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A comparison of implementation strategies for MPC**
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Four quadratic programming (QP) formulations of model predictive control (MPC)
are compared with regards to ease of formulation, memory requirement, and numeri-
cal properties. The comparison is based on two example processes: a paper machine
model, and a model of the Tennessee Eastman challenge process; the number of free
variables range from 150-1400. Five commercial QP solvers are compared. Prelimi-
nary results indicate that dense solvers still are the most efficient, but sparse solvers
hold great promise.

1. Introduction

Model based predictive control (MPC) is the repeated use of optimal control over
a given horizon; many introductory books dealing with MPC exist, e.g. Maciejowski
(2002), Camacho and Bordons (1999), and Seborg et al. (1989). Most of the work on
MPC has been centered on the use of linear models and quadratic performance indices.
Common model types are impulse and step response models, ARMAX/CARIMA
models, and state space models. In many cases, such models are input-output equivalent,
and the choice of model is less important for the resulting value of the control input.

The performance index typically puts quadratic weights on the control deviation, the
control variable, and/or quadratic weight on the control increment. In practice, control
inputs will be constrained to lie within lower and upper bounds, while it is also of
interest to introduce constraints on response variables, e.g. that the outputs are con-
strained to lie in a given region, etc. The most common MPC formulations are thus
posed as quadratic programming (QP) problems.

The development of the MPC algorithms typically include relatively lengthy formula
manipulations in order to end up with a QP problem with future control inputs as the
unknowns. An alternative approach is to keep variables such as states, outputs, control
deviations, etc. as unknowns, and include the model and various definitions as linear
equality constraints in the QP problem.

In this paper, we compare various formulations of the QP problem. In section 2, we
formulate a standard MPC problem using state space models, and pose it as QP problems
with a complete set of variables, with an intermediate set of variables, and with the basic
future control inputs as variables (the common formulation). In section 3, we analyze the
various formulations via two case studies. In section 4, we compare the computation
time for various optimization algorithms and various QP formulations. In section 5, we
draw some conclusions.
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2. The MPC problem
We consider the state space model

X1 = Ax + Buy (la)
yi = Cxp+ Duy, (1b)

where ux € R™*! is the control input, y; € R™*" is the controlled output, x; € R"™' is the
state, and the performance index Jj is:
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Here, the output error e is
€ =Yk~ Sk 2
where s, is the set point, and the control increment Auy is
Ay = e — g 1. (3)

For open loop stable systems and some mild additional conditions, we can transform the
infinite performance index into the following finite horizon index, see e.g. Muske and
Rawlings (1993):

Jk:x{*NQ":&+N+u{+N— |Suk+N_| (4)
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where 0 is found by solving the discrete Lyapunov equation:
0=C'0C+A'QA. )

With x; known, denote the optimal input sequence by g+ i € {0, ... ,N—1} . By
repeatedly solving the optimal control problem for each time index k, letting the control
input be 1 = uy leads to a nominally stable closed loop system, Rawlings and Muske
(1993).

One of the main advantages of MPC is the direct handling of constraints in the
calculation of the control input. This feature is important, since all processes are subject
to constraints. Actuators have a limited range of action

W =y=u" ©)
and a limited control increment
At = Awp =< Mui”. @)

Output constraints are mainly introduced for safety and quality reasons. Such constraints
also arise when the exact values of some output variables y are less important as long
as they remain within specified boundaries or “zones”. These constraints can be
expressed as

¥ =w=y~ (8)
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Table 1. Notation used in MPC formulation.

Notation Matlab form

Omxn € R™*" zeros (m,n)

Linxn € R™*" ones (m, n)

I, € R»>n eye(n)

Iy = diag (1, g1, k) diag(ones(n-abs(k),1),k)

AeR"™"% m=dim A m=size(A,1)
n=dim; A n=sgize(A,2)

A®B kron(A,RB)

diag(Ay, ..., A,) —(block diagonal)

rolgoly rot90 (eye(N))

oo INF

Other types of inequality constraints are viable, such as funnels and constraints on states.
These extensions are in principle straightforward, and here we limit the discussion to the
constraints discussed above.

3. The MPC problem formulated as QP problems
3.1. Standard QP problem

The general MPC formulation outlined above can be posed as a quadratic program-
ming (QP) problem of the form

min F(z) =min } Z/Hz + g’z +k ©)
s:t. dz=a
HBz=b
d=z=<

If inequality constraints are passive, the solution can be found by solving the linear
equation %v=yv where

o 4} = ()

and A is the Lagrange multiplier.

3.2. Complete set of variables

Although not the most common formulation, we first define the vector of unknowns
z as:

Table 2. Matrices for complete
variable set QP-formulation.

‘du:ﬂ\-." —IN._[®A
.ﬁfzz-': —IN__|®C
Ay = —Iym + Iy, 1®1,
S=(st oo Sten—1"
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Matrix H and vector g of eq. 9 are determined from the requirement that J; of eq. 4
should equal F(z) in eq. 9. The constraints .7z = a contain the dynamic model in eq. |
and the definitions in egs. 2—3. For the MPC problem defined here, inequality Zz =5 is
empty, while physical, safety, and quality constraints of Section 2 are contained in 7' and
z

In formulating the matrices, the notation of Table 1 is used. The following matrices
result:

H=diag(2(Iy- 1 ®R), 2(R + S), (12)
O 1yimy @ X (v — 1)diom, ©
Odim, 0 x Nim y» 20, Ondim y x Natim y»
2(IN®Q), AINDS))

g-_—ON-(Zm-rmzr)xl (13)

—~(N®B) s, 0 0 0
o—| ~U®D) A Iy, O 0

(14)
0 0 Iy, —Iy O
oy 0 0 0 Inm
where matrices =/ are defined in Table 2.
"))
a= , . 15
((O(N— 1pn =1 O(N rrxd ( )
)
O — tymx1
INx |®I¢Z le|®u"
- m‘lxwxl -1
Z=| Wwa®y |, &= lwa®y (16)
- OG-IIL,M m'l%r}(l
In 1 ®4u’ Ly 1 ® Au*

The dimensions of the complete variable set QP problem are given by
dim z=N-(n + 2m + 2r) X 1 and dim @ = N-(n +m + 2r) X 1. Typically, the definition of
z as in eq. 11 leads to sparse matrices H and 7.

3.3. Intermediate set of variables

From the full QP formulation, we eliminate ey, Aus, and yi. The resulting vector of
unknowns is:

z=(u{ HL N-1 xfn I{FN)T' amn

The matrices and vectors in the QP formulation are
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Table 3. Matrices for intermediate variable set QP formulation.

H” :IN®(2S+R‘|‘DTQD)-IM_|®S—JN‘+1®S
Hiz=Iy ., ®D'QC = H},

o= (" 1@;3 CTQC)

.'ﬂ” = !N®D, ‘@u =IN. = 1®C
By =Ty — Iy, @I,

b= (lw}f;%}#)' ba= ( - I::igy)

_f Autuwe—, e T
b"(lﬁ_.x@au")' 4-(—IN_1><1AuI)
H, Hp
H=2( ). 18
Hy; Hxn (18)
_ (2(xICTQD-uI_ |S)T) (19)
O 1ym+Nnx 1
A =(—INOB  Iy,— Iy 1RA) (20)
AIk )
= 21
¢ (Otw—nnxl @b
le|®u’) (le|®u“)
- o= 2
z (_m‘lN-nx] ¢ -1y 22)
LZ5% B2 by
B=| ~Pn  —Pn p=| b2 (23)
By Onmxnn b3
— B Onmxin by

The matrices encountered in equations 18-23 that have not been defined yet, are defined
in Table 3. The dimensions of the intermediate variable set QP problem are given by
dimz=N-(n+r) X1, dima=N-nX1, and dim b= N(r+ m) . The definition of z as in
eq. 17 leads to sparse matrices H, <7, and #.

3.4. Basic set of variables

The most common QP formulation is found by using the equality constraints to
eliminate all unknowns except the future control inputs, hence:

2= - un- 1) (24)

In this case, there are no equality constraints. The matrices and vectors of the QP
formulation are

H=2(# N (INSQ)H y -1+ (INOR) (25)
+ YI(INQS)¥ + Q + P'ELQC\P),
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Table 4. Matrices for basic variable set QP formulation.

Y= IN-M - !N. |®Im. P= leO(INm)

=1, On—1xn—1 Ov—1x1
L=( ). o=( Jos
OIN—I]xm 0|)<N 1 1

G.=(B AB ... A*"'B),
Op=(CT (CAY ... (CA* 1YY,

D Odim D oo Odimp
w-| B D Oump
CA"-—'B CA"._ B D
8= AOnx — 8) (INQQ)H N -1 (26)
+ 2up _ LT(IN®S) ¥ + 2, (AYY Q6 NP
' Inx 1 @Au" — Luy -
= - b=~ Iy ®@Auf + Lug @n
Hon— Inx |®)’"—@Mxk
—Hn- = Inx1®y + Onxi
7=l ®u!, 2= 1yx1®u (28)

The matrices encountered in equations 25-27 that have not been defined yet, are defined
in Table 4.

The dimensions of the intermediate variable set QP problem are given by
dim z=N-rX1 and dim b=2N-(m+ r) X 1. The definition of z as in eq. 24 leads to
dense matrices H and 4.

3.5. Basic variable set from QR factorization

It is possible to eliminate equality constraints by means of e.g. QR factorization, see
e.g. Golub and Van Loan (1996). This is an alternative to the formula manipulation
needed to reach the results in the previous section. Denoting the matrices in section 3.2
by subscript ¢, we have:

/.= 0R, (29)

where ( is orthogonal and R is an upper triangular matrix, and R = dim .«Z,. R is then
partitioned into:

R=(Ri Ryp) (30)
where R); is square and invertible for well posed MPC problems; z. is partitioned into:
=@ @) @D

where dim z; is the number of columns in R;; and dim z, = N-m. This leads to
a1 =Ry (Q"ac— Rupza). (32)

By eliminating the equality constraint, the matrices in the QP formulation become:
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Table 5. Case studies.

la 1b 1c 2a 2b 2c
Process PM PM PM TE TE TE
N 50 100 200 50 100 200

H= Ry Rlz) r(_Rl;lRIZ)

§
(v ’w) {5
(2) a7
e

9=
RII Qar)
Oﬁmxf\-m
R1| Qaf)
Ohmx.'\m
2=_—00 lexl! Z" mleXl
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(33)

(34)

(35)

(36)

@37

When z; is found, we can compute z; from eq. 32. However, since the first element
of z; is Auy, we can find the desired u; as Auy + ux— 1, hence z; is really not needed. The
dimensions of the QR reduced basic variable set problem are given by dim z;=N-m X 1
and dim b = 2-dim z.. Since 4. may change with time index £, it is necessary to also store
Ry;'Q" which is of dimension dim a, X dim a,. This formulation leads to dense matrices

H and #, and a dense O matrix.

Table 6. Sparsity patterns for sparse QP formulations, case 2a.

. ~ o

500 ] \
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Table 7. Memory used (kbytes) for case studies.

1la 1b Ic 2a 2b 2¢
B [740 2919 11598 4962 19443 76965
QR |2888 11535 ** 27380 s
I 79 158 317 955 1919 3846
c |78 154 308 722 1445 2892

4. Analysis of QP problems

The formulations with a complete set of variables (C, section 3.2), an intermediate
set of variables (I, section 3.3), the basic set of variables (B, section 3.4), and the basic
set of variables as found via QR factorization (QR, section 3.5) are compared with
regards to sparsity, the use of computer memory, and the conditioning of the formula-
tions.

In the discussion of sparsity and conditioning, we assume that possible inequality
constraints are passive, and thus consider the sparsity and condition number of matrix &
in eq. 10.

The comparisons are based on two example processes. The first example process is
a linearized fourth order paper machine (PM) model, with three inputs and three outputs;
see Appendix A.1 for some details. The second example process is an identified 23 order
model of the Tennessee Eastman (TE) Challenge Process, with seven inputs and ten
outputs; see Appendix A.2 for some details. All computations in this paper are based on
Intel Pentium III PCs running at 750MHz, and with 256 Mbyte RAM.

The case studies are described in Table 5, where the first row is our reference name
for the case study, the second row describes which process is used (Paper Machine or
Tennessee Eastman), and the third row is the prediction horizon used in the formulation.

The B and QR formulations have totally dense Lagrange matrices %, while the
sparsity patterns for the C and I formulations are displayed in Table 6.

Table 7 displays the memory used by the matrices and vectors in the MPC
formulation.

Elements marked with “** denotes that the computer ran out of memory during
computation. Table 8 displays the condition number of matrix .

5. Comparison of algorithms for solving the QP problems

The QP solvers used in this study are (i) quadprog, Coleman et al. (1999); (ii)
g1d, available in Tomlab, Holmstrém (2001); as well as the following solvers which are
available with a Tomlab interface: (iii) 1ssol, Gill et al. (1986); (iv) gpopt, Gill ez
al. (1995); and (iv) sgopt, Gill et al. (1997). The sqgopt solver is the only one of these

Table 8. Condition number for QP formulations. Some computations required
the use of virtual memory; computations that did not finish in 1 hour of
computing time, were terminated and arc marked with “**7,

QR 1 C
la 2.1 X10° 8 x 10° 1.3% 10" 8.9% 10'®
1b 2.3 10° 2.7 % 10° 1.4 % 10* 1.1 % 10"
ic 2.3 % 10° ik 1.4 10" 1.1 % 10"
2a 7% 10" 2.7 % 10 6.5 % 10" 1.6 % 10
2h 7% 10" *k 6.6% 101 ok
2¢ 7> 1012 sk ke .




A comparison of implementation strategies for MPC 47

that fully handles sparse matrices. The quadprog solver can be used with sparse matrices
only if there are no inequality constraints in the problem formulation.

We use the case studies of Table 5, with the notation of Table 9 to identify which solver
is used in the formulations. In all cases, we simulate the controlled process for T =20 time
steps.

Table 10 displays the total time used by the computer to simulate the case studies with
various MPC formulations and solvers. Table elemenis marked with “*” denotes that an
optimization failure or optimization problem occured. Elements marked with “*%* denotes
that the computer ran out of memory during computation.

Table 11 displays the time spent on the first optimization. The reason for including
these results is that most solvers solve the optimization problem much slower the first time
than the remaining iterations. Typical computation times for the remaining iterations are
given in Table 12.

Table 9. Notation for pairing of solver and QP formulation.

Formulation Solver Notation
B lssol B

B gpopt B,

B quadprog B,

QR lssol QR

| sgopt I

C sgopt C

Table 10. Total computation time (seconds) for case studies.

1a 1b 1c 2a 2b 2c
B, 091 482 46.9 (7.84y* (76.8)* (592)*
B, 1.38 10.1 91.4 8.1 80.1 600
B; 142 745 545 154 97.1 3320
B, 153 497 283 19.5 96.9 o
QR 162 133 w* (754y% = *E
I 386 203 85.8 96 313)* (994)*
C 7.10 321 119 196 (382)* (139)*

Table 11. Computation time (seconds) for first iteration in case studies.

1a 1b Ic 2a 2b 2

B, 012 04 2.6 (0.33)%  (322)* (272)*
B, 013 13 1 0.35 4.4 27

B, 015 067 3.26 0.72 428 200

B, 175 6.5 40 1.13 45 ok
OR 012 L1l % @.6)x % *

1 082 329 1.3 10 (35)%  (88.7)*
C 072 32 1 21 (57)*  (266)*
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1a 1b 1c 2a 2b 2c
B, 0.03 015 1.9 (0.29)* (3.14y* (23.9)*
B, 0.025 0.15 1.94 0.30 3.18 24.2
B; 0.05 029 2.28 0.67 4.14 150
B, 0.6 1.6 8.2 0.85 472 *%
QR 0.05 026 #k (0.6)*% ¥
1 015 09 3.9 45 (14.6)* (3)*
C 033 1.5 5.6 9.0 (17.2* (37

6. Conclusions

In this paper, we have discussed four formulations of a standard MPC problem. The
formulation of section 3.2 (C) is, in our view, the most straightforward formulation from
the pedagogical point of view. The formulation in section 3.5 (QR) only requires
knowledge of linear algebra in addition to formulation C, and is also easy to present. The
formulations in sections 3.3 (I) and 3.4 (B) utilize various degrees of elimination of
equality constraints, where formulation B is the most demanding to present, yet it is also
the most common formulation.

Formulations C and I both lead to sparse matrices, Table 6, and thus the memory
requirement increases more or less linearly with the horizon N of the performance index,
Table 7, while for the dense matrix formulations B and QR the memory requirement
increases quadratically with N; the QR formulation is most demanding. In fact, the
formulations C and I can be said to be supersparse in the sense that it is possible to
introduce special sparse matrix structures that take advantage of the fact that the
involved matrices are constructed from the Kronecker product, where typically the
system matrices and horizon length N contain all necessary information, and the size
becomes independent of N. To take advantage of this, it would, however, be necessary
to develop special matrix libraries for such data structures. Table 8 indicates that the
sparse formulations (C, I) may be poorly conditioned, but this may also be a result of
how the conditioning is defined.

A number of commercially available QP solvers have been tested and compared.
Overall, the best combination of formulation and solver in our investigation appears (o
be the B formulation of section 3.4 and the gpopt solver, which manages to solve all
test problems where the number of free variables ranges from 150 to 1400, see Tables
10-12: the largest problem requires less than 30s computation time for each iteration.
The relatively poor performance of the QR formulation is mainly caused by the added
memory requirement. The sparse solvers give relatively poor performance. With the
memory advantage of the sparse formulations, it is to be hoped that sparse solvers will
be tailor made to handle the (super-) sparse structures found in MPC problems; such
contributions are starting to appear, sec Bartlett ef al. (2002).

A Overview of example processes
A.l. Paper machine

A paper machine model has been developed for controlling certain key variables at
paper machine 6 (PM6) at Norske Skog Saugbrugs, Norway. The original model is a
fourth order nonlinear model with three inputs, three outputs and seven measured
disturbances, and is described in detail in Hauge and Lie (2002). The model used in this
paper is a linearized version where the measured disturbances are assumed constant. The
inputs and outputs of the model are seen in Figure 1.
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Thickstock Basis weight
flow [ifs] [g/m?]
; Paper ash
Filler flowI/s] Mode %] N
content ->
Retention aid White water total
flow [I/s] consistency [%] N

Figure 1. Inputs and outputs in PM6 model.

A.2. Tennessee Eastman Challenge Process

The Tennessee Eastman Challenge Process was defined in Downs and Vogel (1993),
and a basic control structure for the process was suggested in McAvoy and Ye (1994).
Recently, several subspace models for a part of this process were identified and
compared, Juricek et al. (2001). The subspace models all have 7 control inputs and 10
outputs, and the model that was found to give best predictions was based on the
Canonical Variate Analysis (CVA) method and has 23 states. The seven inputs are (i)
compressor recycle valve, (i) condenser cooling water flow, (iii) setpoint for A feed, (iv)
setpoint for D feed, (v) setpoint for C feed, (vi) set point for purge rate, and (vii) set
point for reactor CW temp. The ten outputs are (i) recycle flow, (ii) reactor feed rate,
(iii) reactor pressure, (iv) reactor temperature, (v) product separator temperature, (vi)
product separator pressure, (vii) stripper pressure, (viii) stripper temperature, (ix)
compressor work, and (x) separator CW temperature. The inputs and outputs have not
been scaled, and the system that has been identified is rather stiff. The most promising
prediction model from the subspace identification was graciously made available to the
authors of this paper by the authors of Juricek er al. (2001).
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