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This paper presents a review of the explicit approaches to constrained model
predictive control. The main motivation behind the explicit solution is that it
avoids the need for real-time optimization, and thus allows implementation at
high sampling frequencies in real-time systems with high reliability and low
software complexity. The paper is organized as follows. Section 1 includes formula-
tion of the constrained linear quadratic regulation (LQR) problem, summary of
the implicit approaches, and the basics of the model predictive control (MPC).
Sections 2 and 3 consider respectively the exact and the approximate approaches
to explicit solution of constrained MPC problems, together with several examples,

1. Constrained linear quadratic regulation

1.1. Problem formulation
We consider time-invariant linear discrete-time system described by the state-
space equation:
x(t+k+D=Ax(t+ )+ Bu(t +k), k=0 (1)
where 4 and B are the state transition and input distribution matrices. It is assumed
that (4, B) is stabilizable.
The control objective is to regulate the state of the system optimally to the origin.
Optimality is defined in terms of a quadratic objective and a set of inequality constraints

(Scokaert & Rawlings, 1998). The objective is defined over an infinite horizon and is
given by:

I[x(2), L), u(t +1), ...} = Z [xT(t+ K)Ox(t + k) 4+ u"(t 4+ k) Ru(t + k) )

in which Q>0 and R>0 are symmetric weighting matrices. The constraints are also
defined on an infinite horizon and take the form:

Hx(t+k+1)<h, k=0 3)

Gu(t+k)<g, k=0 “)

where vectors h and g (of dimension respectively », and n,) define the constraint
levels and H and G are the state and input constraint distribution matrices.
Then, 3 control problems are formulated (Scokaert & Rawlings, 1998).
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Problem 1—Unconstrained linear quadratic regulation:

a0

min [xT(t 4+ k) Ox(t+ k) +u' (1 + k) Ru(1 + k)] &)
futhutt +1), ...} g=o
subject to:
x(t+k+1)=Ax(t+k)+ Bu(t+k), k=0 (6)

The solution to this problem is the linear feedback control law:
u(t+ky=—Kx(t+k), k=0 (7)

where the controller gain matrix K can be calculated from the solution of the discrete-
time algebraic Riccati equation (Kwakernaak & Sivan, 1972).

Problem 2—Constrained linear quadratic regulation:

o nfg—“ll) A :go XT(t+R)Ox(2 + k) +u” (1 + k) Ru(1 + k)] 8)
subject to:
x(t+k+1)=Ax(t+k)+ Bu(t+k), k=0 )
Hx(t+k+1)<h, k=0 (10)
Gu(t+k)<g, k=0 (1n

Problem 2 is a natural extension of Problem I that includes constraints, The difficulty
associated with Problem 2 is the infinite number of decision variables in the optimiza-
tion and the infinite number of constraints.

Problem 3—Model Predictive Control (MPC) Problem:

subject to:
x(t+k+1)=Ax(t+k)+ Bu(t+k), k=0 (13)
Hx(t+k+1)<h, k=0,1,...,N—1 (14)
Gu(t+k)<g, k=0,1,...,N—1 (15)
u(t+k)y=—Kx(t+k), k=N (16)

This form of MPC has a finite number of decision variables, N, and a finite
numbser of constraints, N(n,+n,). It can therefore be solved with standard quadratic
programming methods. Here, the unconstrained feedback control law (equation (16))
is added to the finite set of N decision variables.
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1.2, Implicit approaches

In Scokaert & Rawlings (1998), Sznaier & Damborg (1987) and Chmielewski &
Manousiouthakis (1996) implicit approaches have been developed to solve the con-
strained linear quadratic requlation problem (Problem 2). They are implicit in sense
that the optimal control does not have the form of feedback control law, but it is
obtained in the form of open-loop time trajectory.

In their pioneering work Sznaier and Damborg (1987) showed that finite-horizon
optimization defined as the Model Predictive Control problem also provides the
solution to the infinite-horizon linear quadratic regulation problem with constraints.
This equivalence holds for a certain set of initial conditions, which depends on the
length of the finite horizon.

This idea has been developed further by Scokaert and Rawlings (1998) and by
Chmielewski and Manousiouthakis (1996).

In Scokaert & Rawlings (1998) the following definition is made and an algorithm
is proposed to solve the constrained LQR problem:

Definition I: Let X< R" denotes the set of states x(¢f) for which the unconstrained
LQR law, u(t + k)= — Kx(t + k), k=0, satisfies (1), (3) and (4).

Algorithm 1 ( constrained LOR):

Step 0. Choose a finite horizon N, set N=N,.
Step 1. Solve Problem 3 (MPC problem).

Step 2. If x(t+ N) € Xk, go to step 4.

Step 3. Increase N, go to step 1.

Step 4. Terminate: n* =ny.

Here my={u(t),u(t+1),...u(t+N—1)} is the optimal control trajectory deter-
mined by solving the MPC problem, while n* is the optimal control trajectory that
is a solution of the constrained LOR problem.

In Scokaert & Rawlings (1998) it has been shown that the algorithm terminates
in a finite number of iterations, regardless of the choice of initial horizon in Step 0
and of the heuristics used to increase it in Step 3. In other words, the presented
algorithm requires solving a finite number of finite-dimensional positive definite
quadratic programs (QP). Also, the constrained LQR is shown to be both optimal
and stabilizing.

However, the dimension of the QP depends on the initial state and therefore the
result is not useful for practical applications where an upper bound on the horizon
(respectively of the QP size) which is independent on the initial state is needed for
designing the control hardware. In this respect, Chmielewski & Manousiouthakis
(1996) describe an algorithm which provides a semi-global upper bound. Namely, for
any given compact set X, of initial conditions, their algorithm provides the horizon
N such that the finite horizon controller (solution of Problem 3) solves the infinite
horizon problem (Problem 2).

1.3. Basics of Model Predictive Control

Model predictive control is an efficient methodology to solve complex constrained
multivariable control problems (Mayne et al., 2000, Bemporad & Morari, 1999,
Bemporad er «l, 2000 and Bemporad et al., 2002). Here the basics of Model
Predictive Control (MPC) are given according to Bemporad et al. (2002).
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Consider the problem of regulating to the origin the discrete-time linear time
invariant system:

x(t+1) = Ax(f) + Bu(t) (17)
£y =Cx(1) (18)

while satisfying the following constraints:
.}}mh'l “;‘*.}(t) g},mﬂl, uJTIiI'I g u(‘) g umax (19)

at all time instants £=0. In (17)—(19), x(¢) € #", w(t) e #™ and y(f) = A* are the siate,
input and output vector respectively, ¥min> Vemax AN Uins Umax are respectively p and
m-dimensional vectors and the pair (4, B) is stabilizable.

Model Predictive Control (MPC) solves such a constrained regulation problem
in the following way (Bemporad et al., 2002). Assume that a full measurement of the
state x() is available at the current time f. Then, the optimization problem:

N1
min U, x(0] = x/, NJ-[!Px:-i Nyt Z [x:l:rﬂchu rt|:+”31i WRUy 4]
U=fur.ues1 U N, —1) k=0

(20)
subject to x,),=x(f) and:
Youin < Vet k)t < Vimaxs k=1,...,N, (21)
Upniin S Uk SUpax, *=0,1,..., N, (22)
Xern, 1 €EQ (23)
Xpvkr1|e=AX g+ Bty g, k20 (24)
Yerulr=Cpipp, k20 (25)
Uy o= —Kx, 1 ype N,<k<N, (26)

is solved at ecach time ¢, where x,.,, denotes the predicted state vector at time ¢+ k,
obtained by applying the input sequence #,,...,i,,—, to model (17)—(18) starting
from the state x(1).

The name MPC stems from the idea of employing an explicit model of the plant
to be controlled which is used to predict the future output behavior. This prediction
capability allows solving optimal control problems on line, where tracking error,
namely the difference between the predicted output and the desired reference, is
minimized over a future horizon (Bemporad et al., 2002).

Further, we assume that 0=07>0, R=R">0, P>0.(Q"?, A) detectable (for
instance Q= C"C with (C, A) detectable), K is some feedback gain, N,, N,, N, are
the output, input and constraint horizons, respectively, with N, <N and N <N, —1,
and Q is a polyhedral terminal set.

One possibility is to choose K=0 and P as the solution of the Lyapunov equation
(Bemporad et al., 2002):

P=ATPA+Q @27
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The choice K=0 implies that after N, time steps the control is turned off and the
system is allowed to settle in an open-loop manner. This is only meaningful when
the system is open-loop stable. With P obtained from (27), I[U, x(¢)] measures the
settling cost of the system from the present time ¢ to infinity under the assumption
that the control is turned off after N, steps.

Alternatively, one can set K=K;,, where K;, and P are the solution of the
unconstrained infinite horizon LQR problem with weights Q and R (Bemporad et al.,
2002):

K o= —(R+B"PB) 'B"P4 (28)
P=(A+ BK )" P(A+ BK, o)+ KToRK o+ 0 (29)

This choice of K implies that after N, time steps the control is switched to the
unconstrained LQR. With P obtained from (29), ITU, x(#)] measures the settling cost
of the system from the present time 7 to infinity under this control assumption.

The MPC control law is based on the following idea (Bemporad et al., 2002): At
time ¢ compute the optimal solution to problem (20)(26) (the optimal mput
sequence):

U*(”={ﬂ?‘,...,u:| N.,—l} (30)
and apply to the system only the first input from the sequence:
ult)=u} (31

The remaining optimal inputs are discarded and a new optimal control problem is
solved at time 7+ 1, based on the new state x(z+ 1). Such a control strategy is also
referred to as moving or receding horizon. This 1dea 1s illustrated in Figure 1.
As new measurements are collected from the plant at each time ¢, the receding
horizon mechanism provides the controller with the desired feedback characteristics.
The stability of MPC feedback loops was investigated by numerous researchers

Predicted outputs y(¢+klr)
L}

! Control inputs u(r+k)

L L L L L L L L I L ' L L L L L I
t ] LN, 1N,
input horizon !

output horizon

2
>

Figure 1. Receding horizon strategy: only the first input of the computed optimal input
sequence is implemented.
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(Mayne et al., 2000, Bemporad & Morari, 1999 and Bemporad er al., 2002). Stability
is in general a complex function of the various tuning parameters N,, Ny, N,, P, Q
and R (Bemporad et al., 2002). For applications it i1s most useful to impose some
conditions on N,, N, and P so that stability is guaranteed for all 0 >0, R>0. Then
Q and R can be freely chosen as tuning parameters to affect performance. The
constraint (23) is sometimes called ‘stability constraint’ and it explicitly forces the
state vector to reach an invariant set at the end of the prediction horizon. The
stability result is formulated in the following theorem (Bemporad et al., 2002):

Theorem 1:

Let Ny=co, K=0 or K=K,4, and N <o be sufficiently large for guaranteeing
existence of feasible input sequences at each time step. Then the MPC law (20)—(31)
asymptotically stabilizes the system (17)-(18) while enforcing the fulfilment of the
constraints (19) from all initial states x(0) such that (20)—(26) is feasible at 1=0. W

2. Exact Approaches to Explicit Solution of MPC Problems

2.1. MPC computation
By substituting (Bemporad et al., 2000 and Bemporad ef al., 2002):

k—1
x‘;"I‘:Akl-(r)'F Z AJBH‘+k_1_j (32)
i=0

in the optimization problem (20)-(26), this can be rewritten in the form:
V*x(0)] =%xT{f] Yx(1)+ mLirn {Ell UTHU+ xT(l}FU} (33)

subject to:

GULS W+ Ex(t) 34

where the column vector U=[w/,..., 1wy, ] €%, s=mN,, is the optimization

vector, H=H">0 and H, F, Y, G, W, E are easily obtained from Q, R and (20)-(32).

The optimization problem (33)-(34) i1s a quadratic program (QP). Because the
problem depends on the current state x(#), the implementation of MPC requires the
on-line solution of a QP at each time step. Although efficient QP solvers based on
active-set methods and interior point methods are available, computing the input w(r)
demands significant on-line computation effort. For this reason, the application of
MPC has been limited to ‘slow’ and/or ‘small’ processes.

In Bemporad et al. (2000), Bemporad et al. (2002) and Pistikopouls et al. (2000),
a new approach for MPC implementation has been proposed, where the computation
effort is moved off-line. The MPC formulation described in the previous section
provides the control action u(f) as a function of x(t) implicitly defined by (33)-(34).
By treating x(7) as a vector of parameters, the goal is to solve (33)-(34) off-line with
respect to all the values of x(¢) of interest and make this dependence explicit
(Bemporad et al., 2000, Bemporad et al., 2002 and Pistikopoulos et al., 2000).
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In terms of operations research, mathematical programs which depend only on one
scalar parameter are referred to as parametric programs, while problems depending on
a vector of parameters as multi-parametric programs. According to this terminology,
(33)—(34) is a multi-parametric Quadratic Program (mp-QP).

Once the multi-parametric problem (33)(34) has been solved off-line, i.e. the
solution:

U= U] (35)

of (33)—(34) has been found, the model predictive controller (20)~(26) is available
explicitly, as the optimal input u(7) consists simply of the first 7 components of

Do)
w(t)=[10... OJU*{x(1)] (36)

It has been shown in Bemporad et al. (2000), Bemporad et al. (2002) and Pistiko-
poulos et al. (2000) that the solution U*(x) of the mp-QP problem is a continuous
and piecewise affine function of x. Therefore, the same properties are inherited by the
controller.

2.2. Exact approach to explicit solution of MPC problems

Bemporad et al. (2000) and Bemporad et al. (2002) have developed an algorithm
to express the solution U*(x) and the minimum value ¥*(x) = I[U*(x)] as an explicit
function of the parameters x and to characterize the analytical properties of these
functions. In particular they have proved that the solution U*(x) is a continuous
piecewise affine function of x in the following sense (Bemporad er al., 2000 and
Bemporad et al., 2002):

Definition 2:
A function z(x): Xi»%°, where X< Z" is a polyhedral set, is piecewise affine if it 1s
possible to partition X into convex polyhedral regions, CR;, and z(x)=H'x+K,
VxeCR,.

Piecewise quadraticity is defined analogously by letting z(x) be a quadratic
function x" Wix+ H'x+k'.

In Bemporad et al. (2000) and Bemporad et al. (2002) it is defined:

z=U+H "F'x(1) 37
where ze #° and the problem (33)—(34) is transformed to the equivalent problem:
V*(x)=min %zTHz (38)
subject to:
Gz< W+ Sx(1) 39

where S=E+GH'FT and V*(x)= V*(x)-%xf{ Y—FH™'FT)x

The solution of mp-QP problems can be approached by employing the principles
of parametric nonlinear programming and in particular the first-order Karush-Kuhn-
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Tucker (KKT) optimality conditions (Nocedal & Wright, 1999), which lead to the
Basic Sensitivity Theorem.

Instead. Bemporad et al. (2000) and Bemporad ef al. (2002) have adopted a more
direct approach which exploits the linearity of the constraints and the fact that the
function to be minimized is quadratic. The approach in Bemporad et al. (2000) and
Bemporad et al. (2002) is described as follows. In order to start solving the mp-QP
problem, an initial vector x, inside the polyhedral set X of parameters is needed,
such that the QP problem (38)—(39) is feasible for x=x,,. Such a vector can be found
for instance by solving the linear program (LP) (Bemporad et al., 2000 and Bemporad
et al., 2002):

max & (40)
subject to:
Gz—Sx+e< W 41)
20 42)
xeX 43)

If the LP is infeasible, then the QP problem (38)-(39) is infeasible for all xe X.
Otherwise, it is fixed x =x, and the QP problem (38)(39) is solved in order to obtain
the corresponding optimal solution z,. Such a solution is unique because H>0 and
therefore uniquely determines a set of active constraints Gz,=S8x,+ W out of the
constraints in (38)~(39). Let G, S and I denote the rows of G, S and W corresponding
to the active constraints. Then, the following theorem is proved (Bemporad et al..
2000 and Bemporad ef al., 2002):

Theorem 2:

Let H>0. Consider a combination of active constraints G, S, W and assume that
the rows of G are linearly independent. Let CR, be the set of all vectors x for which
such a combination is active at the optimum (CR,, is referred to as critical region).
Then, the optimal z and the associated vector of Lagrange multipliers 1 are uniquely
defined affine functions of x over CR,. [ ]

Proof (Bemporad et al., 2002):
The first-order KKT conditions for the mp-QP are given by:

Hz+G"i=0, iep* (44)
WMGz— W —Sx)=0, i=1,...,q (45)
220 (46)
where the superscript i denotes the i-th row. Equation (44) is solved for z:
z=—H 'G" @7

and the result is substituted into (45) to obtain the complementary slackness
condition:

M—GH '\G"A— W—Sx)=0 (48)
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Let / and 1 denote the Lagrange multipliers corresponding to inactive and active
constraints, respectively. For inactive constraints 4=0. For active constraints
—GH 'G"1— W—S8x=0 and therefore:

J=—(GH 'G")" (W +58x) (49)

where G, W, S correspond to the set of active constraints and (GH 1G7) ™! exists
because the rows of G are linearly independent. Thus  is an affine function of x. By
substituting 4 from (49) into (47), it is obtained:

z=H G (GH'G")Y"(W+ Sx) (50)

and it is noted that = is also an affine function of x.

Theorem 2 characterizes the solution only locally in the neighborhood of a
specific xg, as it does not provide the construction of the set CR, where this
characterization remains valid. On the other hand, this region can be characterized
immediately (Bemporad et al., 2000 and Bemporad et al., 2002). The variable = from
(47) must satisfy the constraints (39):

GH 'G"(GH 'G") (W+S8Sx)< W+ Sx (51)
and by (46) the Lagrange multipliers in (49) must remain nonnegative:
—(GH G (W +8x)=0 (52)

as x varies. After removing the redundant inequalities from (51) and (52), a compact
representation of CR, is obtained. Obviously, CR, is a polyhedron in the x-space
and represents the largest set of x € X" such that the combination of active constraints
at the minimizer remains unchanged (Figure 2(a)). Then, the algorithm in Bemporad
et al. (2000) and Bemporad et al. (2002) continues with the division of the parameter
space as in Figure 2(b) and (c) by reversing one by one the hyperplanes defining the

xX
Ry CRo
(a) (b)
Ry Ry i
CH
) | (d)

Figure 2. State space exploration strategy of Bemporad et al. (2000 and 2002).
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critical region CR,. Iteratively each new region R; is subdivided in a similar way as
was done with X. As noted in Tendel er al. (2003), the main drawback of this
algorithm is that the regions R; are not related to optimality, as they can split some
of the critical regions like CR, in Figure 2(d). A consequence is that CR, will be
detected at least twice.

The properties of the set of feasible parameters X, = X (i.e. the set of parameters
x e X such that a feasible solution z*(x) exists to the optimization problem (38)—(39)),
the value function ¥*(x) and the solution z*(x) are formulated in the following
theorem (Bemporad et al., 2002):

Theorem 3:

Consider the multi-parametric quadratic program (38)—(39) and let />0, X convex.
Then the set of feasible parameters X; < X is convex, the optimizer z¥(x): X;+—2" is
continuous and piecewise affine and the value function V¥(x): X, is continuous,
convex and piecewise quadratic. [ ]

Based on the above results, the main steps of the off-line mp-QP solver are
outlined in the following algorithm (Bemporad et al., 2002):

Algorithm 2 (exact mp-QP):

Step 1. Let the current region be the whole set X< 22".
Step 2. Choose a vector x, in the current region by solving the linear program

(40)-(43).

Step 3. For x=x,, compute the corresponding optimal solution (z,, /,) by solving
a QP

Step 4. Determine the set of active constraints when z=z,, x=x¢, and build G,

Step 5. If r=rank G is less than the number / of rows of G, take a subset of r
linearly independent rows and redefine G, W, S accordingly.

Step 6. Determine A(x), z(x), from (49) and (50).

Step 7. Characterize the CR from inequalities (51) and (52).

Step 8. Define and partition the rest of the region.

Step 9. For each nonempty new sub-region, go to step 2.
Step 10. When all regions have been explored, for all polyhedral regions where z(x)
is the same and whose union is a convex set, compute such a union.

In conclusion, Algorithm 2 provides the explicit solution u=j{x) to the MPC
problem (20)—(26), as the piecewise linear (PWL) function:

u=Kix+ki if Hix<h', i=1,...,Nypc (53)

where the polyhedral sets {H'x<h'}, i=1,..., Nypc are a partition of the given set
of states X.

Algorithms for iteratively constructing a polyhedral partition of the state space
and computing the PWL solution are also given in Pistikopoulos et al. (2000), Tondel
et al. (2003), Johansen et al. (2002) and Seron et al. (2000).

2.3. Efficient implementation of the exact approach to explicit solution of MPC
problems

2.3.1. Main theoretical result. The approach of Tendel er al. (2003) modifies the
explicit approach of Bemporad et al. (2000 and 2002) by analyzing several properties
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of the geometry of the polyhedral partition and its relation to the combination of
active constraints at the optimum of the quadratic program. Based on that, they
derive a new exploration strategy for sub-dividing the parameter space, which:

1. avoids unnecessary partitioning;

2. avoids the solution to LP problems for determining an interior point in each
new region of the parameter space;

3. avoids the solution to the QP problem for such an interior point.

As a consequence, there is a significant improvement of efficiency with respect to the
algorithm of Bemporad et al. (2000) and Bemporad er al. (2002).

Before describing the main idea of the approach (Tendel er al., 2003), some
definitions are made (Tendel et al., 2003):

Definition 3:

Let z*(x) be the optimal solution to (38)-(39) for a given x. We define active
constraints the constraints with G'z*(x)— W' —S'x=0 and inactive constraints the
constraints with G'z*(x) — W'—Six<0. The optimal active set A¥(x) is the set of
indices of active constraints at the optimum A*(x)= {i|G'z*(x)= W'+ S'x}. We also
define as weakly active constraint an active constraint with an associated zero
Lagrange multiplier A and as strongly active constraint an active constraint with a
positive Lagrange multiplier .

Definition 4:
For an active set, we say that the linear independence constraint qualification (LICQ)
holds if the set of active constraint gradients are linearly independent, i.e. G has full
row rank.

Below, the linear expression of the PWL function z*(x) over the critical region
CR, is denoted by zj(x). In general, a superscript index is used to denote a row of a
matrix or element of a vector.

Definition 5:

Let a polyhedron X« #" be represented by the linear inequalities 4,x<b. Let the
i-th hyperplane, Ajx =>b" be denoted by W. If X is (2 — 1)-dimensional then Xn¥
is called a facet of the polyhedron.

Definition 6
Two polyhedra are called neighboring polyhedra if they have a common facet.

Definition 7:

Let a polyhedron X be represented by A x<b. We say that 45 x< b is redundant if
ALx<bVj#i= ALx<b (ie. it can be removed from the description of the poly-
hedron). The inequality 7 is redundant with degree h if it is redundant but there exists
a h-dimensional subset ¥ of X such that AL x=4'for all xe Y.

Let us consider a hyperplane defining the common facet between two polyhedra
CR,, CR; in the optimal partition of the state space. There are two different kinds
of hyperplanes (Tondel et al., 2003). The first (Type I) are those described by (51),
which represent a non-active constraint that becomes active at the optimum as x
moves from CR, to CR;. This means that if a polyhedron is bounded by a hyperplane
which originates from inequality (51), the corresponding constraint will be activated
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on the other side of the facet defined by this hyperplane. In addition, the correspond-
ing Lagrange multiplier may become positive. The other kind (Type II) of hyperplanes
which bounds the polyhedra are those described by (52). In this case, the correspond-
ing constraint will be non-active on the other side of the facet defined by this
hyperplane. This is formulated in the following theorem (Tondel et al., 2003):

Theorem 4:

Consider an optimal active set {i;,1,,...,#} and its corresponding n-minimal repre-
sentation of the critical region CR, obtained by (51)-(52) after removing redundant
inequalities. Let CR; be a full-dimensional neighboring critical region to CR,, and
assume LICQ holds on their common facet ®=CR,Y where ¥ is the separating
hyperplane between CR, and CR;. Moreover, assume that there are no constraints
which are weakly active at the optimizer z*(x) for all xe CR,. Then:

Type L. If W is given by G*+1z{(x)= W+14+S%+1x, then the optimal active set in
C-Ri 1s {ils- - ’jksik-i-l}'

Type IL If W is given by 2¥(x) =0, then the optimal active set in CR;is {iy,...,0x—1}-

|

2.3.2. Example. The example is taken from Tendel et al. (2003). Consider the double
integrator (Johansen et al., 2002):

A= , B= (54)
0 1 T,

where the sampling interval is 7,=0.05 and consider the MPC problem over the
prediction horizon N =2 with cost matrices:

B (55)
=0 ol %=

The constraints in the system are:
—l<u<l (56)
—0.5<x,<0.5 (57)

The mp-QP associated with this problem has the form (38)-(39) with H, F, G, W, S
given in Tendel er al. (2003):

1079 0.076 1109 1.036
H= , F= (58)
0076  1.073 1573 1517

1 0 —1 0 0.05 0.05 —0.05 —0.05 (59)
0 1 0 -1 0 0.05 0 —0.05

wWi=(l 1 1 1 05 05 05 05 (60)

, [0 09 —10 —09 0.1 0.1 —0.1 0.1
ST= (61)
14 13 —14 —13 09  —09 0.9 0.9
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Figure 3. Critical regions for double integrator.

The partitioning starts with finding the region where no constraints are active. As
the mp-QP is created from a feasible MPC problem, the empty active set will be
optimal in some full-dimensional region (4,= ¢ and G. W and § are empty matrices,
z*¥(x)=0 and the first component of U*(x) is the unconstrained LQR gain). This
critical region is then described by 0< W+ Sx which contains 8 inequalities. Two of
these inequalities are redundant with degree 0 (#2 and #4), the remaining 6 hyper-
planes are facet inequalities of the polyhedron (see Figure 3(a)).

By crossing the facet given by ¥,, defined by inequality 1 and of Type 1, as
predicted by Theorem 4 the optimal active set across this facet is A, = {1}, which leads
to the critical region CR, (see Figure 3(b)). After removing redundant inequalities we
are left with an n-minimal representation of CR; containing 4 facets. The first of
these is of Type II, 2'(x)=0. The other three are of Type L. These are inequalities
#2, #6 and #7. Consider first the other side of the facet which comes from A'(x)=0,
see Figure 3(c). The region should not have constraint 1 active, so the optimal active
set is A, = 4. This is the same combination of active constraints as A, as expected,
s0 A, is not pursued. Next, consider crossing the respective facets of inequalities 2,
6 and 7, see Figures 3(d)-3(f). This results in three different active sets: 4;={1,2},
A,=1{1,6} and A;={1,7}. The sets A; and A4, lead to new polyhedra as shown in
the figures. The combination A4, leads to an interesting case of ‘degeneracy’. The
associated matrix G has linearly dependent rows, which violates the LICQ assumption.
In this case, A leads to an infeasible part of the state space.
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Partition of state space

Figure 4. Polyhedral partition of state space for the double integrator with N=10.

3. Approximate Approach to Explicit Solution of MPC Problems

3.1. Complexity of the exact approaches

Consider the same double integrator example as in section 2.3.2. Figure 4 shows
the partition for horizon N=10 corresponding to the exact solution provided by the
algorithm (Tendel ef al., 2003). We observe that the exact solution is fairly complex,
containing 191 polyhedral critical regions, many of them of very small volume.

3.2. Main idea of the approximate approach

Here we suggest an entirely different approach to compute sub-optimal explicit
MPC solutions (Johansen & Grancharova, 2002, 2003 and Grancharova & Johansen,
2002). The idea is to require that the state space partition is represented as a search
tree, i.€. to consist of orthogonal hypercubes organized in a hierarchical data-structure
that allows extremely fast real-time search. The computational complexity with the
suggested approach is logarithmic with respect to the number of regions, while a
general polyhedral partitioning leads to a computational complexity that is linear
with respect to the number of regions, if no additional data structures are built. The
optimal solution is computed explicitly using quadratic programming (QP) only at
the vertices of these hypercubes, and an approximate solution valid in the whole
hypercube is computed based on this data. A hypercube is partitioned into two or
more smaller hypercubes only if this is necessary to achieve the desired local accuracy
of the solution. This makes the idea similar to storing the pre-computed QP solutions
at the various states in a multi-resolution lookup table.

Unlike any other method mentioned above, that all relies on the linearity of the
problem to build polyhedral regions and a PWL (piecewise linear) solution, the
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Figure 5. Partition of a rectangular region in a 2-dimensional state space. Left: quad-tree
partition. Right: k —d tree partition.

suggested method is straightforward to be extended to nonlinear constrained MPC
problems by replacing the QP with a nonlinear program.

3.3. Approximate mp-QP algorithm

We restrict our attention to a hypercube X< %" where we seek to approximate
the optimal PWL solution z*(x) to the mp-QP problem (38)-(39). In order to
minimize the real-time computational complexity we require that the state space
partition is orthogonal and can be represenied as a search tree (generalized quad-
tree (Bentley, 1975), Figure 5 (left)), such that the search complexity is logarithmic
with respect to the number of regions.

The orthogonal search tree is a hierarchical data structure where a hypercube can
be hierarchically subdivided into smaller hybercubes allowing the local resolution to
be adapted, as shown in Figure 5. When searching the tree, only n scalar comparisons
are required at each level.

The improved version of the approximate mp-QP algorithm is based on a k—d
tree partition of the state space (Figure 5 (right)) as a more flexible and powerful
alternative to the generalized quad-tree (Figure 5 (left)). With the k—d tree (Bentley,
1975), a hyper-rectangle is split into two equal parts and thus only one scalar
comparison is required at each level when searching the tree. Also, the k—d tree
allows the incorporation of heuristic rules that split the hyper-rectangle at the axis
along which the change of error is maximal (before splitting).

There are two versions of the approximate mp-QP algorithm, based respectively
on the cost function approximation error &.(x) (Johansen & Grancharova, 2002,
2003), and on the control input approximation error &;,,(x) (Grancharova &
Johansen, 2002). The approximation error in the cost function is:

Eeosd X) = V(x)— V¥(x) (62)

where

f/,(x):; EM(X)HZo(x) and V;"(x)=—;z“(x}Hz*(x)
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are respectively the sub-optimal and the optimal costs, and Z,(x) and z*(x) are the
sub-optimal and the optimal PWL solutions. The approximation error in the control
input is:

Binpu(¥) = (2%(x) — Zo(x)) " E(2*(x) — Z(x)) (63)

where £>0 is a weighting matrix which typically has non-zero weight only on the
components of the solution corresponding to the first sample of the trajectory.

Initially the algorithm will consider the whole region X,=X. The main idea of
the approximate mp-QP algorithm is to compute the solution of the problem
(38)—(39) at the 2" vertices of a considered hyper-rectangle X, by solving up to 2"
QPs. Based on these solutions, a feasible local linear approximation Z,(x) to the PWL
optimal solution z*(x), valid in the whole hyper-rectangle X, is computed by using
the following result (Bemporad & Filippi, 2003):

Lemma 1:
Consider the bounded polyhedron X,< X, with vertices {v,,v,,...,v,} (here X is
the feasible set: X, = {x(f)e #"|3 U satisfying (34)}). If K, and g, solve the QP:

M
‘!I"lin z (z¥(v) — Kov; — QO)T-H(Z*(f’i) —Koti—4go) (64)
080 j=1
subject to:
GKov;+g0) <Sv;+ W, ie{l,2,..., M} (65)
then the least squares approximation Zy(x)=Kox+g, is feasible for the mp-QP
(38)(39) for all xe X,. ]

If the maximal approximation error &;, in the hyper-rectangle X, is smaller than
some prescribed tolerance £>0, no further refinement of X, is needed. Otherwise,
X, is partitioned into two hyper-rectangles and the procedure described above is
repeated for each of these. If the approximation error in the cost function is
considered, the upper bound ¢, is determined by using the method proposed in
Johansen & Grancharova (2002, 2003). If the approximation error in the control
input is being used, then the maximal value &, is determined in the way given in
Grancharova & Johansen (2002).

In order to reduce the complexity of the partition, the heuristic rule described in
Grancharova & Johansen (2002) is applied when splitting the hyper-rectangle X,.
The rule attempts to split the hyper-rectangle at the axis along which the change of
the approximation error is maximal (before splitting), because it is reasonable to
hope this is how the largest reduction of the error can be made. The heuristic rule
uses information about the error (g,,.(x) or &;,,(x)) in the hyper-rectangle Xg= X,
that contains a finite number of representative points in X, typically the vertices of
one or more hyper-rectangles contained in the interior of X,.

Heuristic splitting rule:
Split the hyper-rectangle X, by a hyperplane through its center and orthogonal to
the axis x; where the total absolute change of the approximation error measured
both at the facet centers of X, and the vertices of X% is maximal.

It has been shown in Grancharova & Johansen (2002) that the use of such
heuristics reduces the complexity of the partition significantly.
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The complexity is further reduced by implementing control input trajectory
parameterization as it is described in Tondel & Johansen (2002). The idea is to use
an input trajectory parameterization with less degrees of freedom in order to reduce
the dimension of the optimization problem. The most common approach is to pre-
determine the time-instants at which the control input is allowed to change (input
blocking):

Nebange=[1 NY N3 ... N{] (66)

The following approximate mp-QP algorithm is taken from Johansen & Gran-
charova (2003):

Algorithm 3 {approximate mp-QP):

Step 1. Initialize the partition to the whole hyper-rectangle, i.e. P={X}. Mark the
hyper-rectangle X as unexplored.

Step 2. Select any unexplored hyper-rectangle X,e P. If no such hyper-rectangle
exists, go to step 8.

Step 3. Compute the solution to the QP (38)(39) for x fixed to each of the 2"
vertices of the hyper-rectangle X,. If all QPs have a feasible solution, go to
step 5. Otherwise, go to step 4.

Step 4. Compute the size of X, using some metric. If it is smaller than some given
tolerance, mark X, infeasible and explored. Go to step 2. Otherwise, go to
step 7.

Step 5. Compute an affine state feedback Z, using Lemma 1, as an approximation
to be used in X,. If no feasible solution was found, go to step 7.

Step 6. Compute the error bound &, in X;. If £, <&, mark X, as explored and feasible
and go to step 2.

Step 7. Split the hyper-rectangle X, into two hyper-rectangles X, and X, by applying
the heuristic splitting rule, Mark them unexplored, remove X, from P, add
X, and X, to P, and go to step 2.

Step 8. If necessary, split the hyper-rectangles containing the origin such that
z*(x)=0 is optimal everywhere in these hyper-rectangles. Terminate.

This algorithm will terminate with a PWL function that is an approximation to
the PWL exact solution and is defined on an inner approximation X, of the set
XnX;. The set X, is represented as a union of hyper-rectangles.

In Grancharova et al. (2003), the approximate explicit MPC approach has been
experimentally tested on a two-input two-output laboratory gas-liquid separation
plant. The approach achieves performance close to that of conventional MPC, but
requires only a fraction of the real-time computational machinery, leading to fast
and reliable computations.

A convex nonlinear extension of the approximate explicit MPC approach has
recently been developed in Johansen (2004).

3.4. Stability of the PWL approximate solution

It is shown in Johansen & Grancharova (2003) that under some assumptions on
the terminal set Q and the tolerance # the approximate explicit MPC will make the
origin asymptotically stable.

Let T" be the largest hyper-rectangle containing the origin in its interior where the
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solution computed by the approximate explicit MPC is u*(x)=Kx, i.e. exactly the
unconstrained LQR feedback. It is straightforward to show that Algorithm 3 leads
to a non-empty I' due to step 8. Let the terminal set Q be the maximal output
admissible set (Gilbert & Tan, 1991) for the linear system x(f+ 1)=(A4+ BK)x(1)
contained in the polyhedral set:

Y={xe Flumin <Kx Llmaxs Ymin S Cx@)’mx} (67]

The set Q is a polyhedron with a finite number of facets and can be easily computed,
since A+ BK is Hurwitz and I' is bounded because X is bounded (Gilbert & Tan,
1991). The stability result is formulated in the following theorem (Johansen &
Grancharova, 2003):

Theorem 5:

Consider the mp-QP problem (38)—(39) with H>0 defined on a hypercube X such
that X;c X. Define £=Q+ K" RK, assume >0, and let y be the largest positive
number for which the ellipsoid E={xe X;|x"Zx<y} is contained in Q. Moreover,
assume the tolerance £ satisfies:

(68)

where xo=arg min x"Xx. Then the approximate explicit MPC computed by

xeXg

Algorithm 3 in closed loop with (17) makes the origin asymptotically stable for all
x(0)€ X;, and the state and input trajectories are feasible. |

3.5. Example

Consider the double integrator from section 2.3.2. With horizon N=10 and
y=0.13, Algorithm 3 gives the quad-tree partition in Figure 6 with 214 regions. The
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Figure 6. Quad-tree partition for the double integrator with N=10.
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right: State x,.

method based on the cost function approximation error (Johansen & Grancharova,
2003) is used. The sets E and €, together with the control and state trajectories
obtained with the exact and the approximate approaches are shown in Figure 7. The
solid and dashed curves show an exact and approximate trajectory, respectively. We
observe that the discrepancy between them is negligible.

The k - d tree partition for the double integrator, obtained by applying the method
based on the control input approximation error (Grancharova & Johansen, 2002)
and using the heuristic splitting rule, is given in Figure 8. It can be seen that a
significant reduction in complexity is achieved (the state space partition has 97
regions). The relative tolerance in control input error is | &=0.5.

It is interesting to compare the structure of the partitions of the approximate
PWL explicit MPC feedback laws with the partitions of the exact PWL explicit MPC
feedback law, as shown in Figure 4 for the case of horizon N=10. In parts of the
state space where the exact partition contains several smaller regions while the
approximate partition contains only a few large regions, the explanation is that the
approximate approach only considers the first sample of the control input and is able
to reduce complexity. In parts of the state space where the opposite is true, i.e. the
approximate partition is more complex, this is due to a structural mismatch because
the orthogonality of the hyperplanes of the approximate partition is enforced.

The exact partition in Figure 4 contains 191 polyhedral regions and is thus of
comparable complexity to the approximate partitions. Still, it is clear that there will
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Figure 8. k—d tree partition for the double integrator with N=10.

be significantly higher demand for real-time processing capacity and computer
memory, since all hyperplanes in the partition are different and they are not
orthogonal. This also holds if a search tree is constructed from the exact partition as
proposed in Tendel & Johansen (2002). In this case there will be 9 levels in the tree
and 60 arithmetic operations are required to compute the exact solution, while about
3150 numbers must be stored in real-time computer memory. With the suggested
approach, 18 arithmetic operations are sufficient, and only about 700 numbers must
be stored for the partition with 97 regions. Of course, the price to be paid for this
complexity reduction is an approximation error.

As in Johansen & Grancharova (2002) we remark that there is a significant
difference between the exact and approximate approaches when the complexity of
the partition is viewed as a function of the horizon. While the number of regions
with the exact approach seems to give a very rapid growth with N, (Tendel ez al.,
2003), the approximate approach gives a partition complexity that is almost independ-
ent of the horizon N. One reason for this is that in the approximate approach it is
taken into account that we only need the first sample of the input trajectory in order
to implement the MPC.

3.6. Robust approximate explicit model predictive control in the presence of bounded
disturbances

Some of the exact mp-QP approaches have been further extended to ensure
robustness of the explicit MPC controllers against disturbances (Bemporad et al.,
2001; Kakalis et al., 2002; Kerrigan & Maciejowski, 2003; Sakizlis ef al., 2004). In
Kakalis et al. (2002) it is assumed that the disturbance input belongs to a compact
polyhedral set, and the approach in Grossmann et al. (1983) is applied to ensure
feasible operation of the MPC controller that minimizes the nominal value of the
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performance index. This work has been further extended to proportional integral
controllers (Sakizlis et al., 2004). In Bemporad et al. (2001), an approach to
explicit solution of robust MPC problems based on a min-max formulation with a
performance index expressed in oo-norm has been proposed. It has to be mentioned
however, that solution obtained by optimizing the worst value of the performance
criterion can be quite conservative, In Kerrigan & Maciejowski (2003), it is supposed
that the uncertainty set is a polytope and it is described how a class of uncertain
quadratic and linear optimization problems can be converted to a mulli-parametric
quadratic programming (mp-QP) or multi-parametric linear programming (mp-LP)
problems by solving as many linear programs (LPs) as there are constraints in
the optimization problem without uncertainty. It is also shown in Kerrigan &
Maciejowski (2003) that if the uncertainty set is given by upper and lower bounds
only, then this transformation can be done by simply computing the 1-norms of the
rows of the matrix by which the uncertainty enters the constraint.

In this section, an approximate mp-QP approach to explicit solution of con-
strained lincar MPC problems in the presence of bounded disturbances is described
(Grancharova et al., 2003). It is based on an orthogonal search tree structure of the
state space partition and thus represents an extension of the approximate mp-QP
approach Johansen & Grancharova (2003). Like in Kakalis ez al. (2002), the explicit
MPC controller avoids conservativeness by minimizing the nominal value of the
performance index and it is robust in the sense that all constraints are satisfied for
all possible disturbance realizations within the specified range. Here we consider the
case where the set of the disturbance inputs represents a hyper-rectangle that includes
the origin in its interior. Based on this assumption, the conditions which guarantee
feasible operation of the MPC controller are derived in a way similar to that in
Kerrigan & Maciejowski (2003) and the original mp-QP problem with disturbance
input is converted into an mp-QP problem without disturbances.

Problem formulation:
Consider the linear discrete-time system:

x(t+ 1) =Ax(f)+ Bu(?) + TO() (69)
W)= Cx(1)

where x(2)e #", u(t)e #™, and y(t) e #? are the state, input and output variable, 6(f)
is the disturbance input that is assumed to belong to a bounded polyhedral set
() e @ 7. Also, Ac#"*", Be #"*™, CeR**" and TeR"**. Let O=[0],...,
8T, v ,]Te@®? is a disturbance realization, with @ c®7={@4x ©*. .. x @1} c .
It is assumed that a full measurement of the state x(#) is available at the current time ¢.
Then, for the current x(z), MPC solves the optimization problem:

V*(x(1). ©) = w min J(U, x(1), ©) (70)

subject to x,|,=x(r) and:
yminﬂyf+kltéymaxs k=la---1N (71)

Uyin S Up + 1S Umas k=0,1,....N—1 (72)

xt+N|rEQ (73)
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Xeakt 110 =AXp ket Btk + TOpiy, 0,,1,€0*, k>0 (74)
yﬁ-kit=cxx+k|n k=0 (75)

with the cost function given by:

N—-1

J(U, x(1), ©)= Z [x;rﬁ-kI:Qxﬁklt+“tr+l:R”:+k]+xtT+N|thr+N|t (76)
k=0

and symmetric R>0, 0=0. We assume (4, B) is stabilizable, (4, ./Q) is observable,
) is a polyhedral terminal set, and the final cost matrix P>0 is the solution of the
associated algebraic Riccati equation. It is also assumed w4, > 0> t44i0, Yamax > 0> Vinins
such that the origin is an interior point in the feasible set X; = {x(f)€ %"|3U satisfying
(71)~(75)}. Here, we consider the nominal optimization criterion:

} J(U, x(2), 6%) an
1

{1 P Yyt N —

corresponding to 6(1)=0"=0, where 6" is the nominal value of the disturbance
input. In this problem formulation, the robustness is defined in terms of satisfaction
of the output and input constraints (71) and (72) under all possible disturbance
realizations © € ©F that influence the state of the system (equation (74)).

By substituting:

k—1 k-1
x,+k|,=A"x(t)+ Z AjBut+k—1—j+ Z Ajml+k—l—j (78)
=0 j=0

in the constraints (71)~75), they can be represented in the form:
GUKW+Ex()+E,0, YVOeBP (79

where U=[ul,... ,uf,y_,]"€%#™ is the optimization vector and @e©F is the

disturbance realization. Then the nominal optimization criterion (77) is rewritten as:

V:,,,,,(x(r))zéxr(t) Yx(t)+m£'}n {% UTHU+xT(t)FU} (80)

We apply the same idea as in Kerrigan & Maciejowski (2003) of pre-stabilizing (69)
with a linear state feedback gain and optimizing over a sequence of perturbations to
this control law. Thus, we define:

U=—H 'F'x(t)+z (81)

where ze %#™" is the control input perturbation. Then, the optimization problem (80)
subject to constraint (79) is transformed into the following mp-QP problem:

V¥ om(X)=min ;zTHz (82)

subject to:

Gz<W+S,x(1)+5,0, VOcO? (83)
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Assumption 1.
The disturbance input set:

Q1= {0eR*|0"<0<O"} (84)
represents a hyper-rectangle that includes the origin in its interior.
Definition §:
Consider the ith constraint defined by G', W', §%, S% rows of the matrices G, W, S,

S,. The worst disturbance realization for the i-th constraint, denoted by ®' e ®” is
one which solves the linear program:

L0 = mlgs {S50O} (85)

Be

Remark:
The linear program (85) can be easily solved by exploiting the fact that the
disturbance input set is a hyper-rectangle. Thus:

min {S0}= mm {ZS } Z min  {S} 0} = me{S R TCH
el j= 1a,<e,<91
(86)

where S% ; is the j-th element of the row vector S5, ©; is the jth element of the
column vector of disturbance realization @ e ®®c 9?‘*” and ®F, O are respectively
the lower and upper bounds of ©;.

Lemma 2:
If there exists an affine function z(x) that satisfies the following constraint:
Gz<W+8,x (87)
where the i-th row of the matrix W is determined by:
Wi=w 45,0 (88)

and where @ e ©P is the worst disturbance realization for the i-th constraint, then
this implies that z(x) will satisfy constraint (83) for all possible disturbance realiza-
tions © € ®”. Such z(x) is referred to as robustly feasible. ]

In this way, the constraint (87) which ensures robust feasibility can be easily
constructed. Then, the original mp-QP problem (82)—(83) becomes:

V' om(X)=min ; zTHz (89)

subject to:
Gz < W+Sx(1) (90)

where W is determined by (88). Thus the original mp-QP problem with disturbance
input (problem (82)—(83)) is reformulated as an mp-QP problem without disturbance
(problem (89)(90)) and therefore the approximate approach (Johansen & Granch-
arova, 2003) for explicit solution of mp-QP problems can easily be applied to this
problem. It has to be stressed that the approximate approach (Johansen & Granch-
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arova, 2003) guarantees that the optimal solution is feasible in sense that it will
satisfy constraint (90). This directly implies by Lemma 2 above that constraint (83)
of the original mp-QP problem will be satisfied for all possible disturbance realiza-
tions. This is summarized in the following Lemma:

Lemma 3 ( feasible control in the presence of disturbance):
Consider the bounded polyhedron X, with vertices {v,,v,,...,vu}. If Ko and gq
solve the QP:

M
min 3 (2%(v) —Kovi—go) " H(=*(©) — Koti—go) on
Ko. g0 j=}

subject to:

G(KOU, Fgo}ﬂ W"‘Slvi, IE{],Z,...,M} (92)
then the least squares approximation Zy(x)=Kox+g, is robustly feasible for the
mp-QP (82)83) for all xe Xyand all disturbance realizations © € @5, [ |
Example:

Consider the double integrator:
x(t+1) = Ax(f)+ Bu(t)+ TO(r) (93)
with:

1 T, T? 1 0
A= . B= , T= (94)
0 1 T, 0o 1

where the sampling interval is 7,=0.3. Consider the MPC problem with horizon
N=30. The cost matrices are Q=diag(l,0), R=1, and the matrix P>0 is given as
the solution of the algebraic Riccati equation. The constraints are:

~1<u<] (95)
—0.5<x,<0.5 (96)
The disturbance vector #=[6,6,]" has the following bounds:
—0.01<0,()<0.01 97)
—0.015<0,(r)<0.015 (98)

The approximation tolerance >0 is chosen according to Theorem 5, with y=0.1.
The state space partition of the robust approximate MPC controller is shown in
Figure 9. It has 172 regions and 11 levels of search. With one scalar comparison
required at each level of the k—d tree, 11 arithmetic operations are required in the
worst case to determine which region the state belongs to. Totally, 15 arithmetic
operations are needed in real-time to compute the control input with this MPC
controller (11 comparisons, 2 multiplications and 2 additions).

In Figure 10, the sets Q, E and S (S is the terminal region to which the state
converges), and disturbance realizations with constant magnitude are given. In
Figure 11, the control and state trajectories obtained with the robust MPC under
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Figure 9. k—d tree partition of the robust MPC.
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Figure 10. Left: The sets €, E, S, the approximate (the solid curve) and the exact (the dashed
curve) state trajectories. Right: Disturbance inputs with constant magnitude.

these disturbances are shown (the trajectories with the exact mp-QP approach are
given for comparison). The approximate and the exact state trajectories are also
depicted in Figure 10, where it ean be seen that with the increase of time the state
enters and remains in the terminal region S. It can be seen from the above figures
that the robust MPC keeps all constraints imposed on the system.
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Figure 11. Control input and state trajectorics for the robust MPC (the solid curves are with
the approximate controller and the dashed curves are with the exact controller).

References

BeMPORAD, A., BORRELLL, F. & MoRrARI, M. (2001). Robust model predictive control: Piecewise
linear explicit solution, Proceedings of European Control Conference, Porto, Portugal,
pp. 939-944,

BeMPORAD, A. & Fiurpr, C. (2003). Suboptimal explicit RHC via approximate quadratic
programming, Optim. Theory Applicat., 117, pp. 5-38.

BemMPORAD, A. & Morari, M. (1999). Robust model predictive control: A survey, in A.
GaruLLL, A. Tes1, & A. ViciNo, eds, Robustness in Identification and Control, number
245 in Lecture Notes in Control and Information Sciences, Springer-Verlag, pp. 207-226.

BEMPORAD, A., MORARI, M., Dua, V. & PistikopouLos, E. N. (2000). The explicit solution of
model predictive control via multiparametric quadratic programming, Proceedings of
the American Control Conference, Chicago, Illinois, pp. 872-876.

BempPOrAD, A., Morary, M., Dua, V. & PistikorouLos, E. N. (2002). The explicit linear
quadratic regulator for constrained systems, Automatica, 38, pp. 3-20.

BenTLEY, J. L. (1975). Multidimensional binary search trees used for associative searching,
Commnunications of the ACM, 18, pp. 509-517.

CHMIELEWSK], D. & MANOUSIOUTHAKIS, V. (1996). On constrained infinite-time linear quadratic
optimal control, Systems & Control Letters, 29(3), pp. 121-130.

GiLeerT, E. G. & Tan, K. T. (1991). Linear systems with state and control constraints: The
theory and application of maximal output admissible sets, IEEE Trans. Automatic
Control, 36, pp. 1008-1020.

GRANCHAROVA, A. & JoHaNseN, T.A. (2002). Approximate explicit model predictive control
incorporating heuristics, Proceedings of IEEE International Symposium on Computer
Aided Control System Design, Glasgow, Scotland, UK, pp. 92-97.

GRANCHAROVA, A. & JoHansen, T. A. (2003). Design of robust explicit model predictive
controller via orthogonal search tree partitioning, Proceedings of European Control
Conference, Cambridge, UK.

GRANCHAROVA, A., JOHANSEN, T. A. & Kocuan, JI. (2003). Explicit model predictive control
of gas-liquid separation plant, Proceedings of European Control Conference, Cam-
bridge, UK.

Grossmann, 1. E., Hatemang, K. P. & Swaney, R. E. (1983). Optimization strategies for
flexible chemical processes, Computers and Chemical Engineering, 1, pp. 439-462.
Jouansen, T. A. (2004). Approximate explicit receding horizon control of constrained non-

linear systems, Automatica, 40, pp. 293-300.

Jonansen, T. A. & GRANCHAROVA, A. (2002). Approximate explicit model predictive control
implemented via orthogonal search tree partitioning, Proceedings of 15th IFAC World
Congress, Barcelona, Spain, session T-We-M17.

JoOHANSEN, T. A. & GRANCHAROVA, A. (2003). Approximate explicit constrained linear model
predictive control via orthogonal search tree, TEEE Trans. Automatic Control, 48, pp.
810-815.




Explicit Approaches 1o Constrained Model Predictive Control: A Survey 157

JoHanseNn, T. A., PETERSEN, 1. & SLUPPHAUG, O. (2002). Explicit sub-optimal linear quadratic
regulation with state and input constraints, dutomatica, 38, pp. 1099-1111.

Kaxkauis, N. M. P., Dua, V., Sakizws, V., PERKINS, J. D. & PistikorouLos, E. N. (2002). A
parametric optimisation approach for robust MPC, Proceedings of 15th IFAC World
Congress, Barcelona, Spain.

KERRIGAN, E. C. & Maciejowskl, J. M. (2003). On robust optimization and the optimal
control of constrained linear systems with bounded state disturbances, Proceedings of
Eurepean Control Conference, Cambridge, UK.

KWAKERNAAK, H. & Sivan, R. (1972). Linear optimal control systems. Wiley-Interscience,
New York.

MAvYNE, D. Q., RAWLINGS, J. B, Rao, C. V. & SCOKAERT, P. O. M. (2000). Constrained model
predictive control: Stability and optimality, Automatica, 36, pp. 789-814.

NOCEDAL, J. & WRIGHT, S. (1999). Numerical Optimization, Springer-Verlag New York, Inc.

PistikopouLos, E. N., Dua, V., Bozinis, N. A., BEMPORAD, A. & Morar1, M. (2000). On-
line optimization via off-line parametric optimization tools, Computers & Chemical
Engineering, 24, pp. 183-188.

Sakizuis, V., Kakaus, N. M. P, Dua, V., Perkins, J. D. & PistikorouLos, E. N. (2004).
Design of robust model-based controllers via parametric programming, Automatica, 40,
pp. 189-201.

SCOKAERT, P. 0. M. & RAWLINGS, J. B. (1998). Constrained linear quadratic regulation, JEEE
Trans. Automatic Control, 43, pp. 1163-1169.

SErON, M., DE Dona, J. A., & Goobpwin, G. C. (2000). Global analytical model predictive
control with input constraints, Proceedings of IEEE Conf. Decision and Control, Sydney,
TuA05-2.

SzNAIER, M. & DAMBORG, J. (1987). Suboptimal control of linear systems with state and
control inequality constraints, Proceedings of 26th IEEE Conference on Decision and
Control, 1, pp. 761-762.

TonpEL, P. & Jouansen, T. A. (2002). Complexity reduction in explicit linear model predictive
control, Proceedings of 15th IFAC World Congress, Barcelona, Spain, session T-We-M17.

TonpEL, P., Jouansen, T. A. & BEMPORAD, A. (2003). An algorithm for multi-parametric
quadratic programming and explicit MPC solutions, Auromatica, 39, pp. 489-497.




