m and
k=[1.0.0]" as before. It is then reasonable to expect the average of the rotations
defined by (k. 0,) and (k, 0,) to be that corresponding to (k. ), i.e. a rotation through
the angle @ about the x-axis. The arithmetic average of the corresponding orientation
vectors, however, is the null vector, which implies 0 =0, i.e. no rotation at all
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Figure 1. Trajectory of the first two elements of the orientation vector (left) and the Euler parameter
vector (right) when the angle of rotation is gradually changed from 0 to 2x. Rotations performed about
the x-axis.

Normalizing the average of the corresponding Euler parameter vectors yields go=1 and
q1=¢g2=¢g3=0, also implying a zero angle of rotation. Data sets similar to that
considered here may appear as subsets of larger data sets if the data is dispersed and/or
if the reference frame is chosen such that the data appear with angles of rotation in the
vicmity of 7. The consequence is potential bias of the estimated average orientation. This
is a very serious drawback that calls for extreme caution if applying these techniques.

3.2. A least squares attempt

A principal solution has been suggested for calculating the average of a finite group
(Diaconis, 1988). We propose to generalize this definition to a class of average operators
for finite samples (i.e. discrete subsets) on finite or infinite groups as follows:

Definition 1. Let I'={y;}]-| be a finite sample on (i.c. a discrete subset of) a group
G, and let p be a metric on G. Furthermore, let h be a lower bounded scalar function
which is monotonously increasing throughout the range of p. Define

l n
JsD=- >, h(p(s, 7)) (5)
i=1

where s € G. The group element y € G is then said to be a candidate sample average
of I if n minimizes J(s; I'). The number J(n; ) is called the ph-spread of T.

Note that Definition 1 guarantees the existence, but not the uniqueness, of a minimum
of J; hence the use of the term candidate sample average. By setting I' = [R;}I_,,
substituting the angular metric of Equation (4) for p and choose h(-) = (-)?, we get what
we may refer to as the Least Squares Average Ris, defined by

Ris{R} Larg (R Ensigm Jis(R; {R, }))

Jis(R; {Ri) é:_? > Z(R, R (6)



190 O. Stavdahl et al.

Individual Squares Individual Cosines
10— —— 1 B N
o 9 \ \ | osh / \ )
o & A\ & 061 /
g . /N 8 oa
=] | a
SEE: S 02
4 S B
; T e |
1 e l -04
L . " _06; —_— B—
00 T 2n 0 T n
0 [¢]
(a) Individual Squares (b) Individual Cosines
Sum of Squares Sum of Cosines
14— — : 16— -
L 3 /'\\ S 14 —_I
& 12 [\ &2
Ul A /g |
S 10 \ N g / |
R A /
alg \ / | - 0.6 / 1
7 \ y4 [ W04 / !
6 P ] [ A— S Q
0 T 2 0 n In
;] [}]
{c) Sum of Squares (d) Sum of Cosines

Figure 2. Individual and summed squares and cosines, respectively, of (RO, R) fori=1,2.

Here, the operator yields the argument R corresponding to the extremum of Jig
rather than the extremal value itself. A major defect of this solution is the likely
existence of local minima of Jzs. This is illustrated in Figure 2 for a random data set with
n=2. Figure 2(a) shows two graphs, each corresponding to one of the summed elements
of (6). For each graph we have R = () = Ry _oRo with the unit vector k and the rotation
matrix R, random but fixed, and with 6 € [0, 27) (i.e. R spans a one-dimensional
subspace of SO(3)). Because of the cyclicity of SO(3) each parabola in the figure
will repeat itself once every turn of 0. Figure 2(c), which shows the sum of the two
functions above (i.e. it essentially shows Jis as R is rotated by an angle of 2r about k),
clearly exhibits two minima, one for each element of {R;}. There are a corresponding
number of maxima at which J;s is not differentiable, severely complicating the process
of finding the possibly non-unique global minimum. Considering that Figure 2 is a
one-dimensional section of a complex, three-dimensional problem, we conclude that a
least squares approach is effectively useless for the present problem in the form of
Equation (6).

3.3. The cosine average

Figure 2(b) and 2(d) show the functions we get by repeating the process just
described after choosing h(-) = 1 —cos(+). In this case each of the individual functions
(upper right pane) as well as their sum (lower right) constitutes a (generally scaled,
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biased and angularly offset) cosine function, guaranteeing a unique minimum unless the
scaling factor happens to be zero. This gives rise to the following definition:

Definition 2. Given a general sample {R;};- |, R; € SO(3). the Cosine Average (CA) of
the sample is denoted R.os and is defined as

RL‘(I?&{Ri'I é m‘g (R ::nSiCl)l(S} JI.'DS(R: {R!}))

Jeor( R {R.-néf; ; (1= cos(L(R;, B)) 9
whenever the solution is unique: if not, the CA is said to be indefinite.
Simplification of Equation (7) by substituting (4) and setting 27, R;= Ry yields
Reos{ Ri} = arg (RTS“O“(%) JulR; IR.-}})

Jo(R; (R)) & te(RsRT) (8)

(Note the change from min in (7) to max in (8)). This is exactly the maximum likelihood

estimate of the mean orientation of a matrix Fisher probability distribution (Downs,

1972). It is also the projection, in a least squares sense, of Ry on SO(3) since if rf; and

i-_f are the j'th row of R; and R, respectively, we have (Krieger et al., 1994; Stephens,

1979)

n 3
Iry — Fj)> = 6n — 2tr(RxR"). 9

i=

1

3.4. Existence and unigqueness

The function J.. in Equation (7) is a continuous function on a closed, bounded set,
and thus it must exhibit at least one minimum.

For the uniqueness properties of the CA, the picture is more complicated. A
theoretical treatment of this problem has been given in several previous publications
(Downs, 1972; Prentice, 1986; Khatri & Mardia, 1977; Stephens, 1979). The following
paragraphs are built on these publications, and contain what to our best knowledge is a
novel, thorough geometric interpretation of their results. For the discussion to follow we
let Ry =2/, R;=[rsirs;rs3]” and R = [F, T, F1])". Furthermore we recall that we can
always write

Rs = USV" (10)

where (10) is the singular value decomposition of Rs, so that U and V are orthogonal (but
not necessarily rotation) matrices and $ = diag (1. 02, 03) where gy = g, = g3 = 0 are the
singular values of Ry. We can then write

tr(ReR") = tr(SRT) (1

with R"=V'RTU. The rows and columns of § are orthogonal since § is diagonal, and
so are the rows and columns of R because this matrix is orthogonal. Consequently,
without loss of generality the problem can be discussed in terms of fitting one orthogonal
vector triplet to another. We will do this in the following by assuming that Ry is diagonal
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The five non-trivial uniqueness modes of the Cosine Average: geometric interpretations.

and fitting the orthogonal matrix R to it rather than explicitly involving S and R in the
analysis. (If Ry is negative, the transformation (11) will yield det $>0 and R<0, i.e. R
will no longer be a proper rotation matrix. This can easily be resolved and does not
invalidate the discussion.) We discuss the different uniqueness modes one at a time:

0

(i)

(iii)

@v)

W)

det Rz >0

Rs resembles a right-handed (though generally not orthonormal) coordinate
frame. In this case the CA is uniquely defined; its row vectors are fitted to those
of Ry in the least squares sense (Figure 3(a)).

rank Rs =2

The information contained in the sample {R;} is related to two coordinate axes
only; the information pertaining to the third axis is cancelled out (Figure 3(b)).
In this case R is uniquely defined by the two nonzero vectors of Rs; the third
vector of R is determined by the right-hand rule.

rank Rs = 1

In this case only the first vector ¥, of R is determined by the data. The
remaining vectors are restricted to forming an orthonormal right-handed triplet
with T, but their orientation in the plane normal to ry) is undetermined (Figure
3(c)).

rank Ry =0

This degenerate case arises if the data are perfectly homogenously distributed
on SO(3) so that all elements of Rs are equal to zero. In this case the notion
of average i1s meaningless and is said to not exist.

det R <0

Rs resembles a left-handed (though generally not orthonormal) coordinate
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frame. In this case the uniqueness can be derived from the two smallest singular
values of Ry as follows:

(@) o2# 03
The vector of Ry corresponding to & is distinctly shorter than the other two.
To obtain what we may call a right-handed data set, we change the sign of
that shorter vector before calculating the solution (Stephens, 1979). Figure
3(d) illustrates the geometry of this case. Once the sign is changed, the
problem becomes equivalent to that of case (1) above.

) 62=03
This situation is illustrated by Figure 3(e). The dominant axis of the data set
is associated with the larger singular value oy, thus Fy is aligned with it. The
remaining two axes of Ry are of equal length; however, we will always have
ryi’ F1+1r5/F, =0 so the orientation of the last two vectors of R in the
plane normal to the dominant axis is undetermined. Consequently there are
infinitely many solutions.

3.5. Calculating the cosine average

From the preceding discussion we can derive a simple formula for calculating the
CA. Since § is diagonal with nonnegative elements, it is obvious that if Rs >0 (and thus
R>0) the trace in Equation (11) is maximized when R =1. This immediately yields
R! .= VU where V and U are as in (10). If Rs <0 and o, # a3, the aforementioned sign
shift must be carried out. It is the third and smallest diagonal element of S that needs
to be changed, which can be done by setting Ry — = USJV” with J = diag (1, 1, — 1) and
S, U and V as in (10), and then calculating the CA from Ry — instead of Rs. A general
formula which covers both cases is therefore given by

Rl .=viuT (12)

with J=diag(l, 1, 5), where s = sgn(det Rs) and sgn is the signum function.

3.6. Definity

Whenever the CA is not uniquely defined (i.e. it is indefinite), this is so because the
data set exhibits some kind of rotational symmetry. Obviously the data can be infinitelfr
close to being rotationally symmetric without actually being so. When using the CA for
analysing e.g. biomechanical data, we need a measure of how far the CA is from being
indefinite in order to correctly interpret the results. We propose a simple measure which
we will denote the definity and which can be calcuiated as

N %0'2+o*3 sgn (det Ry) if rank Rs > 0
Def {R;} £ (o (13)
0 otherwise

where ¢; is the ’th singular value of Rs. As can be readily verified, the definity takes
on the value 1 if all elements R; of the data set are identical (i.e. the most definite case
possible), and becomes zero if the CA is indefinite; in all intermediate cases the definity
takes on intermediate values.
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3.7. Cosine variance and standard deviation

We recall that in basic statistics, the average is chosen such that the variance, which
is defined by means of the former, is minimized. We propose to define a variance and
standard deviation associated with the CA in a similar way:

Definition 3. Given a sample (R;}}-,, R:e SO(3) with a CA Re{R;}. The Cosine
Variance of the sample is then denoted V.., and defined as

1< _
Vel Ri) &5 3 (1= c0s (R Res(R:)). (14)
i=1
Likewise, the Cosine Standard Deviation of the sample is denoted SD..s and defined as
SDeos{Ri) 2 arccos (1 — 2Veos{R: 1) (15)

Calculation of the concentration matrix for a sample assumed to be matrix Fisher
distributed is known to be extremely complicated (Krieger et al., 1994). The much
simpler Cosine Variance, however, can be found by simplifying Equation (14), which
yields

Veos [Ri} = 43 — tr(RsR")) 16)

where Ry =1 3"_| R; and R = R.s{R;}. Note that while the concentration parameters of
a matrix Fisher distribution carry information about the three-dimensional dispersion
of the data, the Cosine Variance is a scalar quantity and carries information about
angular spread only. Therefore these two quantities are related but by no means
equivalent.

3.8. Further geometrical aspects and their implications

In this section we illuminate the geometric significance of some of the results more
or less explicitly stated by Downs (1972).

Let R be the CA of a set {R;}"-, of rotation matrices, and let {AR;}7_, be the set of
rotational residuals given by

AR;=RiR" (17

i.e. the distance (in matrix form) from the average R to the data element R;. Furthermore
let S; and S be the coordinate frames which orientations are given by R; and R,
respectively. It can easily be shown that

n n
> ARi= Y, AR! (18)
i=1 i=1
i.e. the sum of the residuals is symmetric. We recall that AR; represents the orientation
of frame S; with respect to the average frame S, while AR represents the orientation of
S relative to S,. Equation (18) therefore implies that {R;} are spaced around R in a
rotationally neutral manner: if the set {AR; } has a rotational bias, the set [AR;‘" } will
have a rotational bias in the opposite direction, and the sums of the elements in each of
the two sets cannot be equal.

Let O € SO(3). Then the following linear property holds for the Cosine Average:

Reos{ ORi} = ORco(Ri). (19

i.e. SO(3) is distributive over the Cosine Average operation.
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Premultiplication by a rotation matrix Q implies a change of coordinate frame, hence
the value of the CA is independent of the reference coordinate frame used during
computation. This is a very important property in fields where the choice of coordinate
frames may vary among investigators and applications, in that it decouples the choice of
frames for intermediate data processing and eventual reporting.

4. Experimental Section
4.1. Application to Simulated Data

In this section we compare the CA with the values obtained by averaging the
parameters of several different representations, namely Euler parameter (quaternion)
vectors, Euler angle triples and orientation vectors. We also include separate averaging
of angle and axis of rotation, the latter in the form of unit vectors k. For the Euler
parameters we choose the sign so that the first element ¢, of each vector is positive or
zero. Also, the arithmetic mean of the Euler parameter vectors and that of the axis of
rotation vectors are normalized to obtain results in the valid ranges.

We somewhat arbitrarily use the Euler angles i, 6 and ¢, taken about the
reference x-, y- and z-axis, resectively. The angles are calculated such that ¢ € [ — 7, 7],
6e(—n/2,n/2) and Y € [ — 7, m].

We will calculate the average of the set {R;}{—, with

R'i = Rk, ::t,-RO é Rk‘_ B (20)

where the axis of rotation k and the ‘rotational offset” Ry are fixed, while o takes on
values in the interval [0, 27). This model spans a one-dimensional subspace of SO(3).
We let o; have a Normal distribution with given fixed expectation p and standard
deviation ¢. Intuitively we then expect that

lim R =Ric xR0 R ey @1)
Several data sets were generated and the average orientation estimated using the different
techniques. The parameter values chosen were: k=[l, 2, —5]/\/§, Ro= Ry, 6, with
ko=1[1,1, l]l’\/§, 0p==60° and p=70° The angular difference between the estimated
average orientations and the expected value Ri,, p,,, i-e. the estimation error, were
recorded for different values of the standard deviation ¢ and different sample sizes .
Figure 4 shows the average estimation error resulting from 50 different data sets with
¢ =25° and ¢ = 60°.

To obtain a conservative result with respect to the qualitites of the CA, the
singularity of the Fuler angle representation was resolved by adding or subtracting 360°
from y; for certain values of 6 to make Y/() a smooth function. Similar techniques were
applied to the axis/angle and the orientation vector data prior to averaging.

In the figure legends ‘CosAv’ denotes the Cosine Average, ‘Quat’ denotes guaternion
(Euler parameter) averaging, ‘Orient” denotes orientation vector averaging, ‘k-Angle’
denotes separate axis and angle averaging and ‘Euler’ denotes Euler angle averaging.

In the present example the CA and the Euler parameter based estimates were
virtually indistinguishable in quality for ¢ =25° (less than 1.5% difference), while
the CA was superior when the angular spread of the data was increased to ¢ = 60°
(Figure 4). Of the other estimators. only the average orientation vector was comparable
to the former two, and only when the spreading of the data was kept low. Furthermore,
the Cosine Average converges towards the expected value as the data sets become larger,
even as the data spreading is increased; this is not the case for any of the other estimators
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Figure 4. Estimation error for ¢ = 25° (left) and ¢ = 60° (right) and different sample sizes n.

tested. The estimates based on average Euler angles display inferior performance in all
scenarios investigated and is useless for most practical purposes.

4.2. A real-world case

To illustrate the relevance and applicability of the Cosine Statistics they were applied
to authentic data from an experiment involving eight right-handed healthy subjects. Full
details about this experiment are given in Stavdahl (2002); here, only a short description
is given. The experiment aimed at investigating the average orientation of the wrist joint
with respect to the forearm during activities of daily living (ADL). This quantity is of
potential relevance to prosthetics, as it can be said to indicate the functionally optimal
alignment of an anthropomorphic terminal device.

4.2.1. Experimental set-up. A custom-made plaster of Paris gauntlet was firmly
applied to the left hand and a socket made of the same material was applied to the left
proximal forearm of each subject, and the four fingers were taped together to form a
single unit. The purpose of these structures was to restrict the forearm, wrist and hand
movements to those obtainable with a typical prosthetic terminal device. A MotionStar*
electromagnetic motion capture system was employed to record the orientation of each
socket during the performance of 15 predefined ADL. Figure 5 depicts an instrumented
limb in the standard posture used to calibrate the sensors’ orientation with respect to
relevant body segments.

Four body-fixed coordinate frames were defined as indicated in the figure: a
proximal frame S, fixed to the ulna, and three hand-fixed frames S, Sy and S,,, the latter
which was parallel to the S, frame when the limb was in the reference posture. A global
laboratory-fixed frame S, served as a reference for both sensors. Each sensor’s orien-
tation was sampled at 20 Hz during fifteen predefined activities of daily living (ADL).
Each activity was performed twice, each run of 20s duration. Subsequently the data were
transformed to yield one of the hand fixed frames’ orientation with respect to S,.

The average wrist orientation was estimated by using the CA operator, by averaging
individual Euler angles, by averaging orientation vectors and finally by means of the
normalized average Euler parameter vector. The calculations were carried out twice, first

*Ascension Tecﬁﬁology Corporation, Burlington, VT, USA.
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Figure 5. Forearm and hand instrumented for tracking of wrist orientation; coordinate frame
definitions.

by letting S, represent the hand orientation and then by choosing S as the hand-fixed
frame, to investigate the respective techniques’ robustness with respect to this kind of
choices. The average orientations calculated were all changed into rotation matrix form
and transformed to express the orientation of the S, frame with respect to S, a
representation where all the clinical angles are zero when the overall angle of rotation
is zero (i.e. in the calibration posture of Figure 5).

4.2.2. Results. Table 1 displays two sets of data separated by slash symbols: quantities
based on choosing S, as the hand-fixed frame to the left, those obtained when choosing
Sy as the hand-fixed frame to the right of the separators.

The leftmost column of Table 1 shows the angular deviation of the other average
estimates from that obtained with the CA. The results based on S, as the hand-fixed
frame are in general agreement with the simulation results in that the Euler parameter
and orientation vector based estimates only deviates moderately from the CA while the
Euler angle based quantities show little agreement with the others. The orientation of S
with respect to S, was deliberately chosen such that their geodesic distance approxi-
mately equals m in the neutral posture of Figure S so that the Euler parameter vector
representation of the data set exhibits the aforementioned sign shifts. The results clearly

Table 1. Average orientation estimates: Deviation from the CA and implied clinical angles. All
quantities in ©.

Deviation Ulnar

from CA Pronation Extension deviation
Cosine Average — 33 13 49
Euler Parameters 0.3/159 3.1/165 72176 4.9/17.6
Orient. vectors 2.1/172 1.3/176 7.415.0 4.2/6.1
Euler Angles 104/147 —24.5M132 239/ —27 — 88.6/64
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Figure 6. Estimated average wrist orientation during ADL. Left: Cosine Average. Right: Estimate
based on Euler parameters and hand orientation represented by Sy The line labelled Z, represents
the humeroulnar joint’s axis of rotation.

illustrate the serious consequences of this singularity; the estimated average orientation
in this case deviates from the CA by as much as 159°. The corresponding pronation
angle is 165°, which is in fact outside the range of a healthy wrist. The non-physical
nature of this result is further illustrated by Figure 6, where the left figure depicts the
average orientation given by the CA and the right pane shows the wrist posture
corresponding to the Euler parameter-based estimate. The former configuration deviates
from the calibration posture by a net angle of 9.2° only. As implied by Equation (19),
the CA vyielded exactly the same result before and after the change of the hand-fixed
frame.

5. Generalizations and Future Research Issues

We would like to briefly mention an interesting generalization of the Cosine Average
operator, namely time-domain filtering of rotational data. A slight generalization of
Equation (8) yields

_ T
Yy arg(yrcnga(ntr(UEY ))

L
Us= 2, ali 22)
i-0

where ag, ao, ... .a, € R are a set of constant coefficients. This construction implements
an r’th order Finite Impulse Response (FIR) filter on SO(3). Generalization to an I[nfinite
Impulse Response (IIR) filter is straightforward. We propose to employ this kind of filter
e.g. in conjunction with interpolation or decimation of data sequences in rotation matrix
form 10 avoid the complications associated with nonlinearities, double representations
and singularities of other parametrizations.
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The detailed properties of such filters remains to investigate, however, and consti-
tutes a possible subject for future research. Possible further generalizations include what
might be denoted rotationally non-symmetric filters, i.e. by substituting a set of 3 X3
matrices for the filter parameters.

6. Discussion and Conclusions

This paper has pointed out the existence of an optimal average operator, referred to
here as the Cosine Average, for three-dimensional rotational data. The operator is robust
with respect to the dispersion of the data set and is completely insensitive to the choice
of reference coordinate frame, making it ideal for biomechanics-related kinematic
analysis where the appropriate choice of reference frame is often dictated by the
application or by clinical tradition. It has clear geometric interpretations, yields a unique
result except in degenerate data sets, and can be readily calculated using standard
computer software tools. The definity statistic offers a measure of the degree of
rotational symmetry in the data set, which is closely related to the degree of uniqueness
of the Cosine Average. The associated Cosine Variance yields a simple measure of the
degree of dispersion in the data.

Our prosthesis-related example illustrates the use of rotational statistics in a biome-
chanics and orthopaedics context, while also demonstrating the severe limitations of
simpler approaches to orientation statistics.

We believe that rotation statistics represents a potential which is largely unexploited
for the study of human kinematics and motion in general. The Cosine Statistics provide
a simple toolbox that allows for explicit empirical analysis of complex rotational
biomechanical data without any a priori assumptions with respect to the data set.
Possible applications include optimization of kinematics of orthopaedic devices like
orthoses and exoskeletal prostheses as well as prosthetic joint implants.
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