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Simple analytic rules for model reduction and PID controller tuning*
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The aim of this paper is to present analytic rules for PID controller tuning that
are simple and still result in good closed-loop behavior. The starting point
has been the IMC-PID tuning rules that have achieved widespread industrial
acceptance. The rule for the integral term has been modified to improve disturb-
ance rejection for integrating processes. Furthermore, rather than deriving separate
rules for each transfer function model, there is a just a single tuning rule for a
first-order or second-order time delay model. Simple analytic rules for model
reduction are presented to obtain a model in this form, including the ‘half rule’
for obtaining the effective time delay.

1. Introduction

Although the proportional-integral-derivative (PID) controller has only three
parameters, it is not easy, without a systematic procedure, to find good values
(settings) for them. In fact, a visit to a process plant will usually show that a large
number of the PID controllers are poorly tuned. The tuning rules presented in this
paper have developed mainly as a result of teaching this material, where there are
several objectives:

1. The tuning rules should be well motivated, and preferably model-based and
analytically derived.

2. They should be simple and easy to memorize.

3. They should work well on a wide range of processes.

In this paper a simple two-step procedure that satisfies these objectives is
presented:

Step 1. Obtain a first- or second-order plus delay model. The effective delay in
this model may be obtained using the proposed half-rule.

Step 2. Derive model-based controller settings. PI-settings result if we start from
a first-order model, whereas PID-settings result from a second-order
model.

There has been previous work along these lines, including the classical paper by
Ziegler & Nichols (1942), the IMC PID-tuning paper by Rivera et al. (1986), and
the closely related direct synthesis tuning rules in the book by Smith & Corripio
(1985). The Ziegler—Nichols settings result in a very good disturbance response for
integrating processes, but are otherwise known to result in rather aggressive settings
(Tyreus & Luyben, 1992; Astrom & Hagglund, 1995), and also give poor performance
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Figure 1. Block diagram of feedback control system. In this paper we consider an input
(‘load’) disturbance (g, = g).

for processes with a dominant delay. On the other hand, the analytically derived
IMC-settings in Rivera et al. (1986) are known to result in a poor disturbance
response for integrating processes (e.g. Chien & Fruehauf,1990; Horn et al., 1996),
but are robust and generally give very good responses for setpoint changes. The
single tuning rule presented in this paper works well for both integrating and pure
time delay processes, and for both setpoints and load disturbances.

1.1. Notation

The notation is summarized in Figure 1, where u is the manipulated input
(controller output), d the disturbance, y the controlled output, and y, the setpoint
(reference) for the controlled output. g(s)= (Ay/Au) denotes the process transfer
function and c(s) is the feedback part of the controller. The A used to indicate
deviation variables is deleted in the following. The Laplace variable s is often omitted
to simplify notation. The settings given in this paper are for the series (cascade,
‘interacting’) form PID controller:

Series PID: ¢(s) = K, - <TI;HS— !

>'(TDS+ 1)
ey

K,
= (s + (r+1p)s+ 1)
I

where K, is the controller gain, 7, the integral time, and 75 the derivative time. The
reason for using the series form is that the PID rules with derivative action are then
much simpler. The corresponding settings for the ideal (parallel form) PID controller
are easily obtained using equation (36).

1.2. Simulations

The following series form PID controller is used in all simulations and evaluations
of performance:



Simple analytic rules for model reduction and PID controller tuning 87

u(s) =Kc<ﬂ><ys(s)—“’”1y(s)> @

8 Tps+1

with 77 = a1, and o = 0.01 (the robustness margins have been computed with o = 0).
Note that we, in order to avoid ‘derivative kick’ do not differentiate the setpoint in
equation (2). The value & =0.01 was chosen in order to not bias the results, but in
practice (and especially for noisy processes) a larger value of « in the range 0.1-0.2
is normally used. In most cases we use PI-control, i.e. 7p,=0, and the above
implementation issues and differences between series and ideal form do not apply. In
the time domain the PI-controller becomes

u(t) = uo+ K, <(bys(t) —y(O)+ Tl[ J (ys(0) — y(f))dr> €)

0

where we have used b = 1 for the proportional setpoint weight.

2. Model approximation (Step 1)

The first step in the proposed design procedure is to obtain from the original
model g, (s) an approximate first- or second-order time delay model g(s) in the form

k

— 7-6_93
(tys+D(1,541)

g(s)
)
- __,_Lle—ﬂs

(s+ 1z )84 1)

Thus, we need to estimate the following model information (see Figure 2):

k=Ay(=)/Au

Time

Figure 2. Step response of first-order plus time delay process, g(s) =ke %/(r s+ 1).



88 S. Skogestad

e Plant gain, k&

e Dominant lag time constant, t,

e (Effective) time delay (dead time), 0

e Optional: Second-order lag time constant, 7, (for dominant second-order
process for which 7, > 6, approximately)

If the response is lag-dominant, i.e. if 7; > 86 approximately, then the individual
values of the time constant 7, and the gain k may be difficult to obtain, but at the
same time are not very important for controller design. Lag-dominant processes may
instead be approximated by an integrating process, using

k k_K
T5+1 7 18 s

&)

which is exact when 7, — o0 or 1/t; — 0. In this case we need to obtain the value for the
Slope, k' ¥ ki,

The problem of obtaining the effective delay 6 (as well as the other model
parameters) can be set up as a parameter estimation problem, for example, by making
a least squares approximation of the open-loop step response. However, our goal is
to use the resulting effective delay to obtain controller settings, so a better approach
would be to find the approximation which for a given tuning method results in the
best closed-loop response (here ‘best’ could, for example, be to minimize the inte-
grated absolute error (IAE) with a specified value for the sensitivity peak, M,).
However, our main objective is not ‘optimality’ but ‘simplicity’, so we propose a
much simpler approach as outlined next.

2.1. Approximation of effective delay using the half rule

We first consider the control-relevant approximation of the fast dynamic modes
(high-frequency plant dynamics) by use of an effective delay. To derive these approxi-
mations, consider the following two first-order Taylor approximations of a time delay
transfer function:

e™™ ~1—0s and 6*932% 1

e ~1+0s

©

From equation (6) we see that an ‘inverse response time constant’ T (negative
numerator time constant) may be approximated as a time delay:

(=T +Dme 76" Y

This is reasonable since an inverse response has a deteriorating effect on control
similar to that of a time delay (e.g. Skogestad & Postlethwaite, 1996). Similarly, from
equation (6) a (small) lag time constant 7, may be approximated as a time delay:

1
ToS+1

e fo° (8)

Furthermore, since
—Tivg 41
T8+ 1

e—ﬂos ze*ﬂos.e—T’o"vs, e TS = e—(60+T'0"v+1:0)s — e—ﬂs
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it follows that the effective delay @ can be taken as the sum of the original delay 6,
and the contribution from the various approximated terms. In addition, for digital
implementation with sampling period A, the contribution to the effective delay is
approximately /2 (which is the average time it takes for the controller to respond to
a change).

In terms of control, the lag-approximation equation (8) is conservative, since the
effect of a delay on control performance is worse than that of a lag of equal magnitude
(e.g. Skogestad & Postlethwaite, 1996). In particular, this applies when approximating
the largest of the neglected lags. Thus, to be less conservative it is recommended to
use the simple half rule:

e Half rule: The largest neglected (denominator) time constant (lag) is distributed
evenly to the effective delay and the smallest retained time constant.

In summary, let the original model be in the form
[T (-Tis+D
J
——————¢ % 9
[Jrios+1) ©)

where the lags ;, are ordered according to their magnitude, and T'%' >0 denote the
inverse response (negative numerator) time constants. Then, according to the half-
rule, to obtain a first-order model e ~%/(z s+ 1), we use

T1=1T10 —I—Tzo 0=0,+—= TZO + Z Tio +Z inv (10)

and, to obtain a second-order model equation (4), we use

T T
T1=T10; T2=Tz0+ ;o; 0="06y+ 3O+ZT10+Z o+ (1D

where A is the sampling period (for cases with digital implementation).
The main basis for the empirical half-rule is to maintain the robustness of the
proposed PI- and PID-tuning rules, as is justified by the examples later.

Example E1. The process

1
s+ D025+ 1)

is approximated as a first-order time delay process, g(s) =ke™**!/(z,s+1), with
k=1,0=022=0l1andt;,=1+0.22=1.1.

go(s) =

2.2.  Approximation of positive numerator time constants

We next consider how to get a model in the form of eqaution (9), if we have
positive numerator time constants I, in the original model g,(s). It is proposed to
cancel the numerator term (7,s+ 1) against a ‘neighbouring’ denominator term
(tos+1) (where both T, and 7, are positive and real) using the following
approximations:
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(T, /x, for Ty > 74> 0 (Rule T1)
1,16 for To=20>1, (Rule T1a)
Tos+1 /1 for0=T, =1, (Rule T1b) (12)
o5+ 1 | Tyl for 1, > T, > 50 (Rule T2)
TolT N .
\% for ,% min (1o, 50) > T, (Rule T3)

Here § is the (final) effective delay, which exact value depends on the subsequent
approximation of the time constants (half rule), so one may need to guess 6 and
iterate. If there is more than one positive numerator time constant, then one should
approximate one T, at a time, starting with the largest 75,.

We normally select 7, as the closest larger denominator time constant (t, > Tp)
and use Rules T2 or T3. The exception is if there exists no larger t,, or if there is
smaller denominator time constant ‘close to’ 7, in which case we select 7, as the
closest smaller denominator time constant (1, < T;) and use rules T1, Tla or Tlb.
To define ‘close to’ more precisely, let 7,, (large) and 7, (small) denote the two
neighboring denominator constants to t7,. Then, we select 7y =1,, (small) if
Tyt < Too!/ Ty and Ty /74, < 1.6 (both conditions must be satisfied).

Derivations of the above rules and additional examples are given in the Appendix.

Example E3. For the process (Example 4 in Astrom et al., 1998)

2155 +1)
(205 + 1)(s + 1)(0.1s + 1)?

we first introduce from Rule T2 the approximation

155+1 155
205417205~ 07

(Rule T2 applies since T, =15 is larger than 50, where 6 is computed below.)
Using the half rule, the process may then be approximated as a first-order time delay
model with

go(s) = (13)

k=2-0.75 =1.5; 0=%+0.1=0.15; r1=1+%=1.05

or as a second-order time delay model with

=OT1=0.05; T,=1; 12=0.1+£:O.15

k=1.5 0 >

Derivation of PID tuning rules (Step 2)
Direct synthesis (IMC tuning) for setpoints

Next, we derive for the model in equation (4) PI-settings or PID-settings using
the method of direct synthesis for setpoints (Smith & Corripio, 1985), or equivalently

the Internal Model Control approach for setpoints (Rivera ef al., 1986). For the
system in Figure 1, the closed-loop setpoint response is

Y _ 9)e(s)

Ve )+ 1 (14)
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where we have assumed that the measurement of the output y is perfect. The idea of
direct synthesis is to specify the desired closed-loop response and solve for the
corresponding controller. From equation (14) we get
1 —
(s) Lo
as)= g(S) (y/ys)desired -1
We here consider the second-order time delay model g(s) in equation (4), and

specify that we, following the delay, desire a simple first-order response with time
constant 7, (Rivera et al., 1986; Smith & Corripio, 1985):

Y 1 —0
7 - s 16
<ys>desired TS+ 1 ) ( )

We have kept the delay # in the ‘desired’ response because it is unavoidable.
Substituting equations (16) and (4) into equation (15) gives a ‘Smith Predictor’
controller (Smith, 1957):

c(s)

(15)

(s + D(ts+ 1) 1
N k (1.8 +1—e7%)

a7

7, is the desired closed-loop time constant, and is the sole tuning parameter for the
controller. Qur objective is to derive PID settings, and to this effect we introduce in
equation (17) a first-order Taylor series approximation of the delay, ¢™% =~ 1—0s.
This gives

(s +D(rs+ 1) 1
ols) = k (t. + O)s

which is a series form PID-controller equation (1) with Rivera et al. (1986); Smith &
Corripio (1985)

(18)

R T . .
Kc_kfc+0_k’(TC+9)’ Ty =171, Ip=71, (19)

3.2. Modifying the integral time for improved disturbance rejection

The PID-settings in equation (19) were derived by considering the setpoint
response, and the result was that we should effectively cancel the first order dynamics
of the process by selecting the integral time t;=17,. This is a robust setting which
results in very good responses to setpoints and to disturbances entering directly at
the process output. However, it is well known that for lag dominant processes with
7,> 0 (e.g. an integrating processes), the choice 7; =, results in a long settling time
for input (‘load’) disturbances (Chien & Fruehauf, 1990). To improve the load
disturbance response we need to reduce the integral time, but not by too much,
because otherwise we get slow oscillations caused by having almost have two
integrators in series (one from the controller and almost one from the slow lag
dynamics in the process). This is illustrated in Figure 3, where we for the process

e ®(rs+1) with 1,=30,0=1
consider PI-control with K, =15 and four different values of the integral time:

o 7,=1, = 30 (‘IMC-rule’, see equation (19): excellent setpoint response, but slow
settling for a load disturbance.
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y(®)

0 10 20 30 40 50 60
time

Figure 3. Effect of changing the integral time 7; for PI-control of ‘almost integrating’ process
g(s) = °/(30s + 1) with K, = 15. Unit setpoint change at ¢ = 0; load disturbance of magnitude
10 at £ =20.

e 1, =80 =8 (SIMC-rule, see below): faster settling for a load disturbance.
e 7, =4: even faster settling, but the setpoint response (and robustness) is poorer.
e 1, =2: poor response with ‘slow’ oscillations.

A good trade-off between disturbance response and robustness is obtained by
selecting the integral time such that we just avoid the slow oscillations, which
corresponds to 7; = 86 in the above example. Let us analyze this in more detail. First,
note that these ‘slow’ oscillations are not caused by the delay 6 (and occur at a lower
frequency than the ‘usual fast’ oscillations which occur at about frequency 1/6).
Because of this, we neglect the delay in the model when we analyze the slow
oscillations. The process model then becomes

e 1 kK

=k ~k R =—
9() T8+ 1 T8+ 1 18 s

where the second approximation applies since the resulting frequency of oscillations
W, 1s such that (t;we)? is much larger than 1.* With a PI controller ¢ = K, (1 + (1/1;)s)
the closed-loop characteristic polynomial 1+ ge¢ then becomes

Tt

k’KCSZ +os+1

which is in standard second-order form, 735> + 21,¢s + 1, with

'From equations (20) and (22) we get 1o =1y/2, 80 wot, = (1/70)7; = 2(1,/7;). Here 1, =1,
and it follows that wy7, > 1.



Simple analytic rules for model reduction and PID controller tuning 93

- 1 ——
TO:\/k'II{r; C':E\/chTI (20)
Oscillations occur for { < 1. Of course, some oscillations may be tolerated, but a
robust choice is to have { =1 (see also Marlin (1995), p. 588), or equivalently
K.t =4Ik (21)

Inserting the recommended value for K, from equation (19) then gives the
following modified integral time for processes where the choice 7, = 7, is too large:

1 =4(t.+0) (22)

3.3. SIMC-PID tuning rules

To summarize, the recommended SIMC PID settings? for the second-order time
delay process in equation (4) are®

1 7 1 1
Tkt +0 Krt.+0 (23)
7y =min{t,,4(7, + 0)} (24)
TD=T2 (25)

Here the desired first-order closed-loop response time 7, is the only tuning
parameter. Note that the same rules are used both for PI- and PID-settings, but the
actual settings will differ. To get a PI-controller we start from a first-order model
(with 7, =0), and to get a PID-controller we start from a second-order model.
PID-control (with derivative action) is primarily recommended for processes with
dominant second order dynamics (with 7, > 6, approximately), and we note that the
derivative time is then selected so as to cancel the second-largest process time
constant.

In Table 1 we summarize the resulting settings for a few special cases, including
the pure time delay process, integrating process, and double integrating process. For
the double integrating process, we let 1, = o0 and introduce k"= k'/t, and find (after
some algebra) that the PID-controller for the integrating process with lag approaches
a PD-controller with

1 |

C:F‘m; Tp = 41+ 0) (26)

This controller gives good setpoint responses for the double integrating process,
but results in steady-state offset for load disturbances occurring at the input. To
remove this offset, we need to reintroduce integral action, and as before propose to use

1 =4(z, + 6) 27

It should be noted that derivative action is required to stabilize a double
integrating process if we have integral action in the controller.

>Here SIMC me;ms ‘Simple control’ or ‘Skogestad IMC’.
3The derivative time in equation (25) is for the series form PID-controller in equation (1).
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Table 1. SIMC PID-settings (equations (23)--(25)) for some special cases of equation (4)
(with 7, as a tuning parameter)

Process g(s) K, (o Tp?

First-order . k—S - L min{z,,4(t,+0)} —
(ty8+1) kt.+0

Second-order, e 0 1 1, .

. > - 2 L4t +6

equation (4) k(Tls+ D(tys+1) k7,40 min{ty, 4(t )} T2

Pure time delay® ke ™% 0 0° —

Integrating® K e ™ 11 4z, +0) _

s kK (t.+0) ¢

Integrating with lag k’i L 4(z.+6) Ty

s(t,54+1) k' (t,+06)
. . o 1 1
Double integrating® "© e 4(z,+0 4(z,+0
ouble integrating k o K iG1 07 (z.+9) (z.+6)

2The pure time delay process is a special case of a first-order process with 7, = 0.

® The integrating process is a special case of a first-order process with t,;— co.

¢ For the double integrating process, integral action has been added according to equation
().
4The derivative time is for the series form PID controller in equation (27).
K, 1
okt +6)

. K .
¢ Pure integral controller c(s) = ?I with K;%f

3.4. Recommended choice for tuning parameter T,

The value of the desired closed-loop time constant 7, can be chosen freely, but
from equation (23) we must have —6<71,<o0 to get a positive and nonzero
controller gain. The optimal value of 7, is determined by a trade-off between:

1. Fast speed of response and good disturbance rejection (favored by a small
value of 7,)
2. Stability, robustness and small input variation (favored by a large value of 7,).

A good trade-off is obtained by choosing 1. equal to the time delay:
SIMC-rule for fast response with good robustness: 7,=0 (28)

This gives a reasonably fast response with moderate input usage and good robustness
margins, and for the second-order time delay process in equation (4) results in the
following SIMC-PID settings which may be easily memorized (z, = 8):

_05%,_051
7, =min{z,, 80} (30)
TD=T2 (31)

The corresponding settings for the ideal PID-controller are given in equations (37)
and (38).
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Table 2. Robustness margins for first-order and integrating time delay process using the
SIMC-settings in equations (29) and (30) (.= 0)

Process g(s) ko K o
e —e
Ts+1 s

: 0.5 1, 0.51
Controller gain, K, 0 "3
Integral time, 7, Ty 80
Gain margin (GM) 3.14 2.96
Phase margin (PM) 61.4° 46.9°
Sensitivity peak, M, 1.59 1.70
Complementary sensitivity peak, M, 1.00 1.30
Phase crossover frequency, w;go - 6 1.57 1.49
Gain crossover frequency, @, - 0 0.50 0.51
Allowed time delay error, AG/0 2.14 1.59

The same margins apply to a second-order process (equation (4)) if we choose t;, = 15, see
equation (31).

4. Evaluation of the proposed tuning rules

In this section we evaluate the proposed SIMC PID tuning rules in equations
(23)—(31) with the choice t, = 0. We first consider processes that already are in the
second-order plus delay form in equation (4). In Section 4.2 we consider more
complicated processes which must first be approximated as second-order plus delay
processes (Step 1), before applying the tuning rules (Step 2).

4.1. First- or second-order time delay processes

4.1.1. Robustness The robustness margins with the SIMC PID-settings in equa-
tions (29)—(31), when applied to first- or second-order time delay processes, are
always between the values given by the two columns in Table 2.

For processes with 7, < 86, for which we use 7;= 1, (left column), the system
always has a gain margin GM = 3.14 and phase margin PM = 61.4°, which is much
better than the typical minimum requirements GM> 1.7 and PM > 30° (Seborg
et al., 1989). The sensitivity and complementary sensitivity peaks are M = 1.59 and
M,=1.00 (here small values are desired with a typical upper bound of 2). The
maximum allowed time delay error is A9/ = PM[rad]/(w, - 6), which in this case gives
A0/0 =2.14 (i.e. the system goes unstable if the time delay is increased from 6 to
(1+2.14)6 =3.140).

As expected, the robustness margins are somewhat poorer for lag-dominant
processes with 7, > 860, where we in order to improve the disturbance response use
7, = 80. Specifically, for the extreme case of an integrating process (right column) the
suggested settings give GM =2.96, PM =46.9°, M,=1.70 and M, =1.30, and the
maximum allowed time delay error is A6 = 1.596.

Of the robustness measures listed above, we will in the following concentrate on
M,, which is the peak value as a function of frequency of the sensitivity function
S =1/(1 + gc). Notice that M, < 1.7 guarantees GM > 2.43 and PM > 34.2° (Rivera
et al., 1986).
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4.1.2. Performance. To evaluate the closed-loop performance, we consider a unit
step setpoint change (y,=1) and a unit step input (load) disturbance (g, =g and
d=1), and for each of the two consider the input and output performance:

4.1.2.1. Output perfomance. To evaluate the output control performance we compute
the integrated absolute error (IAE) of the control error e=y—y;.

IAE = f le(?)] dt
0

which should be as small as possible.

4.1.2.2. Input performance. To evaluate the manipulated input usage we compute the
total variation (TV) of the input u(?), which is sum of all its moves up and down.
TV is a bit difficult to define compactly for a continuous signal, but if we discretize
the input signal as a sequence, [uy, u,, ..., 4;,...], then

™8

TV =

i

[t — ;|

1

which should be as small as possible. The total variation is a good measure of the
‘smoothness’ of a signal.

In Table 3 we summarize the results with the choice t, = 6 for the following five
first-order time delay processes:

Case 1. Pure time delay process

Case 2. Integrating process

Case 3. Integrating process with lag t, =40
Case 4. Double integrating process

Case 5. First-order process with 7, = 46

Note that the robustness margins fall within the limits given in Table 2, except
for the double integrating process in case 4 where we, from equation (27), have added
integral action and robustness is somewhat poorer.

4.1.2.3. Setpoint change. The simulated time responses for the five cases are shown
in Figure 4. The setpoint responses are nice and smooth. For a unit setpoint change,
the minimum achievable IAE-value for these time delay processes is IAE =0 (e.g.
using a Smith Predictor controller equation (17) with 7, = 0). From Table 3 we see
that with the proposed settings the actual IAE-setpoint-value varies between 2.176
(for the first-order process) to 7.920 (for the more difficult double integrating process).

To avoid ‘derivative kick’ on the input, we have chosen to follow industry practice
and not differentiate the setpoint, see equation (2). This is the reason for the difference
in the setpoint responses between cases 2 and 3, and also the reason for the somewhat
sluggish setpoint response for the double integrating process in case 4. Note also that
the setpoint response can always be modified by introducing a ‘feedforward’ filter on
the setpoint or using b # 1 in equation (3).

4.1.2.4. Load disturbance. The load disturbance responses in Figure 4 are also nice
and smooth, although a bit sluggish for the integrating and double integrating
processes. In the last column in Table 3 we compare the achieved TAE-value with
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INPUT u
o -
o

—— case 1 (pure delay))

3 - caseg ln;e ratling 4
-1 =+~ case 3 (int.+la ——
— case 4 duub!egmt.} == 2,3
P case 5 (first-order) | . : ; .
0 5 10 15 20 25 30 35 40

time

Figure 4. Responses using SIMC settings for the five time delay processes in Table 3 (z, = 0).
Unit setpoint change at ¢=0; Unit load disturbance at ¢=20. Simulations are without
derivative action on the setpoint. Parameter values: 0 =1, k=1, k'=1,k"=1.

that for the IAE-optimal controller of the same kind (PI or series-PID). The ratio
varies from 1.59 for the pure time delay process to 5.49 for the more difficult double
integrating process.

However, lower IAE-values generally come at the expense of poorer robustness
(larger value of M), more excessive input usage (larger value of TV), or a more
complicated controller. For example, for the integrating process, the IAE-optimal
PI-controller (K, = (0.91/k") - (1/0), t,=4.160) reduces IAE(load) by a factor 3.27, but
the input variation increases from TV =1.55 to TV=3.79, and the sensitivity
peak increases from M,=1.70 to M,=3.71. The [AE-optimal PID-controller
(K, =(0.80/k")- (1/8), 1,=1.260, 1, =0.760) reduces IAE(load) by a factor 8.2 (to
IAE =1.95k'0%), but this controller has M;=4.1 and TV(load) = 5.34. The lowest
achievable IAE-value for the integrating process is for an ideal Smith Predictor
controller equation (17) with ¢, = 0, which reduces IAE(load) by a factor 32 (to IAE
=0.5k'0%). However, this controller is unrealizable with infinite input usage and
requires a perfect model.

4.1.2.5. Input usage. As seen from the simulations in the lower part of Figure 4 the
input usage with the proposed settings is very smooth in all cases. To have no steady-
state offset for a load disturbance, the minimum achievable value is TV(load) =1
(smooth input change with no overshoot), and we find that the achieved value ranges
from 1.08 (first-order process), through 1.55 (integrating process) and up to 2.34
(double integrating process).
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4.2. More complex processes: obtaining the effective delay

We here consider some cases where we must first (Step 1) approximate the model
as a first- or second-order plus delay process, before (Step 2) applying the proposed
tuning rules.

In Table 4 we summarize for 15 different processes (E1-E15), the model approxi-
mation (Step 1), the SIMC-settings with t.,=0 (Step 2) and the resulting
M value, setpoint and load disturbance performance (JAE and TV). For most of
the processes, both PI- and PID-settings are given. For some processes (E1, E12,
E13, E14, E15) only first-order approximations are derived, and only PI-settings are
given. The model approximations for cases E2, E3, E6 and E13 are studied separately;
see equations (41), (13), (42) and (43). Processes El and E3--E8 have been studied by
Astrom and coworkers (Astrom et al., 1998; Hagglund & Astrom, in press), and in
all cases the SIMC Pl-settings and IAE-load-values in Table 4 are very similar to
those obtained by Astrom and coworkers for similar values of M. Process E11 has
been studied by Schei, 1994,

The peak sensitivity (M) for the 25 cases ranges from 1.23 to 2, with an average
value of 1.64. This confirms that the simple approximation rules (including the half
rule for the effective delay) are able to maintain the original robustness where M,
ranges from 1.59 to 1.70 (see Table 2). The poorest robustness with M, = 2 is obtained
for the two inverse response processes in E14 and E15. For these two processes, we
also find that the input usage is large, with TV for a load disturbance larger than 3,
whereas it for all other cases is less than 2 (the minimum value is 1). The inverse
responses processes E14 and E15 are rather unusual in that the process gain remains
finite (at 1) at high frequencies, and we also have that they give instability with PID
control.

The input variation (TV) for a setpoint change is large in some cases, especially
for cases where the controller gain K, is large. In such cases the setpoint response
may be slowed down by, for example, prefiltering the setpoint change or using b
smaller than 1 in equation (3). (Alternatively, if input usage is not a concern, then
prefiltering or use of b> 1 may be used to speed up the setpoint response.)

The last column in Table 4 gives for a load disturbance the ratio between the
achieved TAE and the minimum IAE with the same kind of controller (PI or series-
PID) with no robustness limitations imposed. In many cases this ratio is surprisingly
small (e.g. less than 1.4 for the Pl-settings for cases E2, E7, E9, Ell and E15).
However, in most cases the ratio is larger, and even infinity (cases E1 and E6-PID).
The largest values are for processes with little or no inherent control limitations (e.g.
no time delay), such that theoretically very large controller gains may be used. In
practice, this performance can not be achieved due to unmodeled dynamics and
limitations on the input usage.

For example, for the second-order process g(s) = (1/(s + 1)(0.2s + 1)) (case El)
one may in theory achieve perfect control (IAE =0) by using a sufficiently high
controller gain. This is also why no SIMC PID-settings are given in Table 4 for this
process, because the choice 7,= 0 =0 gives infinite controller gain. More precisely,
going back to equations (23) and (24), the SIMC-PID settings for process E1 are

Kc:lhzl; T =41, T =1,=0.1 (32)

These settings give for any value of 7, excellent robustness margins. In particular,
for 1,—» 0 we get GM = oo, PM =76.3°, M= 1, and M, = 1.15. However, in this case
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the good margins are misleading since the gain crossover frequency, w,~ 1/z,,
approaches infinity as 7, goes to zero. Thus, the time delay error A6 = PM/w, that
yields instability approaches zero (more precisely, 1.291,) as t, goes to zero.

The recommendation given carlier was that a second-order model (and thus use
of PID control with SIMC settings) should only be used for dominant second-order
process with 7, > 0, approximately. This recommendation is justified by comparing
for cases E1-E11 the results with PI-control and PID-control. We note from Table 4
that there is a close correlation between the value of t,/0 and the improvement in
IAE for load changes. For example, ©,/0 is infinite for case El, and indeed the
(theoretical) improvement with PID control over PI control is infinite. In cases E3,
E6, E8, E3, E10 and E2 the ratio 7,/ is larger than 1 (ranges from 7.9 to 1.6), and
there is a significant improvement in IAE with PID control (by a factor 242-1.9). In
cases E11, B9, E4 and E7 the ratio 7,/8 is less than 1 (ranges from 1 to 0.4) and the
improvement with PID control is rather small {by a factor 1.6 to 1.3). This improve-
ment is too small in most cases to justify the additional complexity and noise
sensitivity of using derivative action.

In summary, these 15 examples illustrate that the simple SIMC tuning rules used
in combination with the simple half-rule for estimating the effective delay, result in
good and robust settings.

5. Comparison with other tuning methods

Above we have evaluated the proposed SIMC tuning approach on its own merit.
A detailed and fair comparison with other tuning methods is virtually impossible—
because there are many tuning methods, many possible performance criteria and
many possible models. Nevertheless, we here perform a comparison for three typical
processes; the integrating process with delay (Case 2), the pure time delay process
(Case 1), and the fourth-order process ES5 with distributed time constants. The
following four tuning methods are used for comparison:

5.1. Original IMC PID tuning rules

In Rivera et al. (1986) PI and PID settings for various processes are derived. For
a first-order time delay process their ‘improved IMC Pl-settings’ for fast response

(e =1.70) are:
0
0.588 <Tl ’ 2> 0
IMC PI: KczTT; r,=rl+§ (33)
and the PID-settings for fast response (¢ = 0.86) are
IMC series-PID: K, = %69 %; =t 1 :g (34)

Note that these rules give 1,2 14, so the response to input load disturbances will
be poor for lag dominant processes with 1, > 6.

5.2, AstromlSchei PID tuning (maximize K,)

Schei (1994) argued that in process control applications we usually want a robust
design with the highest possible attenuation of low-frequency disturbances, and
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proposed to maximize the low-frequency controller gain K;%(K,/z;) subject to given
robustness constraints on the sensitivity peaks M, and M,. Both for PI- and PID-
control, maximizing K is equivalent to minimizing the integrated error (IE) for load
disturbances, which for robust designs with no overshoot is the same as minimizing
the integral absolute error (IAE) (Astrom & Hagglund, 1995). Note that the use of
derivative action (zp) does not affect the IE (and also not the TAE for robust designs),
but it may improve robustness (lower M,) and reduce the input variation (lower
TV—at least with no noise). Astrom et al. (1998) showed how to formulate the
minimization of K as an efficient optimization problem for the case with PI control
and a constraint on M,. The value of the tuning parameter M, is typically between
1.4 (robust tuning) and 2 (more aggressive tuning). We will here select it to be the
same as for the corresponding SIMC design, that is, typically around 1.7.

5.3. Ziegler—Nichols (ZN) PID tuning rules

In Ziegler & Nichols (1942) it was proposed as the first step to generate sustained
oscillations with a P-controller, and from this obtain the ‘ultimate’ gain K, and
corresponding ‘ultimate’ period P, (alternatively, this information can be obtained
using relay feedback (Astrom & Hagglund, 1995)). Based on simulations, the follow-
ing ‘closed-loop’ settings were recommended:

P-control: K, =0.5K,
Pl-control: K,=0.45K,; nu=P/1.2
PID-control (series): K ,=0.3K,; 1,= PJ4; n=PJ4

Remark. We have here assumed that the PID-settings given by Ziegler & Nichols
(K',=0.6K,, 11=P,/2, 1}, = P,I8) were originally derived for the ideal form PID
controller (see Hellem (2001) for justification), and have translated these into the
corresponding series settings using equation (36). This gives somewhat less aggressive
settings and better IAE-values than if we assume that the ZN-settings were originally
derived for the series form. Note that K,/t; and K, 7, are not affected, so the difference
is only at intermediate frequencies.

5.4. Tyreus—Luyben modified ZN PI tuning rules

The ZN settings are too aggressive for most process control applications, where
oscillations and overshoot are usually not desired. This led Tyreus & Luyben (1992)
to recommend the following PI-rules for more conservative tuning:

K,=0313K,; 1,=22P,

5.5. Integrating process

The results for the integrating process, g(s) = k'(e ~*/s), are shown in Table 5 and
Figure 5. The SIMC-PI controller with 7z, =0 yields M, =1.7 and IAE(load) = 16.
The Astrom/Schei Pl-settings for M = 1.7 are very similar to the SIMC settings, but
with somewhat better load rejection (IAE reduced from 16 to 13). The ZN PI-
controller has a shorter integral time and larger gain than the SIMC-controller,
which results in much better load rejection with TAE reduced from 16 to 5.6. However,
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Table 5. Tunings and performance for integrating process, g(s)=k'e ™ %/s

Setiaointb Load disturbance
Method K-K0 /0 t/0* M, IAE(y) TV( IAE(y) TV(u)
SIMC (z,=6) 05 8 — 170 392 122 160 1.55
IMC (e=1.70) 0.59 — 175 2.14 1.32 0 1.24
Astrom/Schei (M,=1.7) 0404 7.0 — 170 4.56 1.16 13.0 1.88
ZN-PI 071 333 — 283 3.92 2.83 5.61 2.87
Tyreus—Luyben 049 732 — 1.70 3.95 1.21 14.9 1.5%
ZN-PID 0471 1 1 2.29 2.88 245 3.32 3.00

*The derivative time is for the series form PID controller in equation (1).
*The JAE- and TV-values for PID control are withput derivative action on the setpoint.

1.8} ZN

1.6

1k siMc

OUTPUT y
n‘<
[

0.6

0.4

0.2f

L L L

0 5 10 15 20 25 30 35 40
time

Q

Figure 5. Responses for PI-control of integrating process, g(s) =e¢~%s, with settings from
Table 5. Setpoint change at ¢ = 0; load disturbance of magnitude 0.5 at ¢ = 20.

the robustness is worse, with M, increased from 1.70 to 2.83 and the gain margin
reduced from 2.96 to 1.86. The IMC settings of Rivera et al. (1986) result in a pure
P-controller with very good setpoint responses, but there is steady-state offset for load
disturbances. The modified ZN Pl-settings of Tyreus-Luyben are almost identical to
the SIMC-settings. This is encouraging since it is exactly for this type of process that
these settings were developed (Tyreus & Luyben, 1992).

5.6. Pure time delay process

The results for the pure time delay process, g(s) = ke ~%, are given in Table 6 and
Figure 6. Note that the setpoint and load disturbances responses are identical for
this process, and also that the input and output signals are identical, except for the

time delay.
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Table 6. Tunings and performance for pure time delay process, g(s)=ke ™%

Setpoint® Load disturbance

Method Kok K k-6 1066 M, IAE(y) TV(w IAE(y) TV(u)
SIMC (t.=6) 0 0.5 — 1.59 2.17 1.08 2.17 1.08
IMC-PI (¢=1.76) 0294 0588 — 1.62 1.71 1.22 1.71 1.22
Astrom/Schei (M,=1.6) 0.200 0.629 — 1.60 1.59 1.08 1.59 1.08
Pessen 025 0751 — 180 1.45 1.30 1.45 1.30
ZN-PI1 045 027 — 185 3.70 1.53 3.70 1.53
Tyreus-Luyben 0.313 0071 — 146 14.1 1.22 14.1 1.22
IMC-PID (£=0.86) 0 0.769 0.5 2.01 1.90 1.06 1.38 1.67
ZN-PID 0.3 0.6 0.5 Unstable

2K, =K/, is the integral controller gain.
PThe derivative time is for the series form PID controller in equation (1).
°The TAE- and TV-values for PID control are without derivative action on the setpoint.

0.8f

OUTPUT ¥
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o

o
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0.2F

0 — Tyreus/Luyben b

0 2 4 6 8 10 12 14 16 18 20
time

Figure 6. Setpoint responses for PI-control of pure time delay process, g(s) =e™*, with
settings from Table 6.

Recall that the SIMC-controller for this process is a pure integrating controller
with M, =1.59 and IAE = 2.17. The minimum achievable IAE-value for any control-
ler for this process is IAE =1 (using a Smith Predictor equation (17) with . =0).
We find that the Pl-settings using SIMC (IAE=2.17), IMC (IAE=1.71) and
Astrom/Schei (IAE = 1.59) all yield very good performance. In particular, note that
the excellent Astrom/Schei performance is achieved with good robustness (M, = 1.60)
and very smooth input usage (TV = 1.08). Pessen (1994) recommends PI-settings for
the time delay process that give even better performance (IAE = 1.44), but with
somewhat worse robustness (M, = 1.80). The ZN PI-controller is significantly more
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1

(s+1)(0.25+ 1)(0.04s 1 1)(0.0085 4 1) =)

Table 7. Tuning and peformance for process g(s) =

Setpoint® Load disturbance
Method K. v o M, IAE(y) TV@) IAE®y) TV()
SIMC-PI (z,=6) 372 11 — 1.59 0.45 8.2 0.296 1.41
Astrom/Schei (M,=1.6) 2.74 0.67 — 1.60 0.58 6.2 0.246 1.52
ZN-PI 13.6 047 — 113 1.87 207 0.137 139
Tyreus—Luyben 946 124 — 272 0.50 35.8 0.131 291
SIMC-PID (z,=0) 17.9 1.0 022 1.58 0.27 433 0.056 1.49

ZN-PID 9.1 0.14 0.14 239 0.24 39.2 0.025 3.09

“The derivative time is for the series form PID controller in Eq. (1)
®The IAE- and TV-vaules for PID control are without derivative action on the setpoint.

sluggish with IAE =3.70, and the Tyreus—Luyben controller is extremely sluggish
with IAE = 14.1. This is due to low value of the integral gain K.

Because the process gain remains constant at high frequency, any ‘real’ PID
controller (with both proportional and derivative action), yields instability for this
process, including the ZN PID-controller (Rivera et al., 1986). (flowever, the IMC
PID-controller is actually an ID-controller, and it yields a stable response with
IAE=1.38))

The poor response with the ZN Pl-controller and the instability with PID control,
may partly explain the myth in the process industry that time delay processes cannot
be adequately controlled using PID controllers. However, as seen from Table 6 and
Figure 6, excellent performance can be achieved even with PI-control.

5.7. Fourth-order process (ES)

The results for the fourth-order process E5 (Astrom er al., 1998) are shown
in Table 7 and Figure 7. The SIMC Pl-settings again give a smooth response
(TV(load) = 1.41) with good robustness (M,=1.59) and acceptable disturbance
rejection (IAE = 0.296). The Astrom/Schei PI-settings with M, = 1.6 give very similar
responses. IMC-settings are not given since no tuning rules are provided for models
in this particular form (Rivera er al., 1986). The ZieglerNichols Pl-settings give
better disturbance rejection (IAE = 0.137), but as seen in Figure 7 the system is close
to instability. This is confirmed by the large sensitivity peak (M, = 11.3) and excessive
input variation (TV = 13.9) caused by the oscillations. The Tyreus-Luyben Pl-settings
give IAE = 0.131 and a much smoother response with TV =2.91, but the robustness
is still somewhat poor (M, =2.72). As expected, since this is a dominant second-
order process, a significant improvement can be obtained with PID-control. As seen
from Table 7 the performance of the SIMC PID-controller is not quite as good as
the ZN PID-controller, but the robustness and input smoothness is much better.

Discussion
6.1. Detuning the controller

The above recommended SIMC settings with t,= 0, as well as almost all other
PID tuning rules given in the literature, are derived to give a ‘fast’ closed-loop
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Figure 7. Responses for process 1/(s + 1)(0.2s + 1)(0.04s + 1)(0.008s + 1) (E5) with settings
from Table 7. Setpoint change at 7 = 0; load disturbance of magnitude 3 at ¢ = 10.

response subject to achieving reasonable robustness. However, in many practical
cases we do need fast control, and to reduce the manipulated input usage, reduce
measurement noise sensitivity and generally make operation smoother, we may want
detune the controller. One main advantage of the SIMC tuning method is that
detuning is easily done by selecting a larger value for 7,. From the SIMC tuning
rules, equations (23) and (24), a larger value of 7, decreases the controller gain and,
for lag-dominant processes with 7, > 4(z, + 0), increases the integral time. Fruehauf
et al. (1994) state that in process control applications one typically chooses
7. > 0.5 min, except for flow control loops where one may have 7, about 0.05 min.

6.2. Measurement noise

Measurement noise has not been considered in this paper, but it is an important
consideration in many cases, especially if the proportional gain K, is large, or, for
cases with derivative action, if the derivative gain K.ty is large. However, since the
magnitude of the measurement noise varies a lot in applications, it is difficult to give
general rules about when measurement noise may be a problem. In general, robust
designs (with small M) with moderate input usage (small TV) are insensitive to
measurement noise. Therefore, the SIMC rules with the recommended choice 7, = 0,
are less sensitive to measurement noise than most other published settings method,
including the ZN-settings. If actual implementation shows that the sensitivity to
measurement noise is too large, then the following modifications may be attempted:

1. Filter the measurement signal, for example, by sending it through a first-order
filter 1/(zps + 1); see also equation (2). With the proposed SIMC-settings one
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can typically increase the filter time constant 7y up to about 0.56, without a
large affect on performance and robustness.

2. If derivative action is used, one may try to remove it, and obtain a first-order
model before deriving the SIMC PI-settings.

3. If derivative action has been removed and filtering the measurement signal is
not sufficient, then the controller needs to be detuned by going back to
equations (23) and (24) and selecting a larger value for z,.

6.3. Ideal form PID controller

The settings given in this paper (K., 7y, 7p) are for the series (cascade, ‘interacting’)
form PID controller in equation (1). To derive the corresponding settings for the
ideal (parallel, ‘non-interacting’) form PID controller

ds)=K/ <1 —+ # + rbs) (39)

’
__Kc J ) ’ 1
=—(ttps* + s+ 1)

we use the following translation formulas

T
Ki=K(1+2) d=a{1+2) =" (36)
T T 1+T_D

The SIMC-PID series settings in equations (29)—(31) then correspond to the
following SIMC ideal-PID settings (z, = 0):

0.5 (z;+ 72). To

11<80: KC,: k 9 N Ti:T1+T2; r;:): TZ (37)
1+;

7, = 80: Kg=%%<1+;;>; 71 =80+ 1,; tb=_z‘2’1_ (38)
1+39

We see that the rules are much more complicated when we use the ideal form.

Example. Consider the second-order process g(s) =e™ /(s + 12 (E9) with the k=1,
0=1, 1, =1 and 1, =1. The series-form SIMC settings ar¢c K.=0.5, 1 =] and
p = |. The corresponding settings for the ideal PID controller in equation (35) are
K!=1, 1j=2 and 15, =0.5. The robustness margins with these setlings are given by
the first column in Table 2.

Remarks:

1. Use of the above formulas make the series and ideal controllers identical when
considering the feedback controller, but they may differ when it comes to
setpoint changes, because one usually does not differentiate the setpoint and
the values for K, differ.
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2. The tuning parameters for the series and ideal forms are equal when the ratio
between the derivative and integral time, 7,,/7;, approaches zero, that is, for a
Pl-controller (zp = 0) or a PD-controller (t;= o).

3. Note that it is not always possible to do the reverse and obtain series settings
from the ideal settings. Specifically, this can only be done when 1} > 47},. This
is because the ideal form is more general as it also allows for complex zeros in
the controller. Two implications of this are:

(a) We should start directly with the ideal PID controller if we want to derive
SIMC-settings for a second-order oscillatory process (with complex poles).

(b) Even for non-oscillatory processes, the ideal PID may give better perfor-
mance due to its less restrictive form. For example, for the process g(s) = 1/
(ts + 1)* (E4), the minimum achievable IAE for a load disturbance is
IAE = 0.89 with a series-PID, and 40% lower (IAE = 0.52) with an ideal
PID. The optimal settings for the ideal PID-controller (K. =4.96,
71 = 1.25, 7, = 1.84) can not be represented by the series controller because
71 < 47p.

6.4. Retuning for integrating processes

Integrating processes are common in industry, but control performance is often
poor because of incorrect settings. When encountering oscillations, the intuition of
the operators is to reduce the controller gain. This is the exactly opposite of what
one should do for an integrating process, since the product of the controller gain X,
and the integral time 7, must be Jarger than the value in equation (22) in order to
avoid slow oscillations. One solution is to simply use proportional control (with
7y =00), but this is often not desirable. Here we show how to easily retune the
controller to just avoid the oscillations without actually having to derive a model.
This approach has been applied with success to industrial examples.

Consider a PI controller with (initial) settings K., and 7, which results in ‘slow’
oscillations with period P, (larger than 3 x 1,4, approximately). Then we likely have
a close-to integrating process g(s) = k'(e ~%/s) for which the product of the controller
gain and integral time (K,7;0) is too low. From equation (20) we can estimate the
damping coefficient { and time constant 7, associated with these oscillations of period
P, and a standard analysis of second-order systems (e.g. Seborg et al. (1989), p.
118) gives that the corresponding period is

2n 2n Tio 5 Tio

Po= g o= Ji—pt \ oK ™ >

where we have assumed {* < 1 (significant oscillations). Thus, from equation (39) the
product of the original controller gain and integral time is approximately

1 (10 V2
Ko to= (2702? <PI:))>

To avoid oscillations ({ > 1) with the new settings we must from equation (21)
require K, 7, > 4/k’, that is, we must require that

Kty _ 1 [PV
CRUE N i 40
Komo 7 <Ti0> 0
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Figure 8. Industrial case study of retuning reboiler level control system.

Here 1/7% =~ 0.10, so we have the rule:

e To avoid ‘slow’ oscillations of period P, the product of the controller gain and
integral time should be increased by a factor /& 0.1(P30)”.

Example. This actual industrial case originated as a project to improve the purity
control of a distillation column. It soon became clear that the main problem was
large variations (disturbances) in its feed flow. The feed flow was again the bottoms
flow from an upstream column, which was again set by its reboiler level controller.
The control of the reboiler level itself was acceptable, but the bottoms flowrate
showed large variations. This is shown in Figure 8, where y is the reboiler level and
u is the bottoms flow valve position. The PI settings had been kept at their default
setting (K, = —0.5 and ;=1 min) since start-up several years ago, and resulted in
an oscillatory response as shown in the top part of Figure 8.

From a closer analysis of the ‘before’ response we find that the period of the slow
oscillations is P, = 0.85 A= 51 min. Since 7; = 1 min, we get from the above rule we
should increase K, -1, by a factor f~0.1-(51)> =260 to avoid the oscillations. The
plant personnel were somewhat sceptical to authorize such large changes, but
eventually accepted to increase K, by a factor 7.7 and 1, by a factor 24, that is, K.t
was increased by 7.7 -24 = 185. The much improved response is shown in the ‘after’
plot in Figure 8. There is still some minor oscillations, but these may be caused by
disturbances outside the loop. In any case the control of the downstream distillation
column was much improved.
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6.5. Derivative action to counteract time delay?

Introduction of derivative action, e.g. 1, = /2, is commonly proposed to improve
the response when we have time delay (Rivera et al., 1986; Smith & Corripio, 1985).
To derive this value we may in equation (17) use the more exact 1st order Pade
approximation, e =% ~ (—(0/2)s + 1)/((6/2)s + 1). With the choice 7, = 0 this results in
the same series-form PID-controller, equation (18), found above, but in addition we
get a term ((6)/2)s 4+ 1)/(0.5(6/2)s + 1). This is as an additional derivative term with
Tp = 0/2, effective over only a small range, which increases the controller gain by a
factor of two at high frequencies. However, with the robust SIMC settings used in
this paper (7, = 6), the addition of derivative action (without changing K, or ;) has
in most cases no effect on IAE for load disturbances, since the integral gain K, = K,/
7y is unchanged and there are no oscillations (Astrom & Hagglund, 1995). Although
the robustness margins are somewhat improved (for example, for an integrating with
delay process, k's~ /s, the value of M, is reduced from 1.70 (PI) to 1.50 (PID) by
adding derivative action with = = 6/2), this probably does not justify the increased
complexity of the controller and the increased sensitivity to measurement noise. This
conclusion is further confirmed by Table 6 and Figure 6, where we found that a PI-
controller (and even a pure I-controller) gave very good performance for a pure time
delay process. In conclusion, it is nor recommended to use derivative action to
counteract time delay, at least not with the robust settings recommended in this

paper.

6.6. Concluding remarks

o Asillustrated by the many examples, the very simple analytic tuning procedure
presented in this paper yields surprisingly good results. Additional examples
and simulations are available in reports that are available over the Internet
(Holm & Butler, 1998; Skogestad, 2001). The proposed analytic SIMC-settings
are quite similar to the ‘simplified IMC-PID tuning rules’ of Fruehauf et al.
(1994), which are based on extensive simulations and have been verified
industrially. Importantly, the approach is analytic, which makes it very well
suited for teaching and for gaining insight. Specifically, it gives invaluable
insight into how the controller should be retuned in response to process
changes, like changes in the time delay or gain.

e The approach has been developed for typical process control applications.
Unstable processes have not been considered, with the exception of integrating
processes. Oscillating processes (with complex poles or zeros) have also not
been considered.

o The effective delay @ is easily obtained using the proposed half rule. Since the
cffective delay is the main limiting factor in terms of control performance, its
value gives invaluable insight about the inherent controllability of the process.

e From the settings in equations (23)—(25), a Pl-controller results from a first-
order model, and a PID-controller from a second-order model. With the
effective delay computed using the half rule in equations (10) and (11), it then
follows that PI-control performance is limited by (half of) the magnitude of
the second-largest time constant t,, whereas PID-control performance is limited
by (half of) the magnitude of the third-largest time constant, 7,.

e The tuning method presented in this paper starts with a transfer function
model of the process. If such a model is not known, then it is recommended to
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use plant data, together with a regression package, to obtain a detailed transfer
function model, which is then subsequently approximated as a model with
effective delay using the proposed half-rule.

7. Conclusion

A two-step procedure is proposed for deriving PID-settings for typical process
control applications.

1. The half rule is used to approximate the process as a first or second order
model with effective delay 0, see equations (10) and (11).

2. For a first-order model (with parameters k, t, and 6) the following SIMC PI-
settings are suggested:

Ll
Tkt +8

where the closed-loop response time 7, is the tuning parameter. For a dominant
second-order process (for which 1, > 6, approximately), it is recommended to
add derivative action with

7, =min{z, 4(t, + 0)}

Series-form PID: 1, =1,

Note that although the same formulas are used to obtain K, and 1, for both PI-
and PID-control, the actual values will differ since the effective delay 6 is smaller for
a second-order model (PID). The tuning parameter 7, should be chosen to get the
desired trade-off between fast response (small IAE) on the one side, and smooth
input usage (small TV) and robustness (small M) on the other side. The recom-
mended choice of 7, = 6 gives robust (M, about 1.6 to 1.7) and somewhat conservative
settings when compared with most other tuning rules.
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Appendix: approximation of positive numerator time constants

In Figure 9 we consider four approximations of a real numerator term (75 + 1)
where T> 0. In terms of the notation used in the rules presented earlier in the paper,
these approximations correspond to

— T, 1
Approximation 1: ((rz::'—l—':li ~ Toltg =1
N T, 1
Approximation 2: ((r((,)jrili ~ Tolty <1
(Tos+1) _ 1

A imati : ~
pproximation 3 Cost 1)~ (co—Ty)s +1

(Ths+1) N 1
(toas + D(zops + 1) <‘Coa‘50bs N 1>

0

Approximation 4:



Simple analytic rules for model reduction and PID controller tuning

113

Vig T Ly
............ ‘f T T 1]
. ‘h't 1/’|:4
0 4 1
c 10 BlmEiE SN . e, E
‘T e, el
L (P — .l ¥
- -
2 ., 4.,‘_.‘.-
3 .\'\_
10'1 1 . 1‘-
10° 107" 10°

Phase

=100 ~,
120 L S
107 10" 10°
Frequency o
(Ts+1)

Figure 9. Comparison of g,(s) = (1.5 + D(tps + 1)
A b

with 7, = T = 1, (solid line), with four

approximations (dashed and dotted lines): g,(s) =

l ——

93 = s+ Dlrys + D

For control purposes we have that

with 73 =1, — T, and g,(s) =

(Tly) T,
st 1) PO st 1y
. Tl
—(r4s ) with 7, = T"

e Approximations that give a too high gain are ‘safe’ (as they will increase the

resulting gain margin)

e Approximations that give too much negative phase are ‘safe’ (as they will

increase the resulting phase margin)
and by considering Figure 9 and we have that

1. Approximation 1 (with Tj, > t,) is always safe (both in gain and phase). It is

good for frequencies w > 1/z,.

2. Approximation 2 (with 7, < 1,) is never safe (neither in gain or phase). It is

good for w > 5/T.
3. Approximation 3 is good (and safe) for w
is unsafe in gain.

<1/(tq—Tp) . At high frequencies it

4. Approximation 4 is good (and safe) for w > 1/t, = Tp/(t4,T0s). Al low
frequencies it is somewhat unsafe in phase.

‘Good’ here means that the resulting controller settings yield acceptable
performance and robustness. Note that approximations 1 and 2 are asymptotically

correct (and best) at high frequency, whereas

approximation 3 is asymptotically

correct (and best) at low frequency. Approximation 4 is asymptotically correct at

both high and low frequencies.
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Furthermore, for control purposes it is most critical to have a good approximation
of the plant behavior at about the bandwidth frequency. For our model this is
approximately at @ = 1/ where 0 is the effective delay. From this we derive:

1. If Ty is larger than all denominator time constant (t,) use Approximation 1
(this is the only approximation that applies in this case and it is always safe).

2. If 1o = T = 50 use Approximation 2. (Approximation 2 is ‘unsafe’, but with
T, = 50 the resulting increase in M, with the suggested SIMC-settings is less
than about 0.3).

3. If the resulting 75 = 1o — T is smaller than 6 use Approximation 3.

4. 1If the resulting 1, is larger than 6 use Approximation 4.

The first three approximations have been the basis for deriving the corresponding
rules TI-T3 given in the paper. The rules have been verified by evaluating the
resulting control performance when using the approximated model to derive SIMC
PID settings. Some specific comments on the rules:

e Since the loss in accuracy when using Approximation 3 instead of Approxi-
mation 4 is minor, even for cases where Approximation 4 applies, it was decided
to not include Approximation 4 in the final rules.

e Approximation 1,

(Tos+1) _

(tos +1)

where k= (T,/ty) =1 is good for 1, > 6. It may be safely applied also when
7o < 0, but then gives conservative controller settings because the gain k = T/
7, is too high at the important frequency 1/6. This is the reason for the two
modifications Tla and T1b to Approximation 1. For example, for the process
(s) = 2s+1 .

9oB) =025 + 1)?

-8

Approximation 1 gives

k
025 +1°
with k= To/to = 10. With 17,=0=1 the SIMC-rules then yield K,=0.01 and
7, = 0.2 which gives a very sluggish reponse with IAE(load) =20 and M, = 1.10.
With the modification k= T,/0 =2 (Rule Tla), we get K, =0.05 which gives
IAE(load) = 4.99 and M, = 1.84 (which is close to the IAE-optimal Pl-settings
for this process).

-s

e The introduction of %, instead of 7, in Rule T3, gives a smooth transition
between Rules T2 and T3, and also improves the accuracy of Approximation 3
for the case when 1, is large.

e We normally select 4 = 14, (large), except when 1, is ‘close to T’. Specifically,
we select 1, = 1o, (small) if Ty/tg, < 104/Ty and Ty/zy, <1.6. The factor 1.6 is
partly justified because 86/50 = 1.6, and we then in some important cases get a
smooth transition when there are parameter changes in the model gy(s).

Example E2. For the process

(—0.35 + 1)(0.08s + 1)

gols) = km 1)(0.4s + 1)(0.25 + 1)(0.05s + 1)°

(41)
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we first introduce from Rule T3 the approximation

0.08s+1 1
02s+1 " 0.12s+1

Using the half rule the process may then be approximated as a first-order delay
process with

0=1/24+044+0.12+3-0.05+03=1.47; T,=2+12=25
or as a second-order delay process with
0=04/2+0.12+3-0.05+0.3=0.77; 1,=2; 1,=14+04/2=1.2

Remark. We here used t,=1,,=0.2 (the closest larger time constant) for the
approximation of the zero at T = 0.08. Actually, this is a borderline case with T /
Top = 1.6, and we could instead have used 1, = 7,,=0.05 (the closest smaller time
constant). Approximation using Rule T1b would then give

0.085+1
0.05s+1"

but the effect on the resulting models would be marginal: the resulting effective time
delay 8 would change from 1.47 to 1.50 (first-order process) and from 0.77 to 0.80
(second-order process), whereas the time constants (t; and 7,) and gain (k) would be
unchanged.

1

Example E6. For the process (Example 6 in Astrom et al. (1998)),

017 +1)
s(s + 1)?(0.0285 + 1)

we first introduce from Rule T3 the approximation

0.17s+1)> _ 1 1
G+1) T (A—017—017)s+1 0.66s+1

Using the half rule we may then approximate equation (42) as an integrating
process, g(s) = k'¢ " %/s, with

k'=1; 6=1+0.66+0.028 =1.69
or as an integrating process with lag, g(s) = k¢ %/s(z,s + 1), with
k=1, 0 =10.66/2 + 0.028 =0.358; 7,= +0.66/2=1.33

gols) = (42)

Example E13. For the process

25 + 1 .
(10s + D(0.55s + 1)

the cffective delay is (as we will show) 6=1.25. We then get £, =min(t,, 50)=
min(10, 6.25) = 6.25, and from Rule T3 we have

2s+1  (6.25/10) 0.625

10s+17 (6.25—2)s+1 425s+1
Using the half rule we then get a first-order time delay approximation with
k=10.625; 0=1+0.52=1.25; 7,=425+0.512=4.5

go(s) = - 43)
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May 2004: ADDITIONAL COMMENTS FROM THE AUTHOR

1. Model reduction

The main contribution in terms of model reduction is the simple half rule for the
effective delay. It started in 1997 as a simple empirical rule that I used for teaching
in my process control class; see the following handout from 1998 (in Norwegian):
http://www.nt.ntnu.no/users/skoge/publications/2003 /tuningPID/more/1998. Before
1997, when teaching the students about the ‘effective delay’, I had added the inverse
time constant and all of the smaller (neglected) denominator time constants. However,
this gives a conservative (too large) estimate of the delay when it is applied to
common PID-rules, and gives rather sluggish tunings. The reason is that a time
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constant is not quite ‘as bad’ as a delay. I experimented a bit and found that adding
only half of the largest neglected time constant (and adding the rest to the smallest
retained time constant) gave better tunings. The validity of the half rule was later
confirmed by testing it on a large number of processes; see the paper and three
student projects from 1998, 1999 and 2001 (see http://www.nt.ntnu.no/users/skoge/
publications/2003/tuningPID /more). In summary, the main justification of the half
rule in the context of PID-tuning is that it when combined with the SIMC PID-
tuning rules consistently results in good tunings with M, about 1.7 (with t,=0). The
half rule is reasonable but clearly not optimal in terms of open-loop model fitting
(c.g. in the time or frequency domains). On the other hand, open-loop model fitting
is not the objective, but rather that the resulting PID-tunings should work well. We
have tried other values than a half (in the range from 0 to 1), e.g. see some of the
student projects, but this did not improve the results.

Let me give some justification for the half rule in terms of tuning. Recall the
tuning rules K.k =(t /1. +0); 1,=min{4(r,+0), t,} with the typical choice t,=0.
Consider an original second-order model on the form

—f05s

900) = K ) (T +1209)

which we want to approximate with a first-order model,
e~ Os
l+1,s

The “first part’ of the half rule is the effective delay. According to the half rule

g(s) =k

0= 0 +2°
Compared with the conservative alternative of adding all of t,, to the delay (i.e.
0 = 04+ 1,0), the half rule gives a shorter delay (up to a factor 2), which as expected
results in a larger controller gain K, (with the choice 7,= 0 the increase in K, is up to
a factor of 2 for a small original delay 6,). The integral time 7; may also be reduced
by up to a factor of 2. Thus, the ‘first part’ of the half rule makes both the high-
frequency (K.) and low-frequency (K./7;) controller gain larger, and the effect is
largest when the original delay 0, is small compared to t,,.

Let us next consider the ‘second part’ of the half rule, which is the increase in 7,
(from 1,4 to T,9+7,0/2). This increases the controller gain K, by up to a factor 1.5
(the largest increase is when 7,,=1,,). However, cxactly for cases where we get an
increase in K, (which is when 7, is large), we also get an increase in the integral time
because 7,=1,. Thus, the value of K_/t; (which is the low-frequency controller gain)
is unchanged. Thus, the ‘second part’ of the half rule makes the high-frequency
controller gain K, larger, and the effect is largest when t,, s close to t,,.

In summary, we sec that ‘both parts’ the half rule result in less conservative
settings, especially for cases where 1,, (the largest neglected time constant) is large.

2. Tuning rules

The main contribution of the paper in terms of tuning rules is the correction on
the integral time for integrating processes. This significantly improves the load
rejection capabilities when compared to the IMC tuning rules of Rivera ez a/. (1986).
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When deriving this correction it was required that the system is just at the limit to
oscillations ({=1 in equation (20)), which results in the factor 4 in the expression
7;=4 (1,4 6). More generally, { could be left as a degree of freedom (thanks to Finn
Haugen for noting this) which would result in the following intergral time for
‘integrating’ processes: t; = c(t,+ 0) where ¢ =4{2. For example, {=0.7 (some low-
frequency oscillations allowed) gives the value t;=2(tr,+6). This gives a faster
approach to steady state than t,=4(t,+ ) (corresponding to {=1), but on the other
hand the robustness is not as good.

3. Tuning parameter

The simple choice 1,=6 for the tuning parameter was also originally chosen for
its simplicity, and it is further justified because the resulting value of M, in the range
1.6 to 1.7 usually gives a good trade off between speed of response and robustness.

4. Derivative action

Derivative action is recommended only for dominant second order processes
(with 7, larger than 6, approximately). In the simulations I selected the filter time
constant 7y =0.017, (see Section 1.2), but this is not the recommended value. Rather,
7 should be adjusted online, as mentioned in Section 6.2, in order to reduce the
input usage and sensitivity to measurement noise. A typical value is 15 =(0.1—-0.2)
7p (see also Section 1.2), but as mentioned in Section 6.2, one may increase tx up to
about 0.5 1y, if measurement noise is a serious problem.

5. Smooth control

The tunings in this work are chosen to give ‘fast but still robust control’. However,
there are cases where this gives unneccessary fast control. This is further discussed
in the following paper: “Tuning for smooth control: Lower limit on the controller
gain for acceptable disturbance rejection’, which was presented at the IFAC DYCOPS
conference (Hong Kong 2003/2004). See http://www.nt.ntnu.no/users/skoge/
publications/2003/tuningPID/smooth_tunings/

6. Second-order oscillatory process

As mentioned in Remark 3 on page 304, oscillatory processes are not covered in
the paper, mainly because this requires one to use the ideal (parallel) form of the
PID controller in equation (35) as derived in the following. Consider a second-order
with delay process on standard form

e*Gs
S)=k—5—5—
9(s) 1282 + 210 s+ 1
where 7, is the time constant (to=1/w, where w, is the natural frequency of
oscillations for the plant) and { is the damping factor. |{| <1 gives an underdamped
system with oscillations. We here assume a stable process with { non-negative.
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We use the ideal-form (parallel) PID controller
1 Ké /o2
c®)=K(l+—+1p8) =—(t7ps" + 175 +1)
18 77
Direct synthesis based on g(s) yields controller

1 (e3s® +2tls+1)

A= (t.+ 0)s

and matching terms yields the following tunings for the ideal form (parallel) PID
controller:

, 1 2%
k40
71 =270
7 =0.57,/C

With the choice 7, = 0 the controller gain becomes

1 7¢
K.=-—"
k0
The stability margins with this choice are given by the first column of Table 2
(GM =3.14, PM =61.4 degrees, Ms=1.59).
For {>1 (underdamped process) we get a second-order process,

e—@s
=k — " —
9 = K st Deast 1)
and the above rules reduce to the ones for ‘second-order’ given process in Table 1.
However, note that the settings in Table 1 are for the cascade form, so they need to
be translated using equation (36) to get the ‘ideal-form’ settings.

7. Unstable process

Rules are yet to be derived for this case. Some preliminary attempts are found in
the early Norwegian 1998-version.

8. Ziegler Nichols tunings

The PID tuning rules in the original 1942-paper of Ziegler and Nichols state that
the integral time is four times the derivative time. I have assumed in this paper that
this is for the ideal (parallel form), so that for the cascade form we have that the
integral time is equal to the derivative time; see section 5.3. Actually, 1 originally
assumed that the ZN-tunings were for the cascade form controller, and this can be
found in the original version of the paper presented at 2001 AIChE Meeting in Reno.
This was based on the argument of Shinskey and others, that the pneumatic PID-
controllers at that time gave a cascade form. However, after studying it in more detail
(see diploma thesis by Hellem from 2001) and discussing it with Dale Seborg and
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Karl Johan Astrem, I became convinced that the ZN-settings are for the ideal
(parallel) form. First, they work best for the ideal form. Second, I think Nichols
did numerical computations on an electronic computer where the ideal form was
implemented. The authors were possibly not aware of the difference between the two
forms or did not think it was important. We tried to search back into old reports,
but unfortunately it seems that we were too late to find out conclusively.



