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The ambition of getting one common ool for a great variety of navigation tasks was
the background for the development of NavLab (Navigation Laboratory). The main
emphasis during the development has been a solid theoretical foundation with a
stringent mathematical representation to ensure that statistical optimality is main-
tained throughout the entire system. NavLab is implemented in Matlab. and consists
of a simulator and an estimator.

» Simulations are carried out by specifying a trujectory for the vehicle, and the
available types of sensors. The output is a set of simulated sensor measure-
ments.

e The estimator is a flexible aided inertial navigation system, which makes
optimal Kalman filiered and smoothed estimates of position, attitude and
velocity based on the available set of measurements. The measurements can be
either from the simulator or from real sensors of a vehicle.

This structure makes NavLab useful for a wide range of navigation applications,
including research and development, analysis, real data post-processing and as a
decision basis for sensor purchase and mission planning. NavLab has been used
extensively for mass-production of accurate navigation results (having post-processed
more than 5000 hours of real data in four continents). Vehicles navigated by NavLab
include autonomous underwater vehicles (AUVs), remote operated vehicles (ROVs),
ships and aircraft.

1. Introduction

For many navigation related activities it is very useful to have one common software
tool. The tool should cover applications such as navigation system research and
development, analysis and real data post-processing. With a long tradition of developing
navigation systems, The Norwegian Defence Research Establishment (FFI) started
development of such a tool in 1998. The result is NavLab (Navigation Laboratory), a
powerful and versatile tool that serves a variety of navigation purposes. For the
long-term success of this tool, a strong focus on a solid theoretical foundation and a
flexible structure has been crucial.

1.1. NavLab’s theoretical foundation

The most significant feature of NavLab is its solid theoretical foundation. NavLab is
a result of an innovative research process to establish a completely general theoretical
basis for navigation and for implementation of navigation systems. The development has
led to the following contributions:

e A new stringent and unified system for notation and mathematical representation

*Norwegian Defence Research Establishment (FFT)
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* A unified design and implementation of algorithms and aiding techniques for the
Kalman filter, where statistical optimality is maintained throughout the entire
system

e Elimination of numerical problems by

— Deducing and implementing exact formulas (rather than approximations)
— Using only nonsingular representations
— Controlling accumulation of the computer’s inherent round-off errors

Articles reporting the above work will be published, but currently the most relevant
report available is Gade (1997).

1.2. A flexible structure

The main structure of NavLab is shown in Figure 1. NavLab’s different components
can be used alone or together, allowing a variety of applications. A list of usages is given
in Section 4.

The simulator can simulate artificial measurements from a chosen scenario. The
estimator will, based on the available set of measurements from either the simulator or
from sensors of a real vehicle, make the best possible estimates of position, attitude,
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Figure 1. NavLab main structure. Note: The colors used in the figure correspond to the colors of
the graphs generated by the different parts of NavLab (black is the true value, blue is the measurement
etc).
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Figure 2. NavLab program modules.

velocity and sensor errors. The simulator and estimator are described in more detail in
Sections 2 and 3.

In addition to the simulator and estimator, NavLab includes:

® A pre-processing tool (Preproc), which is used to handle real measurements (by
removing outliers, compensating for lever arms and misaligned sensors, converting
measurements to the correct format etc).

* An export tool, which creates files for exporting to other programs (containing the
estimated position, attitude and velocity).

Figure 2 shows the NavLab program modules. Different modules are used in different
cases. Typical examples are:

e Sirmulations: Simulator — Estimator
e Post-processing of real data: Preproc — Estimator — Export

The modules interface each other via files of a specified format (see Gade (2003)). or via
memory (o save time.

2. Simulator

The trajectory simulator can simulate any vehicle trajectory specified by the user. In
addition, the user specifies a set of available sensors and their characteristics. Based on
the specified trajectory and sensor characteristics, the sensor simulators calculate a set of
artificial sensor measurements.

2.1. Trajectory simulator

The coordinate systems 7 (Inertial), E (Earth), L (Local) and B (Body) are simulated
(see Gade (2003) for definitions). All relevant positions, orientations, linear and angular
velocities, accelerations and forces describing the trajectory are calculated.

Features:

® Any trajectory in the vicinity of the Earth can be simulated (with unlimited
complexity).

* All vehicle attitudes can be simulated without singularities.

* All possible vehicle positions relative to the Earth can be simulated without
singularities.
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e Includes all Coriolis and centripetal effects due to the rotating Earth and own
movement over the Earth curvature.

o Includes WGS-84 gravity model and elliptic Earth model.

Trajectories are specified in the trajectory simulator by first giving the initial position,
attitude and velocity. and then specifying changes in attitude and velocity as a function
of time. When developing a trajectory simulator, the actual mathematical quantities that
are used to describe these changes must be selected carefully, to ensure that it is simple
for the user to express a trajectory that follows the Earth ellipsoid in both position and
attitude. Selecting the mathematical quantities’ @}, and Vhy actually makes this just as

-z[m] X ym]

Figure 3. Earth plot from NavLab. Black circle: Starting point. Black line: True trajectory (from
the trajectory simulator). Biue crosses: Simulated position measurements.

''w?; is the angular velocity of the body, B, relative to L, where L is a local system with zero
angular velocity relative to Earth about its vertical axis (see Gade (1997) or Gade (2003) for more
details). ¥y is the velocity of B relative to Earth, differentiated in the B system.
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simple for the user as it would have been if the surface of the Earth were planar. Thus
if no changes in these quantities are specified, the vehicle will travel around the Earth
at constant depth/height if the initial velocity was horizontal.

Figure 3 shows an example trajectory from the simulator. This trajectory is simply
specified by two periods of constant change in attitude (angular velocity about z,
=10 0 1]" deg/s) and two periods of constant change in velocity (deceleration/ac-
celeration in z, gz =[0 0 20]” m/s?).

Using a plugin for NavLab, it is also possible to specify the trajectory by giving a
dynamical model of the vehicle and then marking 3D waypoints in a map, see Svartveit
& Berglund (2003).

2.2. Sensor simulators

The most significant error types, such as white-noise, colored noise and scale factor
error are included in the sensor simulators, and any other types can also be added. The
magnitude, time-constants and other parameters that describe the different errors are user
selectable, and can be given as fixed values or as functions of time.

The sensor simulators can produce measurements at any user-specified time. This can
be specified as a constant rate during the entire simulation, different rates in different
intervals, or each single time of measurement can be specified in a time-series. Figure
3 shows position measurements with one period of high rate, and also periods of low and
Zero rate.

3. Estimator

The main purpose of the estimator is to estimate a vehicle’s position, attitude and
velocity. This is done by combining all available knowledge such as sensor measure-
ments and mathematical models of the sensor errors. The optimal (given certain
assumptions) method of combining this knowledge is by means of a Kalman filter’ (see
Minkler & Minkler (1993) for details). Thus, if the model used in the Kalman filter is
correct, all information is used optimally, and no better estimates can be made. An
example illustrating this is the concept of gyrocompassing, i.e. finding north by
inspecting the direction of the Earth’s angular velocity, measured by the gyros.
Gyrocompasses are manufactured containing gyros, accelerometers and dedicated al-
gorithms for this purpose. When the same sensors are available for the estimator, it will
gyrocompass optimally as a natural part of its estimation procedure.

The main structure of the estimator is given in Figure 4. Measurements from the
IMU (Inertial Measurement Unit) are integrated by the navigation equations (see Section
3.1) to calculate position, attitude and velocity. Each time-step where a measurement
from any of the aiding sensors is available, it will be compared to the corresponding
quantity from the navigation equations, and the difference is sent as a measurement to
the Kalman filter.

Note that each of the sensors shown in Figure 4 are general and can represent
different types. e.g. NavLab has used different types of position measurements, including
range measurements to a known position (see Jalving et al. (2003a) or Jalving et al.
(2003b) for examples of different sensor types that have been integrated).

2 If future measurements are available, a better estimator exists. see Section 3.2.
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Figure 4.  Estimator main structure (simplified). The sensors shown can be either simulated or real.
(INS: Inertial Navigation System).

The navigation equations and optimal smoothing are described in Sections 3.1 and
3.2.

Features:

e The estimator accepts arbitrary time-series of measurements from all sensors.

* Along with each single sensor measurement, new sensor parameters can be
specified, describing that particular measurement, hence describing a varying
quality.

e Zero velocity update (ZUPT) and depth/height measurements are included in the
same Kalman filter in an optimal manner.

e The horizontal position measurements are nonsingular (i.e. with maximum accu-
racy also near/at the poles).

e lierated Extended Kalman filter is used to improve the performance in cases of
significant nonlinearities.

3.1. Navigation Eqguations

The navigation equations calculate position, attitude and velocity based on the IMU
measurements, as shown in Figure 4.

Features:

o Nonsingular for all positions and attitudes
® Foucault wander azimuth
¢ Direction cosine matrix attitude update
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¢ Numeric drift control

e WGS-84 gravity model and elliptic Earth model

» Trapezoid updates to prevent systematic errors from the forward or backward
Euler methods

3.2. Optimal Smoothing

The Kalman filter is the optimal estimator at time f, when measurements before and
including ¢ are used, thus it is well suited for real-time estimation. However, if
measurements after ¢ are also available (which is the case for post-processing, see
Section 4.1), it is possible to make a better estimator at time 1, by using these additional
measurements. The best possible algorithm, utilizing all measurements both before and
after 1, is called optimal smoothing (see Minkler & Minkler (1993) for details).

e This algorithm is effectively doubling the set of relevant measurements for each
estimate, since the next x seconds of measurements are normally just as important
as the previous x seconds.

e A symmetrical interval of past and future measurements prevents a systematical
delay in the estimates, which is unavoidable in real-time estimators.

e Another limitation of an optimal real-time estimator (Kalman filter) is its inability
to deliver estimates that are in accordance with the process model. At each
time-step such estimators make a prediction (that is in accordance with the process
model), but when a new measurement arrives, it is weighed against the prediction
to give a new updated estimate. Unexpected® measurements thus lead to jumps in
the estimates that are not in accordance with the process model (e.g. an unexpected
velocity measurement leads to a jump in the velocity estimate that corresponds to
an acceleration that is too large according to the process model). Since no
measurements are unexpected for the smoothing algorithm, this problem is
eliminated, and the smoothed estimate is always in accordance with the process
model (hence the name “smoothing™).

Figure 5 shows an example of position estimation uncertainty (1¢) in the Kalman filter
and in the optimal smoothing. Position measurements are unavailable in an interval of
2 hours, and in this period the Kalman filter estimation uncertainty grows, before
dropping instantly when position measurements become available at the end. The
smoothing algorithm on the other hand, utilizes the position measurements at the end
during the whole interval, and thus has a maximum uncertainty in the middle of the
interval. At the last time-step, no future measurements are available and the two
algorithms give equal estimates.

3.2.1. Performance in cases with large modeling errors (robusiness) Another property
of the smoothing algorithm, that is often even more important than the improved
accuracy, is its robustness. As mentioned above, smoothed estimates are always in
accordance with the process model, and this quality is crucial in cases with wrong
models or faulty measurements. If a measurement has an error that is significantly larger
than what was modeled in the Kalman filter, a large jump in the estimates from the
real-time filter is inevitable. A real-data example of such a jump is shown in Figure 6,

3 All measurements that are not exactly equal to the predicted value are unexpected, which in
practice means every measurement.
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Figure 5. Estimation uncertainty in north-position by Kalman filter (green/dashed) and optimal

smoothing (red/solid). (A straight-line trajectory to the east, at latitude 45° is simulated. Sensors: 1

nmi/h class IMU, 600 kHz DVL. Position measurements are available the first 500 seconds and the
last 300 seconds.)

where a position outlier (wild-point) with an error of about 41 meters is present.’ Since
the Kalman filter expects a total position measurement uncertainty of 2.4 m (lo), the
error of this measurement is above 17 sigma, and hence extremely unlikely according to
the model. In the example, the outlier is followed by a period of position measurement
dropout (which is typical), and thus the filtering error remains until the sound®
measurements bring the estimate back on track. The smoothing algorithm however, also
seeing the measurements from all sensors after the outlier, is barely affected, even
though it uses the same sensor model as the Kalman filter.

The optimal smoothing algorithm is also robust against systematic sensor errors. In
a HUGIN 3000 navigation accuracy verification sea trial in October 2000 (described in
Section 5.2.2), there was a constant error in the DVL (Doppler Velocity Log) measure-
ments that was above 8.3 sigma (due to an incorrect DVL configuration in this particular
trial). This huge® unmodeled velocity error led to a position error in the order of 10-15 m
for the real-time estimates, while the smoothing, using the same model, proved a
performance of 1.2 and 1.7 meters (1o north and east), see Figure 8 in Section 5.2.2.

detection algorithm, but is left here for demonstration.

5 Ie. in accordance with the Kalman filter model.

& According to the model, the probability of an error of this magnitude in one measurement is
only about 10 '®, and in this trial all measurements had this error!
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Figure 6. Trajectory from the HUGIN 1000 AUV. The track shows the vehicle going northwest.
Blue/dotted: position measurement from DGPS + USBL (differential GPS + Ultra Short Base Line
acoustic positioning). Green/dashed: Kalman filtered estimate. Red/solid: Smoothed estimate.

4. NavLab usage

NavLab has been extensively used by numerous different users since 1999, including
several international research groups, universities and commercial survey companies.
The flexible structure of NavLab makes it useful for a wide range of applications.
Some users are only working with simulated data, whereas others use the estimator alone
to post-process real data. Finally, there are many cases where both simulations and
real data processing are of interest. A summary of current NavLab usage is given
below.

Navigation system research and development (using simulations and real data)

e Development, testing and comparison of new navigation concepts and algorithms,
including new aiding sensors and aiding techniques.

e Development of real-time navigation systems, where the algorithms are imple-
mented and tested in NavLab, and then ported to the real-time system. A typical
development process is:

— lmplement algorithms in NavLab
— Test in simulations (NavLab)
Test with real data (NavLab)
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— Port algorithms to the real-time navigation system (C++ or similar program
language)

— Test real-time system

The real-time navigation system in the HUGIN vehicles was developed using

NavLab (see Jalving et al. (2003b) for a description of the real-time navigation

system and Hagen et al. (2003) or The HUGIN AUV Programme homepage for

an overview of the HUGIN AUV Programme).

Analysis of a given navigation system (using simulations and real data)

e Analysis of navigation system behavior under different maneuvers/trajectories and
sensor configurations.
* Robustness analysis. The performance of the estimator is studied for the cases of:
— Wrong sensor models used in the Kalman filter
— Sensor dropouts
- Sensor erTors

Teaching navigation theory (using simulations)

By specifying appropriate simulations, everything from basic principles to complex
mechanisms can be demonstrated and visualized.

Decision basis for navigation sensor selection/purchase (using simulations)

Simulations of the relevant scenarios are carried out to investigate how varying
quality of the different sensors will affect the obtainable navigation performance.
Parameters for different sensors available in the market are usually entered for compari-
son. The goal is to achieve a well-balanced and economical sensor suite.

Decision basis for mission planning (using simulations)

Even if the set of sensors is given, the navigation accuracy can vary significantly
with the mission type. Important mission parameters include:

e Activation/deactivation of sensors or change of measurement rate (reasons to
deactivate might be to stay covert, avoid interference with other systems or just
10 save power)

e Going to areas where certain measurements are available or are more accurate
(e.g. go close to bottom to get DVL bottom track, go close to a transponder or go
to surface for GPS measurements)

* Running maneuvers to increase the observability in the estimator

¢ Running in patterns that cancel out error growth

When setting up complex mission plans, simulations are helpful to ensure effective
missions that meet the navigation accuracy requirements for all parts of the mission
(transit phase, mapping phase etc).

Post-processing of real navigation data (using real data)

Post-processing of real data improves the navigation accuracy, robustness and
integrity compared to a real-time navigation solution. See 4.1 for more details.
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Tuning of real-time and post-processing navigation systems (using real data)

Proper Kalman filter tuning is essential for optimal estimation accuracy. Tuning is
often based on the sensor specifications, but the actual sensor performance can differ
from these numbers. and in such cases the tuning should be based on empirical data.
Finding the correct tuning based on a recorded data set is best done by means of the error
estimates from the smoothing algorithm.

Sensor evaluation (using real data)

After purchasing a new sensor, an evaluation of the sensor is usually desired. Large
sensor errors might be detected by inspecting the measurements from this sensor alone,
but for a more thorough sensor evaluation, the measurements should be compared with
other sensors (with uncorrelated errors) or a known reference. Running a relevant
mission or lab test and analyzing the result in NavLab will usuvally reveal errors above
the specification and often also the characteristics of such errors.

Improving sensor calibration (using real data)

Even if a sensor is approved in an evaluation, it can exhibit systematic errors,
typically due to imperfect calibration or misaligned mounting. Such (deterministic)
errors should be removed before sending the measurements to the estimator, otherwise
the performance will be reduced (in particular for the real-time Kalman filter). To find
these systematic errors, the smoothing algorithm should be used, as it is significantly
better than the real-time filter at estimating such errors. When systematic errors are
known, they can be compensated for in future missions.

4.1. Using NavLab for real data post-processing

For vehicles storing their navigation sensor measurements during missions, it is
possible to make post-processed estimates of position, attitude, velocity and sensor
errors, There are many situations where these estimates are of great interest after the
mission is finished, for instance if the vehicle has recorded payload data that require
accurate geo-referencing (e.g. bathymetric data for terrain maps or image data for object
detection). NavLab is well suited and extensively used to produce optimal post-processed
navigation results. These results are valuable also when the vehicle has calculated and
stored real-time navigation estimates. When the time constraints allow, post-processed
estimates are preferred to the real-time estimation results, since important properties such
as estimation accuracy, robustness and integrity are improved:

® [ncreased accuracy is mainly due to the use of the optimal smoothing (see Section
3.2). In addition, real-time issues like delayed measurements and incomplete data
sets from remote sensors’ are eliminated. Finally, the absence of a real-time
computing requirement makes it possible to use iterations to improve estimation
performance.

e [mproved robustness is partly due to the smoothing algorithm, which in general is
more robust against degraded sensor performance than the real-time Kalman filter

" For instance a surface vehicle measuring the AUV position by means of DGPS + USBL. A full
set of measurements is not transmitted to the AUV in real time, but is available for use in NavLab
after the mission.
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(see Figure 6 and Figure 8). In addition, the possibility of rerunning the estimation
increases the ability to recover a faulty data set. To do so, one can modify either
the degraded sensor measurements or the filter tuning (or both) to get the best
possible navigation for the faulty data set.

e The Integrity of the estimator, i.e. the ability to detect degraded sensor perform-
ance and degraded total navigation performance, is critical for the users of the
navigation data. The optimal smoothing algorithm has a very high capability of
detecting reduced sensor quality. In addition it can often tell which sensor is
having problems. When deviations are detected, the data can usually be rerun as
described above, and the final estimates will be reliable (i.e. more accurate and
associated with a trustworthy accuracy estimate). In practice, the ability to recover
the navigation data in the case of degraded sensor performance means that the
need for a new mission is avoided.

Also, the smoothing might allow purchasing less expensive sensors or using them less
frequently, and still obtaining the required accuracy. For instance. a submerged vehicle
might need to surface to get position measurements. In Figure 5, we see that with a
position accuracy requirement of 5 meters, the real-time filter would require position
measurements after a period of 2500 seconds, while with smoothing a position accuracy
better than 5 meters is obtained even with a 2 hours dropout interval.

Post-processing of real data has become one of the most important NavLab
applications, and through mass-production of accurate navigation results more than 5000
hours of recorded payload data has been positioned. Any vehicle with recorded sensor
data can be navigated, and currently AUVs, ROVs, ships and aircraft have been
navigated with NavLab.

4.2. Practical usage

NavLab is written in the mathematical programming language Matlab (see Math-
works homepage), but it can also be compiled to a Windows application (exe file).
Post-processing of a recorded data set with 3—5 Hz Kalman filter update rate and 100 Hz
IMU data, is approximately 15 times faster than real-time. when using a 3 GHz Pentium
4 processor.

The user interface can vary from “Scientific”, where all parameters and steps are
fully controllable, to “One-click” (see Svartveit (2004)) where all processes are auto-
mated. In Scientific mode, a general multi-menu based plot function is used after a
simulation or estimation. This function plots a range of figures containing numerical
summaries and many different 2D and 3D plots with a total of more than 500 graphs,
for results analysis. The plot function is also programmable to show only a predefined
subset of plots for users wanting just a simplified summary of the results. The very
simplest output is used in the One-click mode, where a green/red light at the end of the
estimation indicates if the data was OK or not.

5. Verification of estimator performance

Verification of the estimator performance has been a crucial part of the NavLab
development. Both the Kalman filter and the optimal smoothing calculate an expected
uncertainty for their estimates, which is the theoretically optimal accuracy obtainable for
the given scenario. When using a correct model in the estimator, the actual estimation
error should be as small as the theoretical uncertainty limit. A correct model can be used
when the measurements are from the simulator, but since the real world has infinite
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complexity, it is impossible to use a completely correct model in the estimator when
using real data. In cases where the model used by the estimator differs from the model
generating the measurements, the actual estimation error will be larger than the
theoretical limit. The most challenging part of the estimator development is to keep its
error as close as possible to the theoretical limit in cases of modeling errors (and
nonlinearities). To minimize the loss of accuracy, a very careful design and implemen-
tation of all parts of the estimator is vital. In this section it is demonstrated that it is
possible to achieve a performance close to the optimal under a range of different
non-ideal conditions.

5.1. Verifving performance using the simulator

The simulator, having a more complex nonlinear system model than the estimator,
is an effective tool for verifying the estimator performance. Any scenario can be tested
and different modeling errors can be used. After running the estimator, the plot function
will calculate and plot the true estimation error and compare it with the theoretical
estimation uncertainty (also Monte Carlo simulations can be run to determine the
statistics of the error). Thorough and extensive testing of the estimator since 1999 by
different research groups, testing a variety of scenarios, has proven the estimator to be
very robust and to give close to optimal performance in all scenarios.

5.2. Verifying performance using real data

The ultimate test of the estimator is to use real data from a representative mission,
where the trajectory and all sensor errors are (by definition) totally realistic, The
challenge with real runs is that it is more difficult to investigate the estimation errors,
since the true trajectory is unknown. However., some possibilities do exist, and these are
discussed in the following.

5.2.1. Redundant sensors A significant sensor measurement can be made unavailable
for the navigation system, and later be used as a reference. For instance, a surface ship
might follow a submerged AUV, continually measuring its position using
DGPS + USBL, but not sending the measurements to the AUV. The AUV, typically
using an IMU, a depth sensor, a DVL and in some cases a compass, will have a drift
in position that after a while will be significantly larger than the uncertainty in the
DGPS + USBL position measurements. Hence the estimation error is observable and is
compared with the theoretical uncertainty. All such tests have documented a very high
estimator performance, that was in accordance with the theoretical uncertainty, see
Jalving et al. (2004) and Jalving ef al. (2003b).

5.2.2. Verifving the positioning by means of mapped objects For a seabed mapping
vehicle, an accurate positioning of the final map is essential, and estimates of the
vehicle’s 6 degrees of freedom (position and attitude) are used to position the bathymet-
ric data. Estimation errors in vehicle position will be directly translated to errors in the
map position, while the effect of attitude errors will depend on the geometry between the
vehicle and a given patch of the seafloor. A crucial test of the entire navigation system
is to verify the position accuracy in the final maps. In such tests, all available aiding
sensors are used so that the maximum accuracy is evaluated.
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Customers buying HUGIN and NavLab for detailed seabed mapping have had a
strong focus on position accuracy of the maps and have thus run navigation performance
trials as part of the customer acceptance tests. These trials determine if the real-life
performance of the estimator maich the accuracy that was predicted in NavLab
simulations before the vehicle was built. The standard method is to map the same object
at the seafloor several times, comparing the position estimate of each individual object
observation. Errors that are uncorrelated between each passing will be visible, as the
object will be positioned differently in each observation. Correlated errors are typically
following the AUV or a ship giving DGPS + USBL measurements (e.g. timing prob-
lems, systematic velocity error and misaligned acoustic positioning transducer). Hence,
to also reveal these errors, different headings are used for the AUV and ship for each
passing (“wagon wheel pattern”, as shown in Figure 7). Figure 7 shows maps from
HUGIN 3000 in an accuracy test carried out by the HUGIN customer C&C Technolo-
gies at 1300 m water depth in the Gulf of Mexico in October 2000. 11 different headings
were used (5 of the lines were mapped in opposite directions) when mapping the object
(a wellhead), to maximize the visibility of any correlated errors following the AUV or
ship. The positions of the wellhead observations when using NavLab smoothing are
shown in Figure 8, obtaining an accuracy of 1.2 m and 1.7 m (1) north and east (even
with a large unmodeled DVL error present, see Section 3.2.1). The theoretical estimation
uncertainty in the smoothed position was about 1.7 m (1, north and east) during the
passings. 60 m from the wellhead, but within the swath width, another object (natural
feature) was also visible in the data. Since the object is 60 m off the center of the maps,
a somewhat higher uncertainty is expected due to the AUV heading uncertainty (and also
due to the increased mapping sonar uncertainty), and indeed this object had a distribution
of 1.3 m north and 1.9 m east.

The test shown is the only test where a large unmodeled sensor error was present.
After this test many similar navigation accuracy evaluations have been carried out by

CEr T TR !
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Figure 7. A wellhead is mapped repeatedly with different headings to evaluate the positioning
accuracy of the final map.




NavLab, a Generic Simulation and Post-processing Tool for Navigation 149

Mapped object positions

S

Vor 0 [sdNerh =107 m])
4 ity StdEast=171m !

1 | 1 1 o [ 1 1
B R 'y i
s I T O O O O O
L) Sl S SR P R P S N
s 1 I | [ I | ] ! 1 I
= 1 1 1 i | | T 1 '
@ | |>——|—-—|-——|— - —t——T-—t——r— i
NN EEE
sE0r "I"'l"'k"l"'l“‘k'_‘l_ --r--
- I O o A
-y 1"‘|‘__|“x'_|_x_|__‘i"'["|"|' rTTi
= 1 1 I 1 P OX I 1
5 7 S S S N N

i [ T

[ 1 1 ] 1 ) ] 1 : : :
gl i1 _i__1L__|

! | i 1 1 0 1 '

| 1 1 1 [ I I |
) P T R P Y IR Ry S |

I 1 1 1 | ] ] i [

I 1 1 I i I o | 1
-5 1 1 1 1 L 1 1 L 1 1
5 4 3 2 4 0 1 2 3 4 &

Relative East position [rr]

Figure 8. The mapped positions of the wellhead (at 1300 m depth) using NavLab smoothing.

different HUGIN customers, with other vehicles and navigation sensors. The accuracy
has been tested down to a depth of 2200 m (obtaining 2.3 m and 3.3 m accuracy in north
and east), and in general the tests have proven exceptionally good estimator accuracy,
even slightly better than the anticipated theoretical uncertainty limit. The reason for this
is a combination of the navigation sensors performing somewhat better than their
specifications and the estimator producing close to optimal estimates.

6. Conclusions

NavLab is a powerful and versatile tool with usage ranging from research and
development by scientists and academics, to mass production of high-accuracy maps by
commercial companies (having post-processed more than 5000 hours of data from
around the world).

Even when a real-time navigation system is available, it is often beneficial to
post-process the data with NavLab:

e The navigation results, i.e. estimates of position, attitude and velocity, will be
more accurate and smooth (no jumps in the data).

e The navigation results will be more reliable (any critical sensor errors are
detected).

¢ Even in cases of sensor degradation or failure, accurate navigation can often be
obtained (no need for a new mission). This is due to the increased robustness of
smoothing and the possibility to rerun the data.

e [ower quality navigation sensors might be used, while still obtaining satisfactory
navigational accuracy.

The most significant feature of NavLab is its theoretical foundation, where statistical
optimality is maintained throughout the entire system. This has been repeatedly demon-
strated through extensive performance verifications, both with simulations and real



150 Kenneth Gade

missions. These tests have proven very high estimator performance, close to the
theoretical optimum.
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