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A new three step closed loop subspace identifications algorithm based on an already
existing algorithm and the Kalman filter properties is presented. The Kalman filter
contains noise free states which implies that the states and innovation are uncorre-
lated. The idea is that a Kalman filter found by a good subspace identification
algorithm will give an output which is sufficiently uncorrelated with the noise on the
output of the actual process. Using feedback from the output of the estimated Kalman
filter in the closed loop system a subspace identification algorithm can be used to
estimate an unbiased model.

1. Introduction

Subspace identification (SID) algorithms assume the future inputs and the noise
on the future outputs to be uncorrelated in order to produce unbiased estimates. If
future inputs and the noise on the future outputs are correlated the projection of the
future outputs onto the future inputs will cause a bias. Several methods and modifications
to overcome this problem have been suggested, Van Overschee and De Moor (1996),
(1997), Chou and Verhaegen (1997), Gustafsson (2001), Jansson {2003).

In this paper a new three step algorithm based on the DSR algorithm, Di Ruscio
(1996), Di Ruscio (1997), and the Kalman filter properties, Jazwinski (1970), is
presented. The rest of this paper is organized as follows. Some basic notations and
matrix equations are presented inn Section 2. A new closed loop subspace identification
algorithm is presented in Section 3. In Section 4 simulation examples are presented to
illustrate the behavior of the algorithm. Some concluding remarks follows in Section 5.

2. Preliminary definitions
2.1. Notation in the methods used

In DSR there are four parameters g, n, L and J that can be chosen by the user. The
structure parameter g is put to zero if there is no direct feedthrough from input to output,
which have to be the case in closed loop identification. The identification horizon used
to predict the number of states is specified by the parameter L. The model order is
specified by the parameter n and is limited by the interval 1 =n=L - m, where m is the
number of outputs. The number of time instants in the past horizon which is used
defining the instrument variable matrix which are used to remove noise is specified by
the parameter J.

In the Prediction Error Method (PEM) and N4SID implemented in the system
identification toolbox in Matlab 6.5 nk =1 is used if there is no direct feedthrough from
input to output.
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2.2. Notation and system definitions
Consider the following linear discrete time invariant state space model given by:

Xp+1 =Ax, + Buy + v, (n
Y& = Dxy + wy, 2

where x; e R" is the state vector, w e [¥" is the input vector, yx € R™ is the output vector,
v is the process noise and wy is the measurement noise at discreie time k. We choose
to introduce v; = C¥; to make it easier to reconstruct the simulation examples presented
in Section (4).

The model identified by the methods compared in this paper 1s the discrete time
Kalman filter on innovation form:

X+ 1 = AL+ Bug + Cey, 3)
w=Dx,+ Fey, “4)

where E(eief)=1 and % € R" is the predicted state vector. The Kalman filter is the
minimum variance estimator. An alternate expression is:

Xp4+1=AX + Bu, + Key, )

Ye= Vit &, (6)

where g, € R™ is the innovation, ¥, = D, E(exel) = FFT and K= CF ' is the Kalman
filter gain.

As an alternative to using state space presentation the model can also be expressed
by transfer functions. Introducing the forward shift operator, z, given by zuy = 4 1, we
can present the model by:

o= HQux + H*(2)ex, D

where HYz) is the transfer function from the input, i, to the output, y,. H%(z) is the
transfer function from the innovation, &, to the output, yx. In case of multiple input
multiple output systems H 4(z) and H*(z) are matrices of transfer functions.

Throughout the paper we will denote the eigenvalues of the system A(A), the
eigenvalues of the Kalman filter A(A — KD), the deterministic transition zeros of the
system p(H"(z)), the deterministic steady state gain matrix H41) and the stochastic
steady state gain matrix H*(1).

3. Closed Loop Subspace Identification Algorithm

Di Ruscio (2003) have presented an expression for the error term in the projection
used to estimate the extended observability matrix in DSR. This term is approximately
zero for open loop problems. The error term contains the projection of future output
noise onto the future inputs. In some closed loop problems the error term is non-zero and
cause biased estimates. This is the problem in feedback systems where the control is
directly proportional to the innovations noise. It is stated by Di Ruscio (2003) that [t is
believed that SID of the systems with state feedback or feedback from Kalman filter
states would work well, provided an external dither signal is introduced in the loop. The
reason for this is that the states are “noise-free” and not correlated with the innovations
noise. There are no problems by using subspace identification methods in these cases.

By definition the minimum variance estimator (Kalman filter) minimize the error
norm E((x; — %)(xx — %)"). The Orthogonal Projection Lemma, Jazwinski (1970), gives
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a condition that is equivalent to the minimization of the error norm. The Orthogonal
Projection Lemma states that the error is orthogonal to the approximation space Y,. In
the Kalman filter problem the approximation space is Yy = {space spanned by y,, ... , y}.
This means that:

E(iel) =0. ®)

Therefore we want to suggest a new algorithm based on feedback from a Kalman
filter found by DSR in closed loop. Algorithm for closed loop SID:

Algorithm 3.1

* Step 1. Identification of Kalman filter using DSR
o Step 2. Implementation of the Kalman filter identified in Step 1
* Step 3. Identification of unbiased model using DSR

The model found by DSR in Step 1 may have a bias, when the system is
operating in closed loop and there is noise present. The output, y;. from a non-optimal
Kalman filter will have some level of correlation to the innovation. & The idea is that
the Kalman filter found by DSR in Step 1 will give an output, y;, which is sufficiently
uncorrelated with the noise on the output of the actual process, and in this way reduce
or eliminate the bias problem.

In this work a simulation study is performed. The simulation study consist of a single
input single output system, Section 4.1, and a multiple input multiple output system,
Section 4.2. The results from these simulation studies are commented. However., Step 1
in the algorithm may have a bias. Due to the bootstrap structure of the algorithm it may
be advantageous to introduce a Step 4 to make the algorithm iterative. Prior to
introducing iteration a convergence analysis have to be performed. This is a topic of a
future work, and it will be natural to look for connections with convergence analysis of
so called bootstrap instrumental variable methods, Soderstrém and Stoica (1983).

A block diagram of the algorithm is shown in Figure (1). In Step 1 the switch in the
figure is in position 1. In all other cases the switch is in position 2. Section 4 contains
examples where this method is used.
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i
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Figure 1. Block diagram of the algorithm. The switch is in position 1 in Step 1, else the switch is

in position 2.
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4. Simulation examples
4.1. Single Input Single Output simulation example

A single input single output system given by:

[ o 1] _[o.zs] :[0.5]
A_[—O.’a’ .s’B 0.625’C 05)

D=1 0], &)

controlled by a Pl-controller with k,=2 and 7;=5 is used as an example. The
Pl-controller on discrete form is given by:

uy = ky€r + 2, (10)
k
ZJ¢+i_Zk+'?L.:€k, an
where €; is given by:
€ =TI, Yt (12)

The process noise variance used is E(#7; )= 0.01 and the measuring noise variance used
is E(wl)=001. Time series of N=1000 discrete data points, k=01, ..., N, are
generated.

A (Pseudo Random Binary Signal) PRBS of length N is used as reference to excite
the process. To illustrate the noise level and the PRBS used as reference, the reference,
rh, is plotted in Figure 2 with the corresponding input, 1, and the output, y, for two
particular noise realizations.
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- il Wwwﬂ
i w6 200 300 a0 500 600 700 800 900 1000
Discrele time

Figure 2. The reference signal, r;, with corresponding input, u, and output, yi, for two particular
noise realizations, v and wy.
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Figure 3. Estimates from closed loop Monte Carlo simulation using rl as reference.

To visualize the bias problem that occurs when SID algorithms is used for direct
closed loop identification a Monte Carlo simulation with 100 runs using r, as reference
signal with different noise realization in each run is carried out. The system order n =2
and the fact that there is no direct feedthrough term from input to output is assumed
known. The SID algorithms DSR and N4SID are compared to PEM. The N4SID version
and the PEM version used is the implementations in Matlab 6.5. PEM and N4SID
are used with default parameters and nk = 1. DSR is used with g=0. L=5 and J =6.
Figure 3 shows the estimates.

The estimates from PEM are unbiased and the estimates from the SID algorithms are
biased. Comparing the SID algorithms it is clear that the estimates from N4SID have a
much larger bias than the estimates from DSR. Therefore it is not advisable to use
NA4SID in Step 1 in the algorithm introduced in Section 3.

To evaluate the quality of the algorithm introduced in Section 3, Step 1 is performed
by a single simulation using r; as reference to identify a (biased) model using DSR. The
Kalman filter found by DSR with g =0, L=5 and J= 6 is given by:

_[ 0 1 ] . 0.9134]
0.6508 1.52571 0.81751
D=[1 0], K=[0.3634 0.2675]". (13)

To illustrate the effect on the noise level when using feedback filtered through the
Kalman filter found by DSR, Equation (13), the reference ry is plotted in Figure 4 with
the corresponding input, u, and the output, yy, for two particular noise realizations with
the same noise level as in the previous simulations.

The noise level is of course reduced since the input is a function of the filtered
output, but this was not the main goal. The main goal was to generate an input, ., which
is uncorrelated with the noise on the output. yj.



156 Geir Werner Nilsen et al.

2 T
1 ] = i e
| B |
_— | S e
l 1 i 1 1
) 100 200 300 400 500 500 700 800 800 1000
0.5 T T T ¥ T T T T T
% oF
\'\'\N'W“W
1 L i 1 1 i L 1
'0'50 100 200 300 400 500 600 700 800 900 1000
2 T T T T T T T T T 1
13 1 -
1 Wrmw AT ANy
= 0OF ’l Jﬂ b\ -
L]
Al Ay Wt gty
2 L 1 i L i L 1 L L J
[ 100 200 300 400 500 600 700 800 900 1000
Discrete time:

Figure 4. The reference signal, r}, with corresponding input, i, and output, yy, for two particular
noise realizations, v and wy, when the feedback is filtered through a Kalman filter found by DSR.
Equation (13), in an initial step.

Step 2 and 3 of the algorithm introduced in Section 3 is evaluated by a Monte Carlo
simulation with 100 runs with different noise realization in each run carried out using
ri as reference signal, when the feedback is filtered through the Kalman filter found by
DSR, Equation (13), in an initial simulation. As in previous simulations the system order
n=2 is assumed known. PEM and N4SID are used with default parameters and nk = 1.
DSR is used with g =0, L =15 and J = 6. Figure 5 shows the estimates with no iterations
performed to improve the Kalman filter.

Now when the feedback is filtered through the Kalman filter found by DSR,
Equation (13), all the methods give unbiased estimates, but the estimates from N4SID
have considerable larger variance than the others. It is quite satisfactory that the
estimates from PEM does not have any observable increase in variance when
the feedback is filtered through the Kalman filter found by DSR, Figure (5), compared
to direct closed loop identification, Figure (3). It indicates that the Kalman filter
estimated in Step | in the algorithm does not have to be very accurate to have the desired
effect.

We are pleased to observe that the control function still is satisfactory when the
feedback is filtered through the Kalman filter found by DSR in the initial step.

Figure (6) shows the reference ri with the corresponding input, 1, and the output,
i, for two particular noise realizations with the same noise level as in the previous
simulations when the feedback is filtered through the correct Kalman filter.

Figure (7) shows the estimates when the feedback is filtered through the correct
Kalman filter. It have to be noted that there is no significant improvement of the
performance compared to when the feedback is filtered through the Kalman filter found
by DSR in an initial step, Figure (5).
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Figure 5. Estimates from closed loop Monte Carlo simulation using r} as reference

when the feedback is filtered through a Kalman filter found by DSR, Equation (13), in an initial

step.
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Figure 6. The reference signal, 7}, with corresponding input, 14, and output, ¥, for two
particular noise realizations, v; and w;, when the feedback is filtered through the correct Kalman
filter.
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Figure 7. Estimates from closed loop Monte Carlo simulation using ri as reference when the
feedback is filtered through the correct Kalman filter.

4.2. Multiple Input Multiple Output simulation example
A multiple input multiple output system is given by:

15 1.0 0.1 00 0.0 0.1
A=| -07 00 01|, B=|0 1|.C=|01 0 |,
0 0 085 10 0 02
30 - 0.6] [0 0]
= == . ]4
b [0 1 1 E 0 0 a4

Input 1 is used to control output 1 using a Pl-controller with Kp = 0.02 and 7i = 2. Input
2 is used to control output 2 using a Pl-controller with Kp= —0.02 and Ti=2. The
Pl-controllers used to control the outputs are given by (10) and (11). The process noise

variance used is
0.001 0
~ Ty
E(ive) [ 0 0.001]

and the measuring noise variance used is

0.001 0 ]
0  0.0005)

Time series of N = 1000 discrete data points, k= 0,1, ... , N, are generated. As reference
signal for output | and output 2 respectively r# and ri are used. Figure 8 shows the
reference signals, r; and ri, plotted together with the corresponding outputs for two
particular noise realizations, v¢ and wy, when the system is operating in closed loop.

In this example we assume known the system order n =3 and the fact that there
is no direct feedthrough term from input to output. In figure (9) the estimates from
a Monte Carlo simulation with 100 runs using r; and ri as reference signals with
different noise realizations in each run where direct closed loop identification is

E(wiw() = [
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Figure 8. The reference signals. r and r{, plotted together with the corresponding outputs for two
particular noise realizations, v, and wy.
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Figure 9. Estimates from closed loop Monte Carlo simulation using 17 and r; as references.

performed. As in the single input single output case we observe that PEM give unbiased
estimates and both the SID algorithms give biased estimates. Regarding the estimation
of the zeros two comments have to be made. The first is that when the eigenvalue
estimates from the SID algorithms are so poor. as they are here, there is just a
coincidence that the estimation of the zeros, compared to PEM. is so good. The second
is that when PEM have one or more estimates which seems like “outliers” the zeros are
hard to estimate.
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Figure 10. The reference signals, r7 and r;, with corresponding outputs, for two particular noise
realizations, v and wy, when the feedback is filtered through a Kalman filter found by DSR, Equation
(15), in an initial step.

To evaluate the quality of the algorithm introduced in Section 3, Step 1 is performed
by a single simulation using r; and 7; as references to identify a (biased) model using
DSR. The Kalman filter found by DSR with g=0, L=8 and J=9 is given by:

[0.7872 04514  0.2434 [ — 41692 —8.9423]
A=|00435 06936 —0.0203 |, B=| —22756 26672 |,
| 0.0184 0.1157  0.1970 | 17208  —0.5849]

p_| 06301 05400 03128 ] o _g‘;g{g}g :gfg;g s
| 0.0072 0.3117 —0.89061" ' ' ’ as
| —0.0350  0.2059

To illustrate the effect on the noise level when using feedback filtered through the
Kalman filter found by DSR, Equation (15), the references 7 and 1} are plotted in Figure
10 with the corresponding outputs, for two particular noise realizations with the same
noise level as in the previous simulations. There is no significant reduction in the noise
level. This is not a problem because the goal is to generate a feedback which is
sufficiently uncorrelated with the noise on the output of the actual process.

Now when the feedback is filtered through the Kalman filter found by DSR, Equation
(15), all the methods give unbiased estimates, but the estimates from N4SID have
considerable larger variance than the others. It is quite satisfactory that the estimates
from PEM does not have any observable increase in variance, except of the zeros, when
the feedback is filtered through the Kalman filter found by DSR, Figure (10), compared
to direct closed loop identification, Figure (9). It supports the observations in the single
input single output example, Section (4.1), that the Kalman filter estimated in Step | in
the algorithm does not have to be very accurate to have the desired effect.
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Figure 11.  Estimates from closed loop Monte Carlo simulation using 7 and r3 as references when
the feedback is filtered through a Kalman filter found by DSR, Equation (15), in an initial step.

15 T

_ It e ig
N L’:m N

————

100 200 300 400 500 600 700 800 900 1000
Discrete time

Figure 12. The reference signals, 77 and 73, with corresponding outputs, for two particular noise
realizations, v; and wy, when the feedback is filtered through the correct Kalman filter.

Like in the example in Section (4.1) we observe that the control function still is
satisfactory when the feedback is filtered through the Kalman filter found by DSR in the
initial step.

Figure (12) shows the references r2 and r; with the corresponding outputs for two
particular noise realizations with the same noise level as in the previous simulations
when the feedback is filtered through the correct Kalman filter.
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Figure 13. Estimates from closed loop Monte Carlo simulation using 77 and 1} as references when
the feedback is filtered through the correct Kalman filter.

Figure (13) shows the estimates when the feedback is filtered through the correct
Kalman filter. Like in Section (4.1) it have to be noted that there is no significant
improvement of the performance compared to when the feedback is filtered through the
Kalman filter found by DSR in an initial step, Figure (11).

5. Concluding remarks

A new three step closed loop subspace identifications algorithm based on the DSR
algorithm and the Kalman filter properties is presented. In an initial step DSR is used for
identification of the process model, including the Kalman filter gain. This model may
have a bias when the system is operating in closed loop and there is noise present. The
next step is to implement the Kalman filter in the feedback in such a way that the
controller uses the filtered output from the filter, not the actual process measurement.
The idea is that the Kalman filter found by DSR will give an output which is sufficiently
uncorrelated with the noise on the output of the actual process, and in this way reduce
or eliminate the bias problem. The final step is to use DSR to identify the process model
when the feedback is filtered through the Kalman filter. This model will be unbiased if
the Kalman filter is correct.

Qur simulation studies have shown that even when a Kalman filter with a bias is used
the estimated model in the final step is unbiased. A convergence analysis of the
algorithm will be a topic of future work.

The initial idea was that any subspace identification algorithm which estimates the
full state space model, inclusive the Kalman filter gain, should be applicable for this
algorithm. The simulation study performed showed that it is not advisable to use N4SID
in the initial step in the algorithm due to poor results. N4SID can be used in the final
step in the algorithm, but it is not advisable because the variance is much larger than
when DSR is used.
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