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Nonlinear Observer Design for a Nonlinear Cable/String FEM Model
using Contraction Theory
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Contraction theory is a recently developed nonlinear analysis tool which may be
useful for solving a variety of nonlinear control problems. In this paper, using
Contraction theory, a nonlinear observer is designed for a general nonlinear cable/
string FEM (Finite Element Method) model. The cable model is presented in the
form of partial differential equations (PDE). Galerkin’s method is then applied to
obtain a set of ordinary differential equations such that the cable model is
approximated by a FEM model. Based on the FEM model, a nonlinear observer
is designed to estimate the cable configuration. It is shown that the estimated
configuration converges exponentially to the actual configuration. Numerical
results and simulations are shown to be in agreement with the theoretical results,

1. [Introduction

Cables/strings are flexible structural elements used in a wide span of engineering
applications, such as cable towing operationsin marine applications. Depending on
their physical properties and application areas, they exhibit vibration in the presence
of disturbances. The most commonly used method for suppressing the cable vibration
is to apply boundary kcontrollers. While a variety of boundary controllers have been
proposed to control the motion of different cable/string systems, observer design for
nonlinear cable/string systems has received little attention, which can be of great
importance in the design of boundary controllers.

Boundary control of the cable/string systems have been investigated by several
authors. Among others, Morgiil, (1994) designed a boundary feedback controller for
a system described by the wave equation where exponential stability of the closed
loop is obtained for strictly proper transfer functions. Baicu et al. (1999) developed
exponentially stabilizing controllers for the transverse vibration of a string-mass
system modeled by one-dimensional wave equation. Shahruz & Narasimha (1997)
and Canbolat et al. (1998) presented exponentially stabilizing controllers for a one-
dimensional nonlinear string equation, allowing varying tension in the string. Qu
(2000) devised a robust and adaptive controller to damp out the transverse oscillations
of a stretched string, allowing nonlinear dynamics and their uncertainties in the
model. The works mentioned above use a combination of the states at the boundary,
namely the boundary slope, slope-rate and velocity, to design the stabilizing boundary
control laws. Observer design based on Lyapunov analysis is well understood and
widely used for linear systems. Recently, Demetriou (2001) presented the construction
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of natural observers for linear second order lumped and distributed parameter
systems using parameter-dependent Lyapunov functions without resorting to a first
order formulation. Unlike linear systems, construction of nonlinear observers lacked
generality both from design and analysis point of view. Contraction theory is a
recently developed nonlinear analysis tool which may be useful for solving a variety
of nonlinear observer design problems. Lohmiller & Slotine (1998) have presented
Contraction theory through a series of publications. Kristiansen (2000) has used
Contraction theory for the design of nonlinear observers.

In the paper, using Contraction theory, a nonlinear observer is designed for a
general nonlinear cablefstring FEM (Finite Element Method) model. The cable
model is presented in the form of partial differential equations (PDE). Galerkin’s
method (Zienkiewicz & Taylor, 2000) is then applied to obtain a set of ordinary
differential equations such that the cable model is approximated by a FEM model.
Based on the FEM model, a nonlinear observer is designed to estimate the cable
configuration. It is shown that the estimated configuration converges exponentially
to the actual configuration. Numerical results and simulations are shown to be in
agreement with the theoretical results.

2. Equations of Motion

2.1. Kinematics

An inertial reference frame i is defined with orthogonal unit vectors i, j and k
along the x, y and z axes, respectively. The spatial position of an arbitrary point on
th center line of the initially stressed cable is given by the vector

r=xi+yj+zk

Consider an arbitrary point on the undeformed and initially stressed cable with the
coordinates

r=xi

When the cable is deformed, the material point described by the material coordinates
r will have the spatial coordinates

r=(x+d)i+yji+zk
as shown in Figure 1. This gives

or 26 1{ay\ 1{ez\
S+ () +2 (2 1
+3x+2 (6x) +2 (33\:) M

ox
) T

7
/

©

T

Figure 1. Kinematic consideration of cable/string.
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where right-hand side of equation (l) is the binomial approximation of

=l
A cable frame ¢ of orthonormal vectors t. b and n is defined where t is the unit vector
tangent to the cable such that

gr—:(l+s)t (2)

X

where ¢ is the Lagrangian strain. Hence, from equations (1) and (2) the relation for
the strain can be obtained as

a6 1{ay\ 1faz\
~4 () +2 (= 3
¢ ax+2(ax) +2(ax) @
2.2. Dynamics

Consider a cable of length L. The dynamics of the cable is assumed to be
determined by the tension in the cable and the inertial forces as shown in Figure 2.
Using Hooke’s law and equation (3), the tension 7 in the cable can be expressed in
the form

T(x)=Ty+E e

a 1{eyV 1[{az¥
=To+Es| —+- 2] +.
of “[a +2(3x) +2(ax)]

where T, is the constant tension in the initially stressed cable, E,=FEA, E is the
Young’s modulus and A4 is the cross-section of the cable. Consider a material cable
element of spatial length dx. Writing equilibrium of the forces in the x, y and z
directions and using equation (4) gives the nonlinear coupled equations of motion
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Figure 2. The forces acting on an elemental length dx.
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for xe(0, L) and 1 =0, where m>0 is the mass per unit length of the cable. Equations
(5)(7) can be put into matrix form

&r or
M —=H — (8)
o ax?
where
r 0% 0%y 8%z|"
ot ot or?
62r_ 826 &y 02z)"
ox2 | ax? ax? ax?
— l & 83 -
ax ax
vy T (Y &y 0z
H =Eq| oy E, \éx &x &x
oz dy 0z T, (%= ’
[ 0x dx Ox E, \ox/)_
and .#=ml,, I, 1s the 3 x 3 idenity matrix. The initial conditions for equation (8)
are given by

l’(x, 0) =b,(x)
ar(x, 0)/at =b,(x)

where b,(x) and b,(x) are assumed to be smooth functions. The boundary conditions
are given by
r(0,0)=0

T(L)or(L, Hdx=u(r)
where the function u(¢) is the boundary control input.
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2.3. FEM Model

In this section, the cable/string model presented in the form of PDEs in equation
(8) will be approximated by a FEM model to obtain a set of ordinary differential
equations. Without loss of generality and for the sake of simplicity in the derivations
and analysis which will follow later in this paper, the motion of the cable is confined
in xy-plane. Ignoring ¢ and z components in equation (8) and choosing the parameters
m, T, and E 4 as unity renders the following nonlinear scalar equation of motion for
the cable/string (Shahruz & Narasimha, 1997; Qu, 2000)

&y 2 A2

13 (2) |2 ©)
ar? 2\ ox ox?
The initial conditions for equation (9) are given by

(x,0)=b,(x)
p(x, 0Vét=by(x)

where b;(x) and b,(x) are assumed to be smooth functions of x. The boundary
conditions are given by

»0,1)=0
T(L, HAY(L, Dlox=u(t)

where u(r) is the boundary control input. To obtain a set of ordinary differential
equations, Galerkin’s method is applied to equation (9). The cable is divided into n
clements, where nodal points are enumerated from 0 to n. Let 1= L/n be the length
of each cable segment. For x € [0, L], Galerkin’s method yields the following discretized
FEM model

My +x(y)=u(9) (10)
where
M1 ky(y) 0
y k,(y) 0
y={""% k@={ ) un=
' ky) u(t)
4 1 0 7
A 1 4
M:6 0o 0
4
i 0 1 2]
and

2=y (1)
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1

1 1
k;()’)'—‘h (—y;- l+2yj_yj+ 1}—5}? {.Vj—.){;—n)zyj— 1+ [(J*'j—.l’_j- 1)2}’;

2h3
: (12
+(yj+]-yj)2yj]_2h3 (y,-n—y,-)zyﬁ 1
k 1 ) 1 , 2 1 , 2 13
n(y)=}; (yn_)n 1)_2}13 (yn_}n l) V-1 +2F {yn_.}n—l) Vn ( )

forj=2,...,n—1.

3. Observer Design

In this section, a nonlinear observer will be designed for the system given in
equation (10) using Contraction theory (Jouffroy er al., 2004 and Lohmiller & Slotine,
1998).

3.1. Observer dynamics

The observer structure copies the second-order nonlinear model dynamics in
equation (10) with a correction term, and is given by

My +x§)=u(?) + H{y— ¥} (14)
Here, H is the observer gain matrix, having the form
H=diag(0,...,0,K,), K,>0 (15)

where we assume that the only measurement available is the velocity y,(L) at the
boundary, x =L, Computing the virtual dynamics of equation (14) gives

My +% (§)8y = —HSY (16)
y
where the Jacobian matrix is given by

(K1 K1z 0 ]
ox K31 Ko K3 .
—®=| 0 K3z 0
oy ; .

Kn—1,n—1 Kn—1,n
- 0 Kpn—1 K, -

with the entries

2 3 . A
K1 =h+@ [Yf +(¥2 *yl)zl

1_3
h 2K

Kia= (}A’z—f’l)z
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[ 3
Kjg-n= _E _E (Fi—7J; ))?
2 3 P PO
K”_}z-'-?hs [(3;—; -1}2+(y,-—yj+1)2]
1 3

1 3
Kngn—1)= BRTE (G Y
13 . .
Km=};+2_h3 (yn_yn—l)z

for j=2,...,n—1. Note that each k term is a quadratic scalar function, rendering
off-diagonal terms negative definite and diagonal terms positive definite for every §.
Let

k=)
oy

where K is the n xn matrix. Hence, the virtual dynamics in equation (16) can be

rewritten in first order form
&y &
4 A3 a7)
dt | oy oy

.A—0 : 18
=l (18)

E=M"'K, F=M'H

where

and 0 is the 7 x n zero matrix and I is the n x n identity matrix.

3.2. Stability properties of the observer

To establish contraction, it can be shown that all eigenvalues of the system matrix
A satisfy Re/;<0. This is established as follows: Consider equation (18) and the
eigenvalue problem

Xl Xl I‘.XILXZ
X, X, ix,=—Ex, —Fx,
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1. Assume that A >0 and real. From equation (19) we have

AX, =X,
(20)
— A%, =(E + iF)x,

where E is positive definite and F is positive semi-definite. But since (E + AF)
is positive definite, the assumption is false by contradiction.
2. Assume that A is not real. From equation (20) we can write

AT, + Ix]Fx; +x]Ex, =0
Selecting |x,|=1 gives
224+ )x7Fx, +x]Ex, =0 21

The characteristic equation in (21) has the roots

.1=;{—xTFx,i[(fox1)2—4xfExl]”2} (22)
which implies that
Rei— —;foxl <0 23)
as A is not real by assumption. If ReA=0 then Fx, =0 and
X1
Fx,=0 = x;= : (24)

Kp—1

0

where

but from equation (20) we can conclude that such a vector x; cannot be an
cigenvector of the positive definite matrix (E + AF). Hence, all eigenvalues of
A satisfy Re/; <0.

Since A is a stability matrix with Re/; <0, there exists a uniformly positive definite
metric [’ under which the observer is contracting, i.e. that the virtual displacement

50
oy

converges exponentially to zero as shown in Figure 3. Furthermore, there exist two
strictly positive numbers o and y such that for any two trajectories starting from
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Two neighboring 8z

trajectories

Figure 3. The virtual displacement dz.

Z(t=1,) and #t=1,), the observer error dynamics is exponentially stable in the
sense that

l2(r)—#(0) | <ol z(t) —alto) || ¢ ™"
for t>t, everywhere in the region in which equation (17) holds (Jouftroy et al., 2004).

4. Numerical Results and Simulation

The observer proposed in equation (14) is solved numerically. The results of the
simulation are shown in Figures 4-11. In the simulations, a cable of unit length is
discretized with n=10, where =10 is the node at the boundary and n=0 is the
stationary end point. The observer gain is chosen as K, = 1. During the simulations,

Observer Error
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Figure 4. The boundary node follows a step reference. The observer was switched on at time
[=2 sec.
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Figure 5. Configurations at t=2.2 sec.
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Cable configuration in x+plane

Figure 6. Configurations at 1=3.7 sec.
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Figure 7. Configurations at t=5.2 sec.
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Figure 8. The boundary node follows a varying reference. The observer was switched on at
t1=2 sec.
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Cable configuration in x+plane
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Figure 9. Configurations at r=2.7 sec.
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Figure 10. Configurations at =3.4 sec.
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Figure 11. Configurations at t =6.8 sec.

two different motions of the boundary node are considered. In both cases, the
observer is switched on at r=2 sec. First, the boundary node is assigned to follow a
step reference. Figure 4 shows the observer error at the nodes n=1, 4, 7 and 10 when
the boundary node follows a step reference whereas Figures 5-7 are the snapshots
taken during the simulation which show the current and estimated configurations at
times 1=2.2, 3.7 and 5.2 sec. Similarly, the boundary node is then assigned to follow
a time-varying reference whereas Figures 9-11 show the current and estimated
configurations at times r=2.7, 3.4 and 6.8 sec. As seen in Figure 4 and Figure 8, the
observer error starts decreasing rapidly and the estimated configuration converges to
the actual configuration which demonstrates the contracting property of the observer
dynamics. The results from the simulations are thus in agreement with the theory
presented in this paper.

5. Conclusions

Contraction theory 1s a recently developed nonlinear analysis tool which may be
useful for solving a variety of nonlinear control problems. In this paper, using
Contraction theory, a nonlinear observer has been designed for a general nonlinear
cable/string FEM model. The cable model has been presented in the form of PDEs.
Galerkin’s method has been then applied to obtain a set of ordinary differential
equations such that the cable model has been approximated by a FEM model. Based
on the FEM model, a nonlinear observer was designed to estimate the cable
configuration. 1t is shown that the estimated configuration converges exponentially
to the actual configuration. Numerical results and simulations have been shown to
be in agreement with the theoretical results.
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