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Nonlinear Time-Domain Strip Theory Formulation for Low-Speed
Manoeuvring and Station-Keeping
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This paper presents a computer effective nonlinear time-domain strip theory
formulation for dynamic positioning (DP) and low-speed manoeuvring. Strip
theory or 2D potential theory, where the ship is divided in 20 to 30 cross sections,
can be used to compute the potential coefficients (added mass and potential
damping) and the exciting wave loads (Froude-Krylov and diffraction forces).
Commercially available programs are ShipX (VERES) by Marintek (Fathi, 2004)
and SEAWAY byAmarcon (Journée &Adegeest, 2003), for instance. The proposed
method can easily be extended to utilize other strip theory formulations or 3-D
potential programs like WAMIT (2004).

The frequency dependent potential damping, which in classic theory results in
a convolution integral not suited for real-time simulation, is compactly represented
by using the state-space formulation of Kristiansen & Egeland (2003). The
separation of the vessel model into a low-frequency model (represented by zero-
frequency added mass and damping) and a wave-frequency model (represented
by motion transfer functions or RAOs), which is commonly used for simulation,
is hence made superfluous.

Transformations of motions and coefficients between different coordinate
systems and origins, i.e. data frame, hydrodynamic frame, body frame, inertial
frame etc., are put into the rigid framework of Fossen (1994, 2002). The kinematic
equations of motion are formulated in a compact nonlinear vector representation
and the classical kinematic assumption that the Euler angles are small is removed.
This is important for computation of accurate control forces at higher roll and
pitch angles. The hydrodynamic forces in the steadily translating hydrodynamic
reference frame (equilibrium axes) are, however, assumed to be linear. Recipes for
computation of retardation functions are presented and frequency dependent
viscous damping is included. Emphasis is placed on numerical computations and
representation of the data from VERES and SEAWAY in Matlab/Simulink. For
this purpose a Simulink add-in to the Marine Systems Simulator (MSS) at the
Norwegian University of Science and Technology has been developed (Fossen
et al., 2004).

1. Introduction

In 1949 Ursell published his famous paper on potential theory for determining
the hydrodynamic coefficients of semicircular cross sections, oscillating in deep water
in the frequency domain (Ursell, 1949). This was used as a rough estimation for zero
speed ship applications. Motivated by this Grim (1953), Tsai (1959, 1960, 1961),
Gerritsma (1960) and others used conformal mapping techniques like the Lewis
conformal mapping to transform ship-like cross sections to semicircles such that
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more realistic hull forms could be calculated. Exciting wave loads were computed
using undisturbed regular waves. Denis & Pierson (1953) published a superposition
method to describe the irregular waves assuming that the sea could be described as
a sum of many simple harmonic waves; each wave with its own frequency, amplitude,
direction and random phase lag. The responses of the ship at zero speed were
calculated for each of these individual harmonic waves and superposed.

The extension to forward speed was made available by Korvin-Kroukovsky &
Jacobs (1957), and which was further improved in the sixties. Later Frank (1967)
published a pulsating source theory to calculate the hydrodynamic coefficients of a
cross section of a ship in deep water directly, without using conformal mapping. Keil
(1974) published a theory for obtaining the potential coefficients in very shallow
water using Lewis conformal mappings. The S-T-F strip theory (Salvesen et al.,
1970), which accounts for forward speed as well as transom stern effects, is made
available through the program ShipX (VERES) (Fahti, 2004).

Since strip theory determines the hydrodynamic coefficients from potential theory
it is common to calculate the added resistance of a ship due to waves e.g. by using
the integrated pressure method by Boese (1970) or the radiated energy method
(Gerritsma & Beukelman, 1972). In roll it is common to use the viscous correction
by Ikeda et al. (1978) based on semi-empirical methods.

For zero speed 3-D potential theory can be used to compute the hydrodynamic
coefficients (WAMIT, 2004), while forward speed effects still are considered to be
difficult to solve. Consequently, the 2-D approach (strip theory) is still very favorable
for calculating the behavior of a ship at forward speed. For a more detailed discussion
on advantages and disadvantages when comparing 2-D with 3-D theories; see
Faltinsen & Svendsen (1990).

6. DOF Equations of Motion

2.1. Kinematics

In this section the 6 DOF equations of motion are derived using vectorial
mechanics with emphasis placed on keeping the kinematics nonlinear while linear
theory is assumed for hydrodynamic forces and moments. In this context it is
convenient to define the vectors without reference to a coordinate frame (coordinate
free vector). A vector v/ is defined by its magnitude and direction. The vector v/0 in
the point O decomposed in reference frame n is denoted as vn

0
, which is also referred

to as a coordinate vector.

2.1.1. Coordinate Systems Three orthogonal coordinate systems are needed to
described the motions in 6DOF; see Figures 1 and 2:

Ω North-East-Down frame (n-frame): The n-frame X
n
Y

n
Z

n
is assumed fixed on

the Earth surface with X
n
-axis pointing North, the Y

n
-axis pointing East, and

the Z
n
-axis down of the Earth tangent plane. The n-frame position pnó [n, e, d ]T

and Euler angles �ó [{, h,t]T are defined in terms of the vector (Fossen,
2002):

�ó [(pn)T,�T ]Tó [n, e, d,{, h,t]T (1)
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Figure 1. Definitions of coordinate origins: W (water line), G (centre of gravity), and O
(equations of motion). The h-frame is located in W and the b-frame is located in O. The
variables LCG, VCG, and T are outputs from VERES while LCO and VCO are user inputs.

Figure 2. Definitions of ship motions in the b-frame.

Ω Hydrodynamic frame (h-frame): The hydrodynamic forces and moments are
defined in a steadily translating hydrodynamic coordinate system X

h
Y

h
Z

h
moving

along the path of the ship with the constant speed U with respect to the n-
frame. For DP Uó0. The X

h
Y

h
-plane is parallel to the still water surface, and

the ship carries out oscillations around the moving frame X
h
Y

h
Z

h
. The Z

h
-axis

is positive downwards, the Y
h
-axis is positive towards starboard, and the X

h
-

axis is positive forwards. This is also referred to as the equilibrium axis system
(Bailey et al., 1998). The coordinate origin is denoted W while the h-frame
generalized position vector is:

�*ó [g*
1
, g*

2
, g*

3
, g*

4
, g*

5
, g*

6
]T (2)

Ω Body-fixed frame (b-frame): The b-frame X
b
Y

b
Z

b
is fixed to the hull, see Figure

2. The coordinate origin is denoted O and is located on the center line a
distance LCO relative to L

pp
/2 (positive backwards) and a distance VCO

relative to the baseline (positive upwards).The center of gravity G with respect
to O is located at rb

g
ó [x

g
, y

g
, z

g
]T while the h-frame originW with respect to O
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is located at rb
w
ó [x

w
, y

w
, z

w
]T. The X

b
-axis is positive toward the bow and the

X
h
-axis is parallel to the mean X

b
-axis, the Y

b
-axis is positive towards starboard,

and the Z
b
-axis is positive downward as shown in Figure 2. Consequently, the

body-fixed b-frame carries out oscillations around the steadily translating h-
frame. The b-frame linear velocities vb

o
ó [u, v,w]T in O and angular velocities

�b
bn
ó [p, q, r]T with respect to the n-frame are denoted as:

�ó [(vb
o
)T, (�b

bn
)T]Tó [u, v,w, p, q, r]T (3)

Hydrodynamic programs for strip theory define a local reference frame with axes
different from the h-frame. Consequently, the data sets from these programs must be
transformed to the h-frame by using rotation matrices.

2.1.2. Rotation Matrices The notation Rb
a
éSO(3) implies that the rotation matrix

Rb
a
between two frames a and b (from a to b) is an element in SO(3), that is the

special orthogonal group of order 3:

SO(3)ó{R
a
b DR

a
b éR3�3, R

a
b is orthogonal and det R

a
bó1} (4)

The group SO(3) is a subset of all orthogonal matrices of order 3, i.e. SO(3)�O(3)
where O(3) is defined as:

O(3)ó{R
a
b DR

a
b éR3�3, R

a
b(R

a
b)Tó(R

a
b)TR

a
bóI} (5)

Hence it follows that

(R
a
b)�1ó(R

a
b)TóR

b
a

A principal rotation a about the i-axis is denoted as R
i	� . The principal rotations

(one axis rotations) about the x, y, and z-axes are defined as (Fossen, 2002):

R
x	{
ó�

1 0 0

0 c{ ñs{
0 s{ c{ � , R

y	{
ó�

ch 0 sh
0 1 0

ñsh 0 ch� , R
z	 �ó�

ct ñst 0

st ct 0

0 0 1� (6)

where s·ósin(·) and c·ócos(·), and {, h, and t are the Euler angles.

2.1.3. Kinematic Equations of Motion The linear velocity v/w of W and the angular
velocity u/hn

of the h-frame with respect to the n-frame are given by:

v/wóv/oòu/bn
îr/w (7)

u/hn
óu/bn

(8)

where u/bn
is the angular velocity of the h-frame with respect to the n-frame, and r/w

is the vector from O to W. Decomposing these vectors into the b-frame gives:

v
w
bóv

o
bò�b

bn
îr

w
b (9)

�b
hn
ó�b

bn
(10)

The vector cross product î is defined in terms of the matrix S(rb
o
) éSS(3) (skew-

symmetric matrix of order 3) such that:

�b
bn
îr

w
bóñr

w
bî�b

bn
óñS(r

w
b )�b

bn
óS(r

w
b )T�b

bn
(11)
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where:

S(r
w
b )óñST(r

w
b )ó�

0 ñz
w

y
w

z
w

0 ñx
w

ñy
w

x
w

0 � (12)

Introducing the screw transformation:

H(r
w
b ):ó�

I
3�3

S(r
w
b )T

0
3�3

I
3�3

� (13)

we see that:

�
v
w
b

�b
hn
�óH(r

w
b )�

v
o
b

�b
bn
� (14)

Transformation from the b- to the h-frame: The transformation from the b-frame to
the h-frame is done in terms of the rotation matrix:

R
b
h(d�):óR

z	 ��Ry	 ��Rx	 �{ B
�� smallR

y	 ��Rx	 �{ (15)

where dt, dh, and d{ are oscillations of the b-frame with respect to the h-frame. This
is based on the assumption that the yaw angle oscillations dt with respect to the
mean heading angle g*

6
are small such that the rotation matrix in yaw is close to the

identity matrix. For many applications, the roll and pitch oscillations will be small,
such that:

R
b
h(d�)BI

3�3
(16)

From equation (14) it follows that:

�
R

h
b(d�) 0

3�3
0
3�3

R
h
b(d�)��

v
w
h

�h
hn
�óH(r

w
b )�

v
o
b

�b
bn
�

(17)

�
v
w
h

�h
hn
�ó�

R
b
h(d�) 0

3�3
0
3�3

R
b
h(d�)�H(r

w
b )�

v
o
b

�b
bn
�

where R
h
b(d�)óR

b
h(d�)�1. The velocity transformation between the h and b frames

then becomes:

�̇*óJ*(d�)� (18)

where J*(d�) éR6�6 is a generalized velocity transformation matrix:

J*(d�)ó�
R

b
h(d�) 0

3�3
0
3�3

R
b
h(d�)�H(r

w
b ) B�� smallH(r

w
b ) (19)

The force �b in the b-frame can be transformed to the force �h in the h-frame in a
similar manner by:

�hóJ*(d�)T�b (20)
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Transformation from the b- to the n-frame: The velocity transformation between the
b and n frames is:

v
o
nóR

b
n(�)v

o
b (21)

where the Euler angle rotation matrix (zyx-convention) between the n and b frame is
defined as the product of the three principal rotations:

R
b
n(�):óR

z	 �Ry	 �Rx	 {
(22)

Thus Rn
b
(�) éSO(3) becomes:

R
b
n(�)ó�

ctch ñstc{òctshs{ sts{òctc{sh
stch ctc{òs{shst ñcts{òshstc{
ñsh chs{ chc{ � (23)

The Euler rates satisfies:

�̇óT�(�)�b
bn

(24)

where T�(�) éR3�3 is the Euler angle attitude transformation matrix:

T(�)ó�
1 s{th c{th
0 c{ ñs{
0 s{/ch c{/ch� , hÖô90º (25)

Consequently:

�̇óJ(�)� (26)

where J(�) éR6�6 is the velocity transformation matrix:

J(�)ó�
R

b
n(�) 0

3�3
0
3�3

T�(�)� , hÖô90º (27)

2.1.4. Transformation of Hydrodynamic Data The hydrodynamic data is defined in
the program-specific data-frame with origin W (common to the h-frame), and must
be transformed to the h-frame axes by the following transformation matrix:

Tó�
Rh

data
0
3�3

0
3�3

Rh
data
� (28)

where Rh
data
éSO(3) is the rotation matrix between the data-frame and the h-frame

found by combining the principal rotations equation (6). Then, it follows that the
generalized rigid body inertia matrix Mdata

RB
, added inertia matrix Adata(u), damping

matrix Bdata(u), spring stiffness matrix Gdata, and forces �data can be rotated to the
h-frame axes (denoted by *) by:

M*
RB
óTMdata

RB
TT (29)

A*(u)óTAdata(u)TT (30)

B*(u)óTBdata(u)TT (31)

G*óTGdataTT (32)

�*óT�data (33)
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since T�TóT. This follows directly from the results presented in Section 2.1.3. Notice
that the principal rotations equation (6) for an angle n gives a diagonal Rh

data
and T

such that:

M*
RB
óMdata

RB
, A*(u)óAdata(u), B*(u)óBdata(u), G*óGdata (34)

�*óT�data (35)

since TTTóI
6�6

. This implies that the signs of the �data-components have to be
corrected while all model matrices are unchanged. For n/2 rotations this will not be
the case.

The rotation matrix Rh
data

between the data-frame and the h-frame coordinate
systems are defined below for two of the strip theory programs in commercial use:

ShipX (VERES) by Marintek: For VERES (Fathi, 2004) the Z-axis is positive
upwards and the X-axis is positive towards the stern. The program is based on the
S-T-F strip theory formulation Salvesen et al. (1970). Hence, the h-frame rotation
matrix becomes:

Rh
data
óR

y	 �ó�
ñ1 0 0

0 1 0

0 0 ñ1� � Tódiag{ñ1, 1,ñ1,ñ1, 1,ñ1} (36)

In VERES the longitudinal center of gravity LCG* is given relative AP (positive
forwards) when inputted to the program while the outputted LCG on the data files
is related to L

pp
/2 (positive backwards). The vertical center of gravity VCG is given

relative the baseline (positive upwards). Let T denote the water line for the actual
load condition relative to the baseline (positive upwards), see Figure 1. Hence:

r
g
bó�

x
g
y
g
z
g
�ó�

LCOñLCG
0

VCOñVCG� (37)

(1) If the vessel motion point W in VERES is chosen as G it follows that:

r
w
bór

g
b (38)

(2) Alternatively, the vessel motion point W can be chosen at T implying that:

r
w
bó�

x
w
y
w
z
w
�ó�

LCOñLCG
0

VCOñT � (39)

The corresponding quantities Adata, Bdata, Gdata and force amplitudes/angles are also
computed with respect to W.

SEAWAY by Amarcon: For SEAWAY (Journée & Adegeest, 2003) the Z-axis is
positive upwards and the X-axis is positive towards the bow. Hence, the h-frame
rotation matrix becomes:

Rh
data
óR

x	 �ó�
1 0 0

0 ñ1 0

0 0 ñ1� � Tódiag{1,ñ1,ñ1, 1,ñ1,ñ1} (40)
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Similarly, as for VERES the vectors rb
w
and rb

g
must be computed from the SEAWAY

data sets, see Journée & Adegeest (2003) for details.

2.2. Kinetics

The generalized forces acting on the vessel are found by formulating Newton’s
2nd law in b-frame coordinates. Since the hydrodynamic forces and moments are
computed in h-frame coordinates these will be transformed to the b-frame.

2.2.1. b-Frame Representation Consider the 6DOF rigid-body equations of motion
(Fossen, 2002):

M
RB

�̇ó�
H
ò�, M

RB
óMT

RB
[0, Ṁ

RB
ó0 (41)

where �
H
éR6 is a vector of generalized hydrodynamic forces, � éR6 is the generalized

propulsion and control forces andM
RB
éR6�6 is the rigid-body system inertia matrix.

The generalized forces and inertia matrix are computed with respect to the coordinate
origin O:

M
RB
ó�

mI
3�3

ñmS(r
g
b)

mS(r
g
b) I

o
�

(42)

ó�
m 0 0 0 mz

g
ñmy

g
0 m 0 ñmz

g
0 mx

g
0 0 m my

g
ñmx

g
0

0 ñmz
g

my
g

I
x

ñI
xy

ñI
xz

mz
g

0 ñmx
g
ñI

yx
I
y

ñI
yz

ñmy
g

mx
g

0 ñI
zx

ñI
zy

I
z

�
where m is the mass, I

3�3
is the identity matrix, S(rb

g
) éSS(3) defined as:

S(r
g
b)óñST(r

g
b)ó�

0 ñz
g

y
g

z
g

0 ñx
g

ñy
g

x
g

0 � , r
g
bó�

x
g
y
g
z
g
� (43)

and I
o
óIT

o
[0. The inertia matrix I

c
is computed with respect to the center of gravity

G and it can easily be transformed to the origin O by using the parallel axes theorem:

I
o
óI

c
ñmS2(r

g
b) (44)

2.2.2. h-Frame Representation The b-frame equations of motion can be transformed
to the h-frame by using equation (18). Consequently:

�̈*óJ*(d�)�̇ò J̇*(d�)� ó
J˙������0J*(d�)�̇ (45)

where we have assumed that d� is small. Hence equation (41) can be written:

J*(d�)�TM
RB
J*(d�)�1�̈*óJ*(d�)�T(�

H
ò�) (46)

The hydrodynamic forces in the h-frame is denoted as �*
H
óJ*(d�)�T�

H
and

�*óJ*(d�)�T� such that:
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M*
RB

�̈*ó�
H
*ò�* (47)

where * denotes vectors and matrices in the h-frame and:

M*
RB
(d�):óJ*(d�)�TM

RB
J*(d�)�1 (48)

2.3. Hydrodynamic Forces

The generalized hydrodynamic forces are (Faltinsen, 1990):

�*
H
ó�*

R
ò�*

FK
ò�*

D
(49)

where:

�*
R
ógeneralized radiation-induced forces

�*
FK
ógeneralized Froude-Krylov forces (50)

�*
D
ógeneralized diffraction forces

A 2-D strip theory program can be used to compute frequency dependent added
mass A*(u), potential damping B*(u), and the generalized Froude-Krylov �*

FK
and

diffraction forces �*
D
. These terms are all computed in the hydrodynamic reference

frame. The generalized radiation-induced forces then becomes:

�*
R
óñA*(u)�̈*ñB*(u)�̇*ñg*(�*)

where g*(�*) is the restoring forces and moments. This gives the h-frame
representation:

(M*
RB
òA*(u))�̈*òB*(u)�̇*òg*(�*)ó�*

FK
ò�*

D
ò�* (51)

which can be transformed to the b-frame as:

(M
RB
òA(u))�̇òB(u)�òg(�)ó�

FK
ò�

D
ò� (52)

where the outputs from the strip theory program is transformed according to:

A(u)óJ*(d�)TA*(u)J*(d�) (53)

B(u)óJ*(d�)TB*(u)J*(d�) (54)

�
FK
ò�

D
óJ*(d�)T(�*

FK
ò�*

D
) (55)

g(�)óJ*(d�)Tg*(�*) (56)

The radiation-induced forces and moments �*
R
are functions of frequency and time.

In the next section a transformation will be applied to remove the frequency
dependent quantities.

3. Time-Domain Representation

In this section a state-space model for effective time-domain simulation of the 6
DOF equations of motion is derived. The time-domain representation is based on
the assumption that the oscillations d� of the b-frame with respect to the h-frame
are small such that:

J*(d�)BJ*ó�
I
3�3

S(r
w
b )T

0
3�3

I
3�3

�óconstant (57)
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Notice that this assumption is only made for the transformation of the linear
generalized hydrodynamic forces from the h-frame to the b-frame, while the nonlinear
kinematics between the n-frame and the b-frame equation (26) are preserved and
hence valid for large Euler angles �. This is important from a feedback control point
of view, where the nonlinear kinematics is exploited in the design.

3.1. Cummins Equation

From equations (53)–(56) and (57) it follows that the b-frame representation is:

A(u)óJ*TA*(u)J* (58)

B(u)óJ*TB*(u)J* (59)

�
FK
ò�

D
óJ*T(�*

FK
ò�*

D
) (60)

and

(M
RB
òA(u))�̇òB(u)�òG�ó�

FK
ò�

D
ò� (61)

Notice that we have assumed that g(�)BG� where G is the generalized stiffness
matrix.

Cummins (1962) has shown that the frequency dependent terms A(u) and B(u)
can be removed by writing the equations of motion in the following form:

(M
RB
òM

A
)�̇ò�

t

��

K(tñq)�(q)dqòG�ó�
FK
ò�

D
ò� (62)

From Ogilvie (1964) it follows that:

M
A
óM

A
TóA(ê), Ṁ

A
ó0 (63)

K(q)ó2
n �

�

0

(B(u)ñB(ê)) cos(uq)du (64)

K(q)óñ2
n �

�

0

u(A(u)ñA(ê))sin(uq)du (65)

where M
A
éR6�6 is a constant (frequency independent) generalized added inertia

matrix evaluated at the infinity frequency, K(q) éR6�6 is a time-varying matrix of
retardation functions which can be computed off-line using the A(u) or B(u) data
sets and equations (64)–(65), since K(q) is causal.

Linear Zero Speed State-Space Representation of Cummins Equation Kristiansen &
Egeland (2003) have developed a state-space formulation for the potential damping
term in equation (62). Consider:

�(t)ó�
t

��

K(tñq)�(q)dq ócausal �
t

0

K(tñq)�(q)dq (66)

where K(tñq) is the retardation function. For causal systems:

K(tñq)ó0 for t\0 (67)
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If �(q) is a unit impulse, then �(t) given by equation (66) will be an impulse response
function. Consequently, �(t) can be represented by a linear state-space model:

�̇óA
r
�òB

r
�, �(0)ó0 (68)

�óC
r
�òD

r
� (69)

where (A
r
,B

r
,C

r
,D

r
) are constant matrices of appropriate dimensions. Applying the

Laplace tranformation to equations(68)–(69), the potential damping term can be
written as:

�(s)óD
p
(s)�(s) (70)

where D
p
(s) éR6�6 is a transfer function matrix. Notice that the filter:

D
p
(s)óC

r
(sIñA

r
)�1B

r
òD

r
(71)

now contains the memory effect of the fluid. Cummins equation (62) is now written
as a Linear Time-Invariant (LTI) model:

(M
RB
òM

A
)�̇ò�òG�ó�

FK
ò�

D
ò� (72)

M

where � is computed using the state-space model equations (68)–(69). This gives the
time-domain model:

�̇óJ(�)� (73)

M�̇ò�òG�ó�
FK
ò�

D
ò� (74)

�̇óA
r
�òB

r
�, �(0)ó0 (75)

�óC
r
�òD

r
� (76)

Notice that the property:

MóMT[0, Ṁó0 (77)

also holds for this model since the generalized added mass matrix M
A
is frequency

independent and symmetric.

4. Marine Systems Simulator (Matlab/Simulink)

In the Marine Systems Simulator two Matlab m-files for postprocessing of the
VERES data are provided (Fossen et al., 2004). These are:

Veres2ABC.m Computes the model matrices, retardation function state-space
models etc. Output file: ABC.mat

Veres2force.m Creates a table of generalized diffraction/Froude-Krylov force
coefficients. Output file: Forces_TF.dat

The data flow is shown in Figure 3 where the S-175 container ship is used as case
study.

Figure 3. Flow chart showing the numerical computations.
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Figure 4. Marine Systems Simulator (MSS): 6 DOF equations of motion including wave
excitation forces represented in Simulink for real-time simulation.

The data file Forces_TF.dat is used as input for the Simulink program shown in
Figure 4 while the file ABC.mat must be manually loaded into work space. The
numerical recipes used in the postprocessing of the data are described in Section 5.

5. Numerical Recipes

The numerical recipes used in Veres2ABC.m are described below.

5.1. Low and High Frequency Approximations

For zero speed Uó0 it follows that the frequency dependent potential damping
satisfies:

B(0)ó0, B(ê)ó0 (78)

such that:

K(q)ó2
n �

�

0

(B(u)ñB(ê)) cos(uq)du

(79)

ó2
n �

�

0

B(u) cos(uq)du

At high frequencies the tail of the damping curve is given by (Journée, 1993):

B
ii
(u)óbii

u3
, u[)

h
(80)

where b
ii
is a constant and )

h
typically is less than 5 rad/s for merchant ships, see

Figure 5.
If strip theory data is used in the interval 0\u\ )

h
, numerical computation of

K
ii
(q) is significantly improved by using the high frequency approximation B

ii
(u) for
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Figure 5. Experimental data showing the high-frequency approximation and viscous ramp
for B

33
(u).

u[)
h
. The retardation functions equation (79) and the corresponding 5th-order

state-space model approximations equations (68)–(69) are shown in Figure 6 for the
S-175 container ship.

5.2. Viscous Effects

In general it is difficult to compute accurate estimates of the viscous damping
unless CFD is used. A frequently used approximation is to assume a viscous ramp
for the diagonal terms (Bailey et al., 1998):

Bvisc
ii

(u)ó�bi�1ñ
u
)

v
� , uO)v

,
ió1. . . 6

0, u[)
v
,

(81)

where b
i
[0 can be chosen for instance as 5–20% of the maximum value max	(Bii

(u)).
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Figure 6. The retardation functions K
ii
are computed from equation (79) using trapezoidal

integrations and plotted as a function of time t. The corresponding state-space models (5th-
order) are plotted on top. This clearly shows that the state-space model accurately describe

the retardation functions.

Hence:

Bvisc
ii

(0)ób
i

(82)

Bvisc
ii
()

v
)ó0 (83)

Alternatively, the viscous damper could be chosen as an exponential function:

Bvisc
ii
(u)ób

i
exp(ñju), j[0 (84)
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Table 1. The S-175 main particulars.

Ship S-175

Length between perpendiculars (L
pp
) 175 m

Beam (B) 25.4 m
Draught (T) 9.5 m
Displaced volume (+) 24,140 m3
Block coefficient (c

B
) 0.572

LCG relative to midships ñ2.48 m
Froude number 0.25

Figure 7. Body plan of the S-175 container ship.

6. Numerical Results for the S-175 Container Ship

This section presents frequency dependent added mass and potential damping
including viscous effects (Figures 8–9), time series of hydrodynamic excitation forces
(Figure 10) and vessel motions in heave, roll and pitch (Figure 11). The retardation
functions are given in Figure 6. The results are based on data from ShipX (VERES).
The main particulars of the S-175 container ship are given in Table 1, while the body
plan is shown in Figure 7. The numerical results are computed for beam seas with
the JONSWAP wave spectrum using significant wave height H

1�3
ó5 m and peak

frequency u
p
ó0.56 rad/s. The wave spreading factor was set to 4.

7. Conclusion

In this paper a computer effective nonlinear time-domain strip theory formulation
for low-speed applications has been presented. The proposed model can be used to
simulate dynamic positioning (DP) and low-speed manoeuvres for ships and floating
rigs in real time. The model is also well suited for feedback control design since it
incorporates the effect of varying sea states.

The nonlinear kinematic equations of motion are represented in terms of Euler
angles while the kinetics (rigid-body dynamics and hydrodynamic generalized forces)
is assumed to be linear. This is a common assumption when using strip theory code
to solve the radiation and diffraction problems. In this context, it has been focused
on representing the frequency dependent potential damping terms by a state-space
representation such that on-line computations of the retardation functions can be
avoided. The transformations for motions and potential coefficients, between different
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Figure 8. Frequency dependent added mass A
11
, A

22
, A

33
and potential damping B

11
, B

22
,

B
33

for the S-175 container ship. Circles indicates VERES data points while the solid line is
due to interpolation. For the B

ii
-data the high-frequency approximation b

ii
/u3 is applied. In

addition a viscous ramp function is added to the B
ii
-plots. For surge, A

11
and B

11
, added

mass is chosen as 10% of the mass while B
11

simply is a viscous ramp. Added resistance data
can further be used to improve damping in surge.

coordinate systems and origins, have been put into a rigid framework using vectorial
mechanics. The result is a 6 DOF vectorial representation of the equations of motion.

The potential coefficients (added mass and potential damping) as well as the
exciting wave loads (Froude-Krylov and diffraction forces) have been computed using
ShipX (VERES) by Marintek for the S-175 container ship. The numerical results for
this ship with discussions are presented at the end of the paper.
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Figure 9. Frequency dependent added mass A
44
, A

55
, A

66
and potential damping B

44
, B

55
,

B
66

for the S-175 container ship. Circles indicates VERES data points while the solid line is
due to interpolation. For the B

ii
-data the high-frequency approximation b

ii
/u3 is applied. In

addition a viscous ramp function is added to the B
ii
-plots. For roll, the viscous effect to due

bilge keels (and possible anti-roll tanks) is included in the B
44
-plot.

Appendix
S-T-F Strip Theory

The S-T-F strip theory coefficients for zero speed as used in VERES are given in
Table 2 (Salvesen et al., 1970). Since we are considering a slender body with xz-plane
symmetry the 6 DOF equations of motion can be decoupled into:

Ω Longitudinal modes (surge, heave, pitch)
Ω Lateral modes (sway, roll, yaw)

The matrices are given below.



218 T. I. Fossen and Ø. N. Smogeli

Figure 10. Diffraction and Froude-Krylov Forces and moments in 6 DOF versus time
simulated in Simulink using VERES data tables.

Longitudinal Model

The longitudinal terms can be represented in matrix form according to:

Alon(u)ó�
A0

11
A0

13
A0

15
A0

31
A0

33
A0

35
A0

51
A0

53
A0

55
�

Blon(u)ó�
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11
B0

13
B0

15
B0

31
B0

33
B0

35
B0

51
B0

53
B0

55
�
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Figure 11. Heave position (m), roll angle (deg) and pitch angle (deg) versus time simulated
in Simulink using VERES data.

Lateral Model

Where the added mass terms are given by:

Alat(u)ó�
A0

22
A0
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A0

26
A0

42
A0

44
A0

46
A0

62
A0

64
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66
�

Blat(u)ó�
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24
B0

26
B0

42
B0

44
òB*

44
B0

46
B0

62
B0

64
B0

66
�
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Table 2. S-T-F Strip Theory Coefficients.

Hydro- Hydro-
dynamic Speed independent dynamic Speed independent
coefficients A0

ij
and B0

ij
terms coefficients A0

ij
and B0

ij
terms

A
22

ò∏
L
a
22
(x)dx

B
22

ò∏
L
b
22
(x)dx
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24
(óA
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) ò∏

L
a
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(x)dx
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24
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L
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L
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