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Principal component regression (PCR) based on principal component analysis (PCA)
and partial least squares regression (PLSR) are well known projection methods for
analysis of multivariate data. They result in scores and loadings that may be
visualized in a score-loading plot (biplot) and used for process monitoring. The
difficulty with this is that often more than two principal or PLS components have to
be used, resulting in a need to monitor more than one such plot. However, it has
recently been shown that for a scalar response variable all PLSR/PCR models can be
compressed into equivalent PLSR models with two components only. After a
summary of the underlying theory, the present paper shows how such two-component
PLS (2PLS) models can be utilized in informative score-loading biplots for process
understanding and monitoring. The possible utilization of known projection model
monitoring statistics and variable contribution plots is also discussed, and a new
method for visualization of contributions directly in the biplot is presented. An
industrial data example is included.

1. Introduction

Partial least squares regression (PLSR) and principal component regression (PCR)
are well known methods for prediction of e.g. a scalar response variable y from
multivariate regressor variables z' according 10 $new = Zyeyb (Martens & Nes, 1989). In
these methods the estimator b is found from modeling data collected in a regressor
matrix X =[X; X ... X,]=[2; 2 ... zy]" and aresponse vectory =[y; 3y, ... yal,
where the basic idea in PLSR is to maximize the covariance between X and y, while
PCR is based on principal component analysis (PCA) of X (Martens & Nas, 1989). The
reason for use of PLSR, PCR or some other regularization method is that an ordinary
least squares (LS) problem becomes ill-posed due to a large p (many variables) relative
to N (few samples in the modeling set) orfand strongly collinear variables in X. An
important result of PLSR/PCR is also a compression of X into a few components, as in
the PLS factorization

X=tW + 6w + ...+ LW, + E=TW +E, )]
where A << p, and the interpretation of these components is a central part of PLSR/PCR
modeling. The underlying assumption is here that the X and y data are generated by a
few latent variables (plus noise), which has been shown to be true in a vast number of
practical applications.

In a process monitoring application the response y is typically a product quality that
cannot be measured on-line, while z’ is made up by easily accessible process measure-
ments (MacGregor & Kourti, 1995), and possibly also by manipulated inputs. An
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important part of the PLSR/PCR modeling is visualization by use of score and loading
plots, and the interpretation of these plots for e.g. product quality estimation, and fault
detection and diagnosis (Chiang et al., 2001; Kourti & MacGregor, 1996). Most
multivariate monitoring techniques also use squared prediction error (SPE) plots (also
known as Q plots) and Hotelling’s 77 plots that summarize the information, give a
statistical basis for the interpretation and preserve the time sequence of the data (Chiang
et al., 2001; Kourti & MacGregor, 1996). As part of trend and fault diagnoses, specific
process samples may also be analyzed by use of variable contribution plots (Chiang et
al., 2001; Kourti & MacGregor, 1996). The overall monitoring problem is, however,
increasingly difficult with more that two PLSR/PCR components, as is often necessary
also in the scalar response case. For example will the use of four components make it
necessary to monitor either a 72 plot (and lose some details) or three score plots (e.g. Eg,
f; and E4 VS. il ). And as shown in an industrial data example in Section 6, some important
process understanding that can be gained from a two-component model, is very much
lost for models with more than two components.

In a recent work (Ergon, 2003) it has been shown that for a scalar response variable,
all PLSR/PCR models can be reduced to an equivalent model with two components only
(2PLS), while at the same time the estimator b is unchanged. The 2PLS factorization is

X=tw +6LW + E=TW'+E, )

i.e. all y-relevant variation in X is captured in one score plot (t; vs. £)) and one loading
plot (W, vs. W1). An attractive feature with this factorization is also that t, is orthogonal
to both y and ¥ = Xb. Note that the first component in (2) is the same as in (1). Also
note that the residual E in (2) generally is different from E in (1), because more
y-orthogonal variation in X may be captured in E.

The main focus of the present paper is on the utilization of 2PLS realizations in
process monitoring applications based on correspondence between scores and loadings,
and use of combined score-loading plots (biplots) (Skagerberg & Sundin, 1993; Ergon
2002). Such plots will make it possible for a process operator monitoring a single plot
to detect a deviation from normal plant operation, to evaluate the importance of this with
regard to the response y, and to get some indications on which process variables that may
cause the deviation. The standard techniques for use of SPE, T2 and contribution plots
are applicable also for a 2PLS model, although they may to some extent be less
necessary. With two components only, a statistical 72 upper limit may be shown as a
confidence ellipse in the score plot, while the contributions from the different variables
may be shown directly in the score-loading plot (see Section 5 for theory and Section
6 for an industrial data example).

Some background in PCR and PLSR modeling is given in Section 2, followed by a
short presentation of the 2PLS algorithm in Section 3. The score-loading correspondence
is discussed in Section 4, followed by a summary of multivariate monitoring statistics
and variable contribution analyses in Section 5, the industrial data example in Section 6,
and conclusions in Section 7.

2. PCR and PLSR modeling

Multivariate calibration using PCR/PLSR directly or implicitly assumes a latent
variables (LV) model

y=TQ"+f (3)
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X =TLT+E, @

which assummg L'L=1I and using the LS solutions Q7= (T"T) 'T"y and T = XL
results in § =T(T™) "7y and thus the estimator

bL\.r = L(LTXTXL) a ILTXT}'. (5}

The PCR and PLSR algorithms use different factorizations of X as summarized below,
and thus also different factorizations of y. PCR is based on the PCA factorization or
singular value decomposition

- 0 vT
X=USV'=[U, Uz] 0 s, =UiSiV] + Epca (6)
= TocaPhca + Epca = t"°‘(*"°‘)f+ BB + ... + EABEAY + Bpea,

where Tpca = U;S; € RY*# and Ppca =V, € RP*4, and where both Tpca and Ppca are
orthogonal, with f’pcA also orthonormal. The estimator is determined by (5), with L
replaced by Ppca. The number of components to include is based on either cross-vali-
dation or independent test set validation (Martens & Nas, 1989). In the established
terminology the columns of Tpca are called score vectors, where the elements are scores,
while the columns of i:"pc,a. are called loading vectors, where the elements are loadings.

The basic idea in PLSR is that the covariance between X and y should be maximized.
The original so-called orthogonalized PLSR algorithm of Wold is based on a factoriza-
tion with orthogonal score vectors and non-orthogonal loading vectors (Martens & Nes,
1989; Ergon, 2003). In the present context it is, however, more relevant to refer to the
Martens factorization (Martens & Nzs, 1989)

X={W +6W + .+ LW +BE=TW +E, (7)

where the loading weight matrix W=[% W ... Walis orthonormal, while the score
matrix T =XW is non- orthogonal. The common estimator in the Wold and Martens
PLSR algorithms is (Helland, 1988)

b = WOW'XXW) 'WTXTy. (8)

3. Compression into two PLS components
3.1. Basic insight

. The basic insight behind the 2PLS algorithm is illustrated in Figure 1. The estimator
b is found in the space spanned by the loading weight vectors in W = [W; W, ... Wal,
i.e. it is a linear combination of these vectors. It is, however, also found in the plane
defined by W; and a vector W orthogonal to W;, which is a linear combination of the
vectors Wy, Wi, ..., Wa. The matrix W = [W, W] is thus the loading weight matrix in
a two-component PLS solution (2PLS) giving exactly the same estimator b as the
original solution using any number A components (Ergon, 2003).

What matters in the original PLS model is not the matrix W as such, but the space
spanned by Wi, W, ... W, (Helland, 1988), and in the 2PLS model it is the plane spanned
by W and W; that is essential. The reason for keeping W, is discussed in Ergon (2003).
Note that all samples in X (row vectors) in the original PLS model are projected onto
the space spanned by W, W3, ..., Wa. They may thus be further projected onto the plane
spanned by W and W,, and form a single score plot containing all y-relevant information.
If for some reason e.g. W, is more informative than W, a plane through W, and b may
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Figure 1. Dllustration of basic insight behind the 2PLS factorization, assuming A =3 original
components. The PLSR estimator b is found in the space spanned by W;, W, and Ws, but also in the
shadowed plane spanned by W, and Wa.

be a better alternative. It will in any case result in a 2PLS model that gives the estimator
b, as will in fact all planes through b that are at the same time subspaces of the column
space of W.

3.2. Algorithm

As illustrated in Figure 1, the central problem is to find a second vector that together
with W, spans the shadowed plane that includes b. One way of doing this follows from
the estimator formulation (8), in that (W"X'XW) '"W'X"y =[4, @, ... dal”, and thus

Ab =ﬁ|\f\'l + [\'""2 ﬁ’g - ﬁ",.q.][ﬁz (53 was &A]T=§1W| +52ﬁ2. (9)
We summarize the 2PLS compression and its properties in Theorem 1 below (see Ergon
(2003) for proof and Matlab code). The second vector spanning the shadowed plane in

Figure 1 is not necessarily W,, but it is convenient to make use of the orthogonal vectors
W) and W, in the theorem and its proof.

Theorem 1 The original PLSR estimator (8) can be written as
b = W(W'X'XW) 'W'XTy, (10)
where W =[#, W;] is the new orthonormal loading (weight) matrix. The correspond-
ing factorization of X is
X=TW' +E=4# + LW +E, an
and W, is
[ﬁ"; ﬁ""; . \%]lﬁz aAj d‘q]T
=—° P (12)
“[Wz W3 ... Walld2 as ... ﬁg]ql
Here [a; dy ... da]" is extracted from [di @ ... aal” = (WX'XW) ~ "W'XTy, while
t; = XW, is the same as in the factorization (7), and t; = XW,. Furthermore, t; is
orthogonal to both y and § =Xb, ie. y't,=0 and "t =0.

W

|
Note that this theorem is valid for any number A of original PLS components. Also
note that the residual E may be different from the original residual E, i.e. some extra

y-orthogonal structured variation in X may be captured in E (see theoretical example in
Subsection 3.3 below).
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Remark 1 Since W in the estimator (8) may be replaced by WM, where M is any
invertible transformation matrix, it follows from Theorem 1 that any plane containing b
that is also a subspace of the column space of W may be used instead of the shadowed
plane in Figure 1. The theorem may thus be given a more general formulation.

3.3. Theoretical example

Assume an ordinary non-orthogonalized PLS factorization according to (7) with three
components, i.e.

X =W + %) + 6,0 + E, (13)

and the corresponding score matrix T=[ & GI=X[W% W W;]. Also assume a
new sample Zy,, such that foew, = Ze,W; = 0. The predicted response is then

a
§ =25 WOW'X'XW) " 'WXTy =27 [W, W, cm[az]

fig)
= AyTpey W2 + 3L, W3 = Golpew 2 + Galrew 3. (14

From this follows that it is possible to have ScOres fuew 2 # 0 and fnews # 0, and at the
same time have y=10.

After the compression into two components according to Theorem 1, the factoriza-
tion is

X =4W + LW +E, (15)
and the corresponding score matrix T=1[t, ©]=X[W, W], while the predicted
response with zl W, =0 as above is

-~

. o 5 . s
¥ = Zpeu[ Wi Wz][é_l] = Gyl W2 = Golnew2. (16)
2

If now ¥ =0 we must also have fwg:O, i.e. we will not see any deviation from the
origin in the t, vs. f; score plot. This also illustrates how some y-orthogonal variation
in X may be captured in K.

Note, however, that it is generally possible to have deviations from the origin in the
t vs. f; score plot also when y =0. The general expression for § is

. |éa AT om =T - .
P = Zheo [ Wy Wz][&l] = Q12 W1 + Gy W2 = @i Enewt + Galpew2, 17)
2

which may give § =0 also when fpews # 0 and few2 # 0. In such cases, however, it will
be possible to see that =0 directly in the score plot, as demonstrated in the industrial
data example in Section 6.

4. Score-loading correspondence

Score-loading correspondence for process monitoring is discussed in Ergon (2002),
and a short summary only is given here. A convenient starting point is then the
PCA/SVD (6), where the number of components to include is both data and application
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dependent. The essential fact in the present context is that both Trea and Ppea are
orthogonal, with Ppca also orthonormal, resulting in the LS estimate

Troa= [0 T GBI #P A =Xber  (9)

Assuming the same covariance matrix as for the row vectors in the modeling data matrix
X, a new fOW VecIor z..,, thus results in

(Bhe)T = ZheuPrea- (19)
If in addition z, =[0 ... 0 Xgew; O ... 0] we obtain
(APCA)T
AP =10 ... 0 Xpew; O ... 0] (""CA = Xpews (P ) (20)
ﬁP-CA)T
L p =

This means that the scores 2568 = [faew.t fnew2 --- Inewal’ correspond to the loadings
" =1pi1 Pz --- Pial” of the variable j in X that causes the score to deviate from
zcro with X,w; as a scaling coefficient. When several variables in combination causes
Zrew the scores correspond to weighted sums of loadings.

For the 2PLS factorization (11) it follows that T =XW, where W just as P in PCA
is orthonormal, and the score-loading correspondence requirements are thus fulfilled.
When one variable only in z;w is different from zero, the new score in the single 2PLS
score plot will thus be found in exactly the same direction as the corresponding loading
in the single 2PLS loading plot (see industrial data example in Section 6). Note that
b=Wa, @) justas Znew = W[tw 1 Inew2]” can be plotted in the score plot, while the
loadings [&; @] in §= Tla, @]" just as the loadings [W;1 Wj2] in a variable vector
x;="T[W;1 W;z]" can be plotted in thc loading plot. From this follows that b and §
(based on the modeling data) in a score-loading biplot will have identical positions.

Finally note that the PLS factorization according to Wold, with orthogonal score
vectors, does not fulfill the score-loading correspondence requirements (although the
deviation may in some cases be small) (Ergon, 2002).

5. Monitoring statistics and contribution plots for projection methods
5.1. Squared prediction error

Process and product monitoring based on projection methods like PLS and 2PLS,
rely on an in-control model developed by use of a reference or modeling data set, which
defines an A-dimensional projection space. It is thercfore first of all necessary to check
if the perpendicular distance of a new sample z..,, from this projection space is within
acceptable limits. As a measure of this distance it is common to use the squared
prediction error

SPE,_, = 2 (inewy — foewg) - @1

i=1
The SPE will detect the occurrence of a totally new type of process development. This
is also applicable when using the 2PLS data compression, the only special thing being
that the projection space is the plane illustrated in Figure 1. If statistical limits for such
a detection of special events are of interest, £yw, in (21) may be computed by use of a
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PCA model. Upper control limits can then be computed using approximate results for the
distribution of quadratic forms, often referred to as Q-statistic (MacGregor & Kourti,
1995; Chiang et al., 2001; Kourti & MacGregor, 1996).

5.2. Hotelling’s T? statistic

T plots for many PLS components Assuming that the SPE for a new sample z’,,
is acceptable, a meaningful comparison with the reference data set is possible. Further
assuming normal distributions, this may be done using the Hotelling’s 72 statistic
(Johnson & Wichern, 1992) based on the estimated score covariance matrix, which with
centered data and use of the PLS factorization (7) is

1 .
s=—— 1. (22)

With centered data the T7 statistic for a new observation z’,,, is
T2 = %108 Rpew, (23)

where fre, = ZyeoW. i€. [frewt  few2 - Trewdl = Dnewt  Zoew2 - Jnewpl W. The up-
per control limit for 72 based on N past multivariate data and A PLS components is
77 (N*— DA

LT NV -4)

where Fy(A, N—A) is the upper 100 % critical point of the F distribution with
(A, N — A) degrees of freedom (Chiang et al., 2001; Kourti & MacGregor, 1996). For a

sequence of new samples, the 77 value may thus be plotted and compared with T3y,
and a fault alarm signal given according to some more or less conservative rule.

FoA, N —A), (24)

Confidence ellipse for two PLS components Since the 2PLS algorithm results in two
components only, the T3¢ limit may be replaced by a confidence ellipse in a score plot,
based on the eigenvalues (direction of axes) and eigenvectors (length of axes) of S and
using the same F distribution limit as in (24) (Johnson & Wichern, 1992). Such a
confidence ellipse may also be included in the score-loading biplot discussed in Section
4, as shown in the industrial data example in Section 6. In addition to the information
of a violated upper limit, such a biplot also gives information on which variables or
group of variables that are involved, as discussed below.

5.3. Contribution plots

SPE contribution plots When the SPE or 77 plots indicate that the process is
operating outside the normal region, it is of interest to see which variables that contribute
the most to this. For a specific sample of interest this can be done by plotting variable
contribution plots. The SPE contribution plot is simply a plot (often a bar plot) showing
how the different variables contribute to the sum (21) for a specific observation.

Contribution plots on the scores The contribution plots on a score fuew could in the
same way show the variable contributions to

P
fnewa = 2, Xnew,Wja- (25)
i=1
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Since the different scores have different influence on T? according to (23), and in order
to minimize ambiguity, it is common practice (Chiang et al., 2001; Kourti & MacGregor,
1996) to use the following procedure:

1. Compute

cont =" xpe (26)
a
where 52 is the score vector variance based on the modeling data.
2. Set conts” =0 if it is negative, i.e. if the sign of the contribution Xpewija 18
opposite to the sign of the score Frow.a-
3. Compute and plot

A
CONT}™ = D) contye (27)

a=1

for j=1, 2,..., p.

Alternative 2PLS contribution plot on the scores With one score plot only, an
alternative approach is to plot the weighted loadings in

Xnew W11 Xnew,1W12
Xnew2W21  Xpew2W22

Wweig‘hted= — [y weighted ﬁrlzwighled] (28)

XnewpWpl  XnewpWp,2

directly in the score-loading biplot. The original loadings [W;; ;2] will after multipli-
cation by Xpew; be moved radially, indicating the strength by which they attract (positive
Xnew) OF repel (negative Xy ;) the scores. These weighted loadings will thus indicate how
the contributions from different variables vary with time, as illustrated in the industrial
data example in Section 6.

6. Industrial data example

The following example uses multivariate regression data from a mineral processing
plant (Hoskuldsson, 1996) (the ‘cleaner’ data, originally published in Hodouin et al.,
(1993)). The problem considered here is to predict a given quality ypews from twelve
known process variables z;‘;w= [Xnew,1 Xnew2 --- Xnew,12]. For the purpose of finding an
initial PLS factorization, samples 1 to 120 in the data sets xce and yce (Hoskuldsson,
1996) were used for modeling, while samples 151 to 240 in the same data sets were used
for validation. The data were centered and scaled to unit variance (autoscaled), and the
result was a PLSR model with A =6 components, resulting in a validation root mean
square error RMSEP=0.15 (as compared with RMSEP=1 for A=0). The PLS
factorization of the autoscaled data matrix X™*""8 was finally compressed into a 2PLS
factorization (11), resulting in the loading matrix W,

6.1. Score-loading plot for process understanding

To illustrate the use of 2PLS for process understanding, new X data were introduced
as X“'=1,, i.e.
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Figure 2. Score-loading correspondence plot with loadings from loading matrix W (o-marked) and

scores from test matrix X** according to (29) { X -marked), together with the estimator b (marked

with arrow). Parallel dashed lines indicate constant predictions §. Note the total score-loading

correspondence, and the nearly y-orthogonal deviations for scores no. 4, 5 and 6 (see comparison with
ordinary PLS score plots below).

[1 0 0 0]
01 ... 00
X®t=: : -~ i | (29)
00 ... 10
0 0 ... 0 1

The 2PLS loadings in W, [W1  Wjalj=12 .. 12, and scores [fiy  fali™ 1, 1= (@)W
were then plotted together with the estimator b according to (10) (see Figure 2).
Figure 2 also shows lines for constant § based on (using (10) with XW="T)

- o ~ - - _|a “ -
$i=ltin 10T " Ty = [, 3‘1.2][_]] = dity1 + @tip, (30)

and an axis for ¥ and b perpendicular to those lines. Note that § (based on the modeling
data) in the loading plot and b in the score plot have the same position in the biplot. For
an operator support application, the entire plot can easily be rotated such that the § axis
becomes horizontal pointing to the right.

The plot in Figure 2 can be used to gain process understanding. As can be seen the
estimator b and thus the predicted response j is strongly correlated with variable 3 and
to some extent also with variables 1 and 2, while the other variables have little to do with
¥ (as indicated by the o-marked loadings close to the line for y=0). This can also be
seen by inspection of
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PLS score plot PLS score plot

-0.8 : -1 : '
-0.5 0 05 1 -0.5 0 0.5 1
t i1

Figure3. Score plots for test matrix X'** and projected estimator b using ordinary PLS factorization.
Note that although the scoreg 4, 5 and 6 are nearly y-orthogonal, i.e. located in a plane perpendicular
to b, this cannot be seen from these projections.
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but Figure 2 also gives information on y-orthogonal properties (variable 4 gives larger
y-orthogonal score movements than variable 5 etc.). Given sufficient process knowledge
also the y-orthogonal scores may be informative.

For a comparison score plots for the ordinary PLS factorization are shown in Figure
3, where projections of b are also included. Note that e.g. score no. 5 shows considerable
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Figure 4. Squared prediction error (SPE) for modeling data (top), the corresponding values for §
and y (middle), and SPE for the new validation data (bottom).

deviations from the origin, although the deviation for this score in Figure 2 is very small.
This illustrates that some y-orthogonal variations in X that in the ordinary PLS
factorization are part of X, in the 2PLS factorization are captured in K. Also note that
it cannot be seen in Figure 3 that the scores no. 4, 5 and 6 are nearly y-orthogonal, i.e.
that the estimator b is perpendicular to a plane through these scores. Finally note that the
fi1 scores are the same in both Figure 2 and Figure 3, as follows from the 2PLS
factorization (11) as compared with the PLS factorization ().

6.2. Plots for process monitoring

As part of a process monitoring system, it is necessary to evaluate the SPE value
according to (21), based on X = TW according to (11). As a basis for comparison, we
may first analyze the modeling data by plotting SPE (Figure 4, top) and both y and ¥
(Figure 4, middle). The predictions are quite good also for samples with an SPE peak,
ie. the peaks do not indicate very special events. We then plot SPE for the new
validation data (Figure 4, bottom), and conclude that these values are in no way extreme,
i.e. not located further away from the 2PLS projection plane than for the modeling data.
We can thus draw meaningful conclusions regarding the new samples from the
score-loading plot.

After appropriate scaling and definition of the normal operating region based on
historical data, the plot in Figure 2 may also be used for process monitoring purposes.
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2PL8 score-loading plot with confidence ellipse

5 | ~ LI ) hl 1 N l\\o

0
i

Figure 5. Score-loading plot with new scores (X -marked) and fixed loadings from the modeling
data with scaling constant 7 (o-marked). The ellipse shows T according to (24) for o= 0.01.

The last few of the new scores at each time instant may then be shown, indicating how
the process conditions are developing, while older scores must fade away in order to give
room for new information. A confidence ellipse based on the modeling data and
corresponding to the T2, limit (24) may also be included, as shown in Figure 5.

In order to give as clear a picture as possible the o-marked loadings based on the
modeling data are here plotted using a2 common scaling constant 7, as compared to
Figure 2. The loadings will in any case indicate the direction and relative strength of the
variable attractions on the scores. A large deviation from the origin thus not only signals
a special plant operation situation, but the direction also indicates which regressor
variable or variables that cause the deviation. It is for example rather obvious that
observation 209 outside of the normal operating region is very much influenced by an
especially high positive value of variable 3. The deviations of samples 191, 201 and 210
may more clearly be caused by several variables. All of this will be clarified by use of
a weighted loading plot, as shown in Figure 6 below. Note that sample 191 has the
maximal SPE value in Figure 4, but that the 2PLS projection is well within the Tta
ellipse.

In order to clarify the information contained in the score-loading plot in Figure 5, the
alternative 2PLS contribution plot according to (28) utilizing weighted loadings may be
used. as shown in Figure 6 for four samples. This shows that
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Figure 6. Score-loading plots with scores ( X -marked) and weighted loadings (solid vector lines)
according to (28). Note that the score at each sample is the exact sum of the weighted loadings (the
most influential ones are numbered).

e the deviation of sample 201 perpendicular to the § axis (i.e. $~0) is mainly
caused by a high positive value of variable 6, and not a high positive value
of variable 7 or a high negative value of variable 4, as may be concluded from
Figure 5

e for sample 202 all variables have small values, keeping the score close to the
origin

* the deviation of sample 209 in the direction of the § axis (i.e. a high positive value
of ¥) is mainly caused by a high positive value of variable 3, although variable 4
also has a high negative value, and some other variables are also involved

* the deviation of sample 210 is clearly caused by a high positive value of variable
3 and a high negative value of variable 4.

From a single plot with process scores and weighted loadings it will thus be possible

¢ Lo see a deviation from normal process operation, and the eventual violation of the
upper control limit 7.

® to see whether and to which degree the deviation gives a change in predicted
response j

¢ to get some information on which variables are causing the deviation, as well as
sign and magnitude.
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Figure 7. Contribution plots according to (27).

The corresponding traditional contribution plots according to (27) are shown in
Figure 7. These plots give no new information, at least not when the number of variables
is as low as in this example, and it is in fact obscured that variable 4 influences the
samples 209 and 210 by having a high negative value. This is caused by both the scaling
factor

frewa
g

in (26), and that negative contributions are set equal to zero.

7. Conclusions

Background theory on PLS modeling, compression into two-component PLS (2PLS)
realizations, score-loading correspondence, monitoring statistics and contribution plots is
presented. The 2PLS data compression makes it possible to construct a single dynamic
and informative score-loading biplot, utilizing score-loading correspondence, as illus-
trated in an example using mineral processing plant data (Figure 6).

One potential use of this is to gain understanding of how and to which extent
different process variables affect a specific response variable. When used in process
monitoring the biplot will make it possible to see a deviation from normal process
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operation and when the T{c, upper control limit is violated, to sec whether and to which
degree such a deviation gives a change in the predicted response, and to judge which
process variables are contributing to the deviation. In the same biplot it is also possible
to see the sign and magnitude of the variables that contribute to a given deviation.
Another result of the 2PLS data compression is that more of the response-orthogonal
variations in the process data are captured in the residuals, and thus a more response-
relevant model is obtained.

Further research will investigate fault diagnosis based on fault signatures in the
score-loading biplot. It might be that some specific process faults will give scores that
result in a specific trace or pattern, such that the underlying problem can be revealed at
a glance.
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