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Development of an in vivo method for determining material properties
of passive myocardium*
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Calculation of mechanical stresses and strains in the left ventricular (LV) myo-
cardium by the finite element (FE) method relies on adequate knowledge of the
material properties of myocardial tissue. In this paper we present a model-based
estimation procedure to characterize the stress-strain relationship in passive LV
myocardium. A 3D FE model of the LV myocardium was used, which included
morphological fiber and sheet structure and a nonlinear orthotropic constitutive
law with different stiffness in the fiber, sheet and sheet-normal directions. The
estimation method was based on measured wall strains. We analyzed the method’s
ability to estimate the material parameters by generating a set of synthetic strain
data by simulating the LV inflation phase with known material parameters. In this
way we were able to verify the correctness of the solution and to analyze the
effects of measurement and model error on the solution accuracy and stability. A
sensitivity analysis was performed to investigate the observability of the material
parameters and to determine which parameters to estimate. The results showed a
high degree of coupling between the parameters governing the stiffness in each
direction. Thus, only one parameter in each of the three directions was estimated.,
For the tested magnitudes of added noise and introduced model errors, the
resulting estimated stress-strain characteristics in the fiber and sheet directions
converged with good accuracy to the known relationship. The sheet-normal stress-
strain relationship had a higher degree of uncertainty as more noise was added
and model error was introduced.

1. Introduction

Finite element based continuum models of the heart, incorporating a detailed
description of myocardial structure, are now frequently used to calculate stress and
strain distributions. The major limitation of the predictive accuracy of these models
is uncertainties about the best functional form of the constitutive law and the lack
of knowledge of the specific law parameters.

In vitro stress-strain testing of myocardial tissue has been used to determine
material parameters in the constitutive law (Nielsen ez al., 1991; Dokos et al., 2000,
2002). The results from in vitro tests, however, may be questionable as the tissue is
disrupted and may be damaged. From human subjects it is not feasible to obtain
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tissue samples. Moulton et al. (1995, 1996) developed an in vivo method for determin-
ing material properties by fitting a 2D FE model to strain measurements from
magnetic resonance imaging (MRI) tagging. They were able to estimate the two
material parameters of an isotropic, nonlinear, small deformation 2D FE model.

Detailed investigations of the myocardial structure (LeGrice ef al., 1997; Smaill
and Hunter, 1991) have revealed that the myocardial fibers are arranged in layers or
sheets. Based on in vitro biaxial stress-strain experiments (Nielsen et al., 1991), Hunter
(1995) proposed an orthotropic ‘pole-zero’ constitutive law describing the different
stress-strain relationships in the fiber, sheet and sheet-normal directions. A 3D FE
model of the LV myocardium that includes a description of the morphological fiber
and sheet structures and uses the pole-zero constitutive law based on finite deformation
theory will give more realistic deformation patterns than the model of Moulton et al.
(1995, 1996). However, the ‘pole-zero’ constitutive law contains 18 material parameters
but some are coupled via a micro-structural model (Nash and Hunter, 2001). A para-
meter estimation technique depends on the observability of the model parameters. Ifa
perturbation of one parameter causes a similar model response to the perturbation of
another parameter, then there might be poor observability, which makes the parameter
estimation difficult. Stevens ez al. (2003) presented a sensitivity analysis of the material
parameters that may be used to assess the observability.

The aims of this study were (1) to present a method for estimation of passive
myocardial material parameters using the 3D FE model of Costa et al. (1996) and
Nash and Hunter (2001), which is based on finite deformation theory and includes
the myocardial fiber and sheet orientation and an orthotropic constitutive law and
(2) to investigate the feasibility of such a method by performing an observability
analysis of the model parameters and checking the solution accuracy and stability
with respect to introduced measurement and model error.

The final goal of a material estimation procedure like this is to combine the 3D
FE model with strain measurements from for example MRI tagging. However, to
investigate the feasibility of the method it is not necessary to include real strain
measurements from MRI tagging. It is better to generate a synthetic test data set
from a simulated inflation of the 3D FE model with known material parameters. By
applying the material estimation procedure on the synthetic test data we can verify
the correctness of the solution, investigate estimation stability and assess the effects
of measurement and model errors. For the generation of the test data, the geometry
of the FE model should be based on physiological measurements of the inner and
outer surfaces of the heart. In this study the inner and outer surfaces were measured
with 3D ultrasound.

Methods

Measuremenis

3D ultrasound measurements from four open-chest adult mongrel dogs were
used to generate the test data. The study was approved by the National Animal
Experimentation Board. Simultaneous measurements of the LV geometry and blood
pressure were obtained. The pressure was measured using a 5F micromanometer-
tipped catheter (model MPC-500, Millar Instruments, Houston, TX, USA) positioned
in the LV. A Vivid FiVe ultrasound scanner (GE Vingmed Ultrasound) with a 3.5-
MHz probe was used for the imaging. This system enables 3D/4D data acquisition
based on a collection of 2D images. The probe is placed in a rotation adapter that
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rotates the probe 180° around the central axis of the imaging plane resulting in a
conical data set. Apical 2D images were obtained over one heart cycle from 15 scan-
planes distributed over the 180° rotation. The image file was later imported to a
software program, EchoPac-3D (GE Vingmed Ultrasound), for post-processing. In
this program contours were manually drawn around the endocardium and epicardium
for all 15 scan-planes at the time of minimum LV pressure, which approximately
corresponds to the beginning of the diastases.

The Finite Element method

An initial finite element mesh was fitted to the measured geometry as described in
Hunter et al. (1992) using the prolate spheroidal coordinate system shown in Figure 1.

Investigations of the myocardial structure (LeGrice er al., 1997; Smaill and
Hunter, 1991) have revealed that the myocardial fibers are arranged in layers or
sheets with three distinct material axes: one along the fiber direction, one orthogonal
to the fiber direction but in the sheet and one normal to the sheet. Following LeGrice
et al. (2001); the fiber angle was set to vary linearly from 85° at the endocardial
surface to —60° at the epicardial surface. For the LV free-wall the sheet angle was set
to vary lincarly from —45° at the endocardial surface to +45° at the epicardial
surface with respect to the radial coordinate. For the septum the sheet angle was set
to vary linearly from +45° at the LV side to —45° on the RV side. The imbrication
angle (the out-of-plane angle) of the fibers was set to zero.

In vitro biaxial stress-strain experiments on myocardial tissue samples have shown
that the stress-strain behavior along the fiber, sheet and sheet-normal directions is

v
X

Figure 1. Prolate spheroidal coordinates: 6—circumferential, y—longitudinal, J—transmural,
and focus f.
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quite different (Smaill and Hunter, 1991). On the basis of these experiments Hunter
(1995) proposed a strain energy function called the ‘pole-zero” law, equation (1), to
describe the stress-strain relationship in the myocardium.
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In equation (1) index 1 refers to the fiber direction, index 2 refers to the sheet
direction and index 3 refers to the sheet-normal direction. e;; are the covariant
components of Green’s strain tensor referred to these axes. (Note that these are
physical components of strain because they are referred at each point to normalized
orthogonal rectangular coordinates.) Indexes 11, 22 and 33 refer to longitudinal
strains in the respective directions. The shear terms have indexes 12, 13 and 23.
There are three different types of parameters in the constitutive equation: a; are the
poles or the limiting strains, b; are related to the curvature of the uniaxial stress-
strain relationships and k; are the relative weights of each term to the total strain
energy. The components of the 2nd Piola-Kirchhoff stress tensor are derived from
the strain energy function in equation (2) for the assumed incompressible material.
p is the hydrostatic pressure and C is the Cauchy-Green deformation tensor.
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Note that, in the terminology of Nash and Hunter (2001), the C™* term is identical
to the contravariant components a” of the deformed metric tensor for the material
coordinates and the strain components are given by e;;=1(a;—4;;), where a;; and
A, are the covariant components of the deformed and undeformed metric tensors,
respectively.

Figure 2 shows the three axial stress-strain curves for the pole-zero law using the
parameters in Table 1. The stress-strain relationships in the three directions are clearly
different: it is stiffest in the fiber direction, less stiff in the sheet direction normal to the
fibers and it is relatively much softer in the direction normal to the sheets. For negative
strains, linear stress-strain relationships were used where the slopes for the negative
strains were equal to the slopes of the pole-zero law at zero strain.

Nash and Hunter (2001) showed that the shear poles in equation (1) were related
to the axial poles as shown in equation (3). The other 6 shear parameters where set
to constant values, leaving the 9 axial parameters to be estimated.

i=4, g;=min(a;,a,)

a;,= 28 , when i=5, a;=min(a,.a;) 3)

J1+24,

i=6, a;=min(a,,a;)

Residual strains (Omens and Fung, 1990) in the fiber direction were included in the
reference configuration using the method of Rodriguez et al. (1994). The residual
fiber strains varied linearly with a 5% stretch at the epicardium and a 2% contraction
at the endocardium (Costa et al., 1997). We assumed that the myocardium was in its
most stress-free state at the beginning of the diastasis. Thus, the geometric reference




Method for determining material properties of passive myocardium 241
axial tension fiber  sheet sheet—normal
{kpa)f axis axis axis

144

124

0.2

04

1 0.6 2

:: =  axial strain
a
1.0 3

Figure 2. Stress-strain relationships calculated from the pole-zero law (equation 1) using the
parameters in Table 1. The asymptotes on the strain axis are the poles (a,, a5, @,) representing
the elastic strain limits.

Table 1. Material parameters used in the model. The para-
meter values in this table are referred to as the ‘true parameter
values’ in the text.

Type Axial properties " Shear properties
Coefficients ~ k,  20kPa  k,  10kPa
k, 2.0 kPa ks 1.0 kPa
ks 2.0 kPa ke 1.0 kPa
Poles a, 0.523 a, 0.731
a, 0.681 as 0.731
a, 1.037 as 0.886
Curvatures b, 1.351 b, 2.0
b, 1.351 bs 2.0
by 0.398 b 2.0

configuration was fitted to the contours drawn in the ultrasound images at the
beginning of the diastasis.

During the inflation of the LV certain boundary conditions were imposed on the
FE mesh. The epicardial apex node was fixed in the pu and 6 directions. The base
and apical nodes where fixed in the p direction and the epicardial base nodes were
fixed in the @ direction.

Generation of test data

In this study we wanted to develop and check the feasibility of a method for
determining the stress-strain characteristic of passive myocardium. In order to
analyze the method’s ability to estimate the material parameters we generated a set
of synthetic strain data (in the following called the ‘test data’) by simulating the LV
inflation phase with known material parameters (called the ‘true parameters’) listed
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in Table 1 (Stevens et al., 2003). By applying the material estimation procedure on
the synthetic test data we can verify the solution, investigate estimation stability and
assess the effects of measurement and model errors.

To generate the test data we averaged the node coordinates of the geometric FE
models of the four dog hearts. With the boundary conditions and the residual strains
set, a passive inflation of the LV was simulated. This was done by applying the
measured pressure difference of 0.4 kPa (average of the four dogs) between beginning
of diastasis and end diastole on the endocardial element-surfaces of the LV. The
simulated inflation was initially done with the true parameters. Circumferential,
longitudinal and radial wall strains, or rather the extension ratios, 4;, were written
out and saved as the test data at 240 points around the LV (20 points circamferentially,
12 longitudinally and 1 radially), giving a total of N=720 extension ratio samples.
In a clinical study the generated test data would be replaced by measured strains
from, for example, MRI tagging.

Parameter estimation

The estimation procedure was started with an initial guess of the parameter
values different from the true parameter values. An iterative estimation process
updated the material parameters as a function of the difference between the calculated
extension ratios and the test data. When the solution had converged, the iteration
process was stopped. The result after the final iteration contained an estimate of the
material parameters. A block diagram of the algorithm is shown in Figure 3.

The material parameters, a, were estimated by minimizing the least-squares
difference between the extension ratios, /;, of the test data and the extension ratios,
i,-, of the model response:

| .
J (&}=§[Ad)—A]TIA(d) —A] @)
Model response: Test date: Parameters:
A A p “all*
Ay=| 2 A=]| 2 a=|b, [=] s 5
i I : :
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An improved estimate of a is obtained by adding an increment h that decreases the
error of the model response. The increment h is found as shown in equations (6) and
(7) by using the Gauss-Newton method to minimize the least-squares function in
equation (4).

h=(S78)"15T(A—A(®)) (6)
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Figure 3. Flow diagram of the material property estimation procedure.

In equation (7) N is the number of extension ratios and n is the number of parameters.
The matrix S was calculated at each iteration of the feedback loop in the block-
diagram in Figure 3. A finite difference method was used to calculate the column
vectors in S First, the simulation result using the parameters o, was entered in the
column vector A,. Then, parameter m in o, was increased by 10% while the other
parameters were kept the same as in the ongmal o,. The FE simulation was run
and the result written into column vector A,. Column m of S was calculated as
(A —Ao)Ac,,,. When all the columns in S were calculated, the parameter increment
h was found as shown in equation (6). The new parameters were found using
o+ =0y +h. If the components of the incremental vector h were below certain
thresholds the iteration process was stopped as the parameters were considered to
have converged.
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Sensitivity analysis

An analysis of the method’s ability to estimate the parameters was performed.
The matrix S expresses the model response sensitivity to variations of the material
parameters. If the variation of one parameter causes a similar response as the
variation of another, the estimation process might be ambiguous. This will result in
two almost dependent column vectors in § for the corresponding parameters. To
analyze the correlation between the various parameters’ influence on the model-
response each column in S was normalized creating the matrix s and hence the
sensitivity matrix s7s, in which a value close to +1 for element ¢; means the
parameter i and j are highly correlated. A high correlation may result in a non-
converging estimation problem. A solution is then to put one of two correlated
parameters to a constant value and estimate only one of them.

If a variation of one parameter makes little difference on the model response, it
will be difficult to estimate this parameter and the parameter’s influence on the
deformation may be minor. We compared the sensitivity of the model response to a
variation in each parameter by looking at the norm of the column vector (An—Ay).

It was considered unlikely that the estimation procedure could estimate all 9
parameters unambiguously. The above analysis helped us rule out several parameters
and left us with three parameters to estimate—one in each of the axial directions.
These three parameters were used in the further analysis of the method.

Several tests were performed to check the convergence of the estimates of the
three parameters (the other parameters were set to constant values). First the three
parameters were estimated while the others were set to their correct (known) values.
Then, the estimation was carried out while the other parameters were set to incorrect
values, making the material either stiffer or softer than the true material. To make
the material stiffer the constant ks and b’s were increased with 20% while the poles
were decreased by 20%. To make it softer the opposite changes were made. Note that
the value of the denominator is most often below 1 in the terms of equation (1).
Thus, an increase of the exponential b will increase the energy of the term and make
it stiffer. Figure 4a shows stress-strain curves in the fiber direction with different
parameter sets. The solid curve is calculated with the true parameter values (k, =2.0,
a,; =0.523, b, =1.351). The dashed curve is the initial stiffer guess where the para-
meters are changed by 20% (k, =2.4, a, =0.4184, b, =1.6212).

The next test was to add noise to the test data, 4,4+ w; and check the convergence
of the cstimated parameters. The convergence was examined for different levels of
noise w; (w; =random numbers uniformly distributed in the intervals): w;=0 (no
noise), w; €[—0.01, 0.01], w; €[—0.05, 0.05] and w; €[—0.1, 0.1].

The last test was both to add noise to the test data and to set the other parameters
to constant incorrect values and then run the estimation procedure.

Results

The analysis of the sensitivity matrices resulting from the estimation of all 9
parameters showed a high correlation between several of the parameters. There was
an obvious pattern to the correlation. The three parameters k;, @, and b, were highly
correlated with each other. So were k,, a, and b,. Table 2 shows an average of two
sensitivity matrices: one where the parameter increment was +10% to calculate the
S matrix and one where the increment was —10%. The model response had
substantially higher sensitivity to variations of the parameters in the fiber and sheet
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Table 2. Sensitivity matrix. Average result of two sensitivity matrices: one where the parameter

increment was + 10% and one with a —10% increment. The values are a reflection of the

correlation between two parameters, i.e. a value close to 1, means a change in one parameter
has a similar effect on the model output to a change of the other parameter.

ky ay by ky ay by ks as by
k, 1.00  -0.99 0.99 0.77 —087 0.78 0.32 —0.50 0.34
a, —0.99 .00 —-099 —0.75 08 —0.75 —032 053 -—-037
b, 099 099 1.00 0.77 —-0.86 0.77 031 =050 0.33
ks 0.77 =075 0.77 .00 -0.93 0.99 043 —0.19 0.49
a, —0.87 086 —-08 —093 1.00 —093 —-0.55 053 —-0.39
b, 078 —=0.75 0.77 099 —093 1.00 043 —-0.19 0.49
ks 032 -—-032 0.31 043 055 0.43 1.00  —0.59 0.27
as —0.50 0.53 —-050 —0.19 053 =019 —-0.59 1.00 0.01
by 034 —037 0.33 049 —0.39 0.49 0.27 0.01 1.00

Table 3. Sensitivity values. Average of two sensitivity values for each parameter: one where

the parameter increment was + 10% and one with a —10% increment. Each value is calculated

as the norm of the vector that contains the difference at each measurement point between the

model response with one perturbed parameter ( + 10%) and the model response simulated with
the true parameter values.

kl ay b] kg dg bg k3 a; bg
0.04406 0.07057 0.04785 0.04224 0.06361 0.02185 0.00918 0.01293 0.00013

directions than in the sheet-normal direction (Table 3). The highest sensitivities
within the three directions were for changes of the pole parameters (a,, a, and a,).

From the results of the sensitivity analysis it was decided to estimate only one
parameter in each direction. It was observed that a change of either the pole ‘@’ or
the curvature parameter ‘b’ could compensate better for wrong values in the two
other parameters than the coefficient parameter ‘k’ (see Figure 4a). From these results
we chose to estimate the poles a,, a, and a;.

The first trial was to estimate the three chosen parameters with the other constant
parameters set to their true values. Initially, the estimated parameters were set +20%
off their true values. With no added noise a, and a, had practically converged to
their true values after a single iteration. The same was the case for ay after two
iterations. Table 4 summarizes the estimation results after three iterations. Figure
5a—c shows the convergence of the parameter a,, a, and a,, respectively. Initial values
of +50% and +75% off their true values were tested. A change of 50% of the pole
value gives a substantial shift of its stress-strain curve. All 8 combinations of setting:
a,, a, and a; too low; a,, a, too low and a, too high; etc; to the last combination of
a,, a, and a; too high, were also tested. These tests converged as well, but needed
1-4 more iterations in some cases.

As shown in Figure 5 the fiber pole, a,, converged quickly and with just a small
offset (< +2.5% off) from its true value for all three levels of noise added to the test
data. The sheet pole parameters, a,, converged quickly and with small offset
(< +2.5% off) from its true value for the two lowest levels of noise, for the highest
noise level it ended up on a value 13% higher than its true value. The sheet-normal
pole, as, ended up with offsets of 6%, 18% and —33% for the three levels of noise
added, respectively.
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Figure 4. Stress-stretch relationship in fiber (a), sheet (b), and sheet-normal (c) directions.
The solid lines are the relationships using the true parameter values in table 1. The dashed
lines are the relationships when each of the parameters is changed to a 20% stiffer value. The
dotted lines are the result after the estimation procedure (a, =0.63, a,=0.84, a;=0.83). The
dash-dotted line in (a) is when k, (=1.06) is estimated instead of a,. The + line in (c) is the
result of @3 =3.29 in the case when the constant parameters are set 20% softer. Note that the
dotted line in (2) almost overlaps the solid line, while in (c) the dotted line almost overlaps the
dashed line. The abscissas are the ranges of fiber, sheet, and sheet-normal stretches. The
minimum and maximum stretch range for each of the three plots is obtained by finding the
minimum and maximum stretch of all the LV Gauss points in each respective direction of the
simulation result.

Table 4. Estimation results. The values after three iterations of the estimated poles a,, a,, and
a; with different ranges of noise and different values of the constant k and b parameters. For
the value marked with *, see text.

Too stiff X’s and b’s Too soft k’s and b's
Correct ks and bs 1.2 % kpyeger 1.2 % By yrue 0.8 % K; eyes 0.8 % By yae

noise 0 [10.01][10.05][10.10] 0 [£0.01][+0.05][+0.10] 0 [£0.01][£0.05)[£0.10]
a, 052 053 0353 052 063 064 064 065 041 041 040 0.37
a; 0.68 067 067 077 084 083 083 091 047 046 048 0.57
ay .04 110 122 070 083 086 092 061* 329 506 482 1.09

Figure 6 shows the convergence of the parameters when all the parameters were
changed 20% in the stiffer direction (dashed lines) and 20% in the softer direction
(dotted lines). The estimation results are summarized in Table 4. In general the
estimated values of ¢, and a, converged to values that compensated for the incorrect
constant parameter values of the k’s and b’s as can be seen in the case of initial too
stiff parameters in Figure 4. The sheet-normal pole, a5, converged to a paradoxical
value, i.e. it got even more stiff or soft when k; and b; were set too stiff or soft,
respectively. The convergence pattern for a; was also quite oscillatory. In the case of
too stiff k3 and b, and the highest noise level, the value of a; was —0.35 after the
first iteration. An automatic correction routine in the estimation code changed the
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Number of iterations

Figure 5. Convergence of parameters a,, @,, and a; in (a), (b), and (c), respectively. The plots

are normalized with respect to their true parameter values. The convergence of the parameters

with different levels of noise added to the measurements is shown with different line-markers;

[J: wy=0 (no noise), +: w;e[—0.01,0.01], O: w;e[—0.05,0.05], and *: w;e[—0.1,0.1]. The

initial values were offset by +20% (dashed lines) and —20% (dotted lines) from their true
parameter values.
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unphysiological value and replaced it with half its previous value (0.4148) as shown
in Figure 6. From then on the parameter converged.

The computation time needed for the estimation depended on the number of
estimated parameters. One forward FE simulation required approximately 80 seconds
using 15 CPUs on an Origin 3800L SGI machine with 600 MHz R 14k processors.
For every iteration in the estimation routine, one FE simulation was done for each
estimated parameter plus one with the updated parameter set, i.e. four FE simulations
for every iteration when three parameters were estimated.

Di :

The finite element method is a powerful tool to calculate strain and stress
distributions in loaded structures with a complex geometry, but for accurate stress
calculations the material properties need to be known. In this study we have presented
a model-based estimation procedure where we have applied the FE method to
characterize the stress-strain relationship in passive LV myocardium. We have used a
3D FE model of the LV myocardium that includes finite deformation theory,
morphological fiber and sheet structure and a non-linear orthotropic constitutive
law. The estimation procedure is based on measured strains (from for example tagged
MRI) where the measured strains are compared with the model-predicted strains
and the errors between the two are minimized in a least-squares sense by optimizing
the material parameters in the model.

The investigation of the parameter observability showed a high degree of coupling
between some of the parameters. The three parameters in the fiber direction were
highly correlated; so were the three parameters in the sheet direction as seen in Table
2. The correlation may be explained by the similar response of the stress-strain curve
when the parameters are varied. An increase in k and & both raise the curve and vice
versa. An increase of the pole parameter, a, lowers the stiffness curve and vice versa.
Thus, parameters k and b are positively correlated, while they are negatively correlated
with parameter a as seen in Table 2. The close relationship between the parameters
is shown in Figure 4. Figure 4a shows the true fiber stiffness curve (solid line), a
curve where k; and b, are increased by 20% and a, is decreased by 20% to make it
stiffer (dashed line). The dotted curve (practically overlapping the solid line) has the
same parameters as the stiffer one except a,, which has been estimated using the
parameter estimation method. The estimation resulted in a 20% higher value of 4,
compared to its true value. This increase of a, compensates for the increased stiffness
in k; and b, and the resulting stress-strain relationship is almost identical to the true
curve. The dash-dotted line shows the similar, but in this case parameter k, is
estimated instead of a,. The reduction of &, compensates for the increased stiffness
in by and a,. The compensation with the pole parameter a, gives a better fit to the
true curve than with the scaling parameter k,. Outside the range of strain plotted in
the figure the curves will diverge but we believe the strains are limited to approximately
this range in the phase between the beginning of diastasis and the end of diastole.
An important point here is that the pole-zero terms in the strain energy function (1)
are designed to represent the full range of elastic strain but the parameters are in
fact only being fitted for a limited portion of this range. This means that the curve is
over parameterized for these tests and that what is significant is the fitted stress-
strain curve, not the individual parameter values. Future tests over wider ranges of
strain are needed to better characterize the individual parameter values.
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Number of iterations

Figure 6. Convergence of parameters a;, a;, and a4 in (a), (b), and (c), respectively, when the

values of the constant parameters, the k’s and b, are set 20% too high/stiff (dashed lines) and
20% too low/soft (dotted lines). The plots are normalized with respect to their true

parameter values. The convergence of the parameters with different levels of noise added to the

measurements is shown with different line-markers; [7: w;=0 (no noise), +: w;e[—0.01,0.01},

O: w;€[—0.05,0.05], and *: w;e[—0.1,0.1]. Initially, the start values of the poles are increased

20% to make the material even softer (dashed lines) or decreased 20% to make it even stiffer

(dotted lines).
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The high degree of coupling between the parameters may make it difficult to
estimate all of them and get proper convergence. But from the results showing the
compensation of wrong values on two parameters by a change of the third parameter
value, we believe it may be possible to estimate the stress-strain characteristics by
estimating only one parameter in each direction. The choice falls on the estimation
of the pole parameters a,, a, and a; which yield closer fits to the stress-strain curves
and give the highest model response sensitivities in their respective directions. The
estimation of &, and a, showed good robustness. They converged well for all cases
with added noise and wrong values of the other parameters. There was more
uncertainty connected to the estimation result of the sheet-normal pole a,. With
correct values of the k and b parameters, a; was estimated with a fair degree of
accuracy. The error of the estimate was dependent on the degree of noise in the test
data. However, when the constant parameters were set too stiff, a; ended up with a
value that made the sheet-normal characteristic even stiffer and vice versa.

There may be different reasons for the poorer estimate of a;. The contribution to
the total strain energy from the sheet-normal term in equation (1) is the lowest of
the axial terms as can be seen in Figures 2 and 4. Thus the sensitivity of the model
output to a variation in a sheet-normal parameter would be lower than for a
parameter in the fiber or sheet direction, which is seen in Table 2. It may then be
that the fiber and sheet stiffness cause the limiting deformation and a variation of
the sheet-normal stiffness is so soft it makes little difference. In this study we have
not attempted to estimate any shear parameters. Dokos et al. (2002) conclude that
the contribution of shear stiffness to the passive LV deformation is relatively small,
so the sensitivity to a change in a shear parameter is likely to be small.

During diastole the LV is elongated and the wall thins. The fibers are stretched,
the myocardial sheets lie primarily in the transmural direction and are mostly
compressed, whereas there is mainly a stretch in the sheet-normal direction which is
primarily aligned with the base-apex direction. During systole the opposite occurs.
Since the sheet-pole governs the limiting stretch of the sheet it may seem more
appropriate to estimate this parameter during systole while the sheets are mostly
stretched.

In this study we wanted to investigate the feasibility of the estimation procedure
and we generated a set of test data from simulations instead of using real strain
measurements. This enabled us to evaluate the results against the known solution
and to analyze the effects of noise and model error. The results encourage the
validation of the method on real measurement data. In a clinical study measured
strains from for example tagged magnetic resonance images would replace the
generated test data. When the method is used on real measurements some errors may
arise that are not apparent in this study.

The boundary conditions on the FE model may be a source of error. The effects
of the pericardium, the intersections with the right ventricle (RV) and the RV pressure
on the septum are all ignored in the boundary conditions.

Another factor that may influence the results is that the LV is not necessarily in
an unloaded state, i.e. the LV pressure # 0 mmHg, at the beginning of diastasis. This
pressure will produce stresses and strains that arise in addition to the residual strains
and stresses in the unloaded reference state. A better approximation to the initially
reference configuration of our FE model may be to first inflate the model from 0
mmHg to the measured pressure at the beginning of diastasis. Then import the
calculated nodal stresses and strains back to the initial geometry and use this as the
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starting configuration of the estimation routine. This approximation assumes that
the strains caused by the non-zero pressure are small and that the stress-strain
relationship for these small strains is approximately linear.

We have assumed that the fiber and sheet orientations are the same in all hearts
and have not looked into the effects of possible variations of the fiber and sheet
orientations in different hearts. In regionally diseased hearts such as in the case of
ischemia and infarction there are likely to be regional variations of the stiffness of
the myocardium. This may even be the case in normal hearts (Novak et al. 1994).
We have assumed a homogenous set of material parameters throughout the LV
myocardium. A further development of the method may include regionally varying
material parameters. Extension of the method to include regions with different
material parameters may be done by adding a set of parameters per region to the
estimation routine. However, there is likely to be a limit to the number of observable
parameters.
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